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ABSTRACT
When a new treatment is considered for use, whether a phar-
maceutical drug or a search engine ranking algorithm, a typ-
ical question that arises is, will its performance exceed that
of the current treatment? The conventional way to answer
this counterfactual question is to estimate the effect of the
new treatment in comparison to that of the conventional
treatment by running a controlled, randomized experiment.
While this approach theoretically ensures an unbiased esti-
mator, it suffers from several drawbacks, including the diffi-
culty in finding representative experimental populations as
well as the cost of running randomized trials. Moreover,
such trials neglect the huge quantities of available control-
condition data, which in principle can be utilized for the
harder task of predicting individualized effects.

In this paper we propose a discriminative framework for
predicting the outcomes of a new treatment from a large
dataset of the control condition and data from a small (and
possibly unrepresentative) randomized trial comparing new
and old treatments. Our learning objective, which requires
minimal assumptions on the treatments, models the rela-
tion between the outcomes of the different conditions. This
allows us to not only estimate mean effects but also to gen-
erate individual predictions for examples outside the small
randomized sample.

We demonstrate the utility of our approach through ex-
periments in three areas: search engine operation, treat-
ments to diabetes patients, and market value estimation of
houses. Our results demonstrate that our approach can re-
duce the number and size of the currently performed ran-
domized controlled experiments, thus saving significant time,
money and effort on the part of practitioners.

1. INTRODUCTION
Novel medical treatments, new government policies, and

innovative website designs are all examples of changes to an
existing method of interaction with people that need to be
evaluated for their effectiveness before they can be put into
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use. The gold standard for testing such interventions are
randomized controlled trials (RCTs) [6]. RCTs are widely
used in medicine: Approximately 200,000 RCTs were con-
ducted in the 1990’s alone [6]. Internet website operators
were early adopters of RCTs [9]. Most large Internet com-
panies are known to run thousands of RCTs every year [8].

RCTs work by randomly assigning every subject to either
a control group or a treatment group. The average measure-
ment of the result variable for each group is then an unbi-
ased estimator of its corresponding population mean. Given
these, unbiased estimators of other desirable quantities such
as the mean treatment effect can be easily constructed.

This approach, while appealing, has several drawbacks.
First, for the estimators to be truly unbiased, subjects must
be sampled i.i.d. from the general population of interest.
Not only is this unrealistic and seldom the case, but often
times the sample represents a very specific sub-population,
which can lead to extremely biased estimates. This is es-
pecially evident in clinical trials, where subjects (who typi-
cally volunteer to take part in an experiment) are often those
suffering from severe symptoms, which no other treatment
helped, or are simply more prone to volunteer.

Second, as controlled trials are expensive and time con-
suming, sample sizes tend to be small. This greatly limits
the amount of information available to researchers and prac-
titioners for drawing conclusions, generating predictions, and
deciding on policies. The small samples are typically suffi-
cient for constructing estimators with reasonably low vari-
ance, but are seldom enough for generating predictors for
individual outcomes. For instance, in search engine A/B
tests, the decision of whether to use an alternative results
ranker (or even whether to continue running the experiment)
is often based on the average measures of click-through rate
(CTR) or similar measures, and not on predictions regard-
ing specific queries. Larger samples should potentially allow
for the application of high-end learning algorithms.

Third, the price paid for guaranteeing that the estimators
are unbiased is that only data from the controlled trial can
be used. This completely discards the huge quantities of
data that are often times available for the control condition,
which in most cases is just the current policy. For instance,
consider the case of predicting whether administering a new
drug would prove better than the current standard for a
given patient. A predictor trained only on the results of a
small-scale clinical trial should prove to be inferior to one
which also takes into account all the past medical records
corresponding to the currently applied drug. Using only the



trial results seems wasteful in terms of data, and this is in
general suboptimal for prediction.

Given the above, the question we pose here is the fol-
lowing: how can we design a learning algorithm for gener-
ating predictors in counterfactual settings, which takes as
input both a small randomized trial dataset, and a large
labeled dataset of the control population? Answering the
above question is the motivation behind this paper.

It is important to note that although the setting we discuss
is of a counterfactual nature, our focus here is on prediction.
In pursuing the goal of generating high-accuracy predictors,
we knowingly forfeit the ability to explain the underlying
causal mechanism. The latter objective has been the focus
of an abundant body of works, most based on the frame-
work of causal inference [13]. We argue here that there is
an inherent tradeoff between interpretability and predictive
performance, and that when the goal is to optimize accu-
racy, a direct approach is preferred. Our work follows the
more recent line of work where a discriminative loss-centric
approach is applied in counterfactual settings [17, 18, 7].

The paper is organized in the following manner. We begin
by covering related material in Sec. 2. We present notations
and our problem statement in Secs. 3 and 4, respectively.
Sec. 5 contains a detailed description of the core of our
approach, followed by Sec. 6 in which several extensions are
presented. Sec. 7 contains several experiments on real data.
We conclude with a discussion in Sec. 8.

2. RELATED MATERIAL
Our setting draws relations to several lines of work. The

fundamental property of the prediction task we consider is
that it is counterfactual in nature. Causal inference [13] is
a standard framework for estimating the causal relation be-
tween variables, in a way which can then be used to answer
counterfactual questions. In order to achieve this, meth-
ods for causal inference are usually based on simple, in-
terpretable models from which actionable conclusions can
be drawn [4]. Our approach is different in that it focuses
on prediction by introducing an ad-hoc loss function for
parametrized predictors. Classic causal-inference models on
the other hand do not always allow for arbitrary features,
nor is it always straightforward to learn or to generate pre-
dictions from a given model.

Alternatively, counterfactual questions can be answered if
data can be collected under a random policy [11, 4, 10]. In
practice, true randomization is hard to obtain for business
reasons (in Internet settings) or for ethical reasons (in medi-
cal and social domains). Due of this, it has been proposed to
treat data collected under different settings as randomized,
and use it to answer counterfactual questions [12].

More recently, notions from causal inference have been
incorporated into discriminative learning methods, with the
declared goal of minimizing loss. In analogy to Empirical
Risk Minimization, the principle of Countefactual Risk Min-
imization is proposed in [17, 18]. The sggested method offers
a discriminative learning objective based on inverse propen-
sity scores, where the variance is controlled by a regulariza-
tion term or by self-normalization. In contrast to our setup,
this method requires that in addition to examples x and
labels y, each sample must also includes its logged propen-
sity score. Other works use doubly-robust methods which
are based on propensity scores as well [1]. Some parametric

non-linear methods for estimating treatment effect are based
on Bayesian regression trees [5] and random forests [21].

A parallel discriminative approach to counterfactual pre-
diction is based on the notion of domain adaptation [2]. Fol-
lowing the work of [15], the authors of [7] observe that gen-
eralizing from the observed factual distribution to the unob-
served counterfactual distribution is a special case of covari-
ance shift, and in general of domain adaptation. Therefore,
the non-convex representation learning method in [7] incor-
porates a discrepancy-based regularization term which en-
courages a label-invariant representation. In contrast, our
method regularizes the relation between the control and
treatment variables themselves, conditioned on a the origi-
nal shared representation. Moreover, while the method of [7]
requires large amounts of data for both labels, our method
is tailored for a setting where the treatment variable is rare.

3. NOTATIONS
Our setup is similar to a standard supervised learning

setup where we are given a sample set of examples x and
labels y, but with some additions. We assume examples are
from a general domain X , and denote by X ′ ⊆ X the sub-
domain of examples that take part in the controlled trials.
Our setup includes two label domains, denoted by YC for
the control variable and by YT for the treatment variable.
Throughout the paper we use the terms label, variable, and
experimental outcome interchangeably.

Instantiations of examples are denoted by x ∈ X , and of
labels are denoted by yC ∈ YC and yT ∈ YT . We assume
there exists a single governing joint distribution DX ,YC ,YT
for tuples (x, yC , yT ), though we have no direct access to it,
nor do we observe such tuples. Rather, for a given example
x ∼ DX drawn from the marginal distribution, we observe
either the control variable yC ∼ DYC |X=x or the treatment
variable yT ∼ DYT |X=x, drawn from their respective condi-
tional distributions.

In the setting we consider, we are given as input three
sample sets of example-label pairs:

1. SC =
{

(x(i), y
(i)
C )
}MC

i=1
sampled i.i.d. from DX ,YC

2. S′C =
{

(x(i), y
(i)
C )
}M′

C

i=1
sampled i.i.d. from DX ′,YC

3. S′T =
{

(x(i), y
(i)
T )
}M′

T

i=1
sampled i.i.d. from DX ′,YT

The first set SC is a large sample of the general population
with labels for the control variable, representing past data
accumulated by running the default policy. The sets S′C and
S′T are smaller and represent the results of the controlled
trial for the control and treatment groups.1 We therefore
assume that M ′C ,M

′
T � MC and that M ′C ≈ M ′T . More

concretely, we assume that while MC is sufficiently large to
learn a reasonably accurate predictor for the control vari-
able, M ′T is insufficiently small for adequate learning of the
treatment variable. Note that we are not guaranteed to
have any x for which we observe both yC and yT . This is a
fundamental problem in counterfactual settings, and makes
estimating the individual treatment effect y∆ = yT − yC
especially challenging [23].

1Note that the i.i.d. assumption mimics the procedure of
random subject assignment found in RCTs.
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Figure 1: A graphical depiction of the problem set-
ting. Our goal is to predict treatment outcomes
for a general-population test sample ST using: (1)
a small randomized controlled trial from a (possi-
bly biased) sub-population X ′, where either of the
two possible treatments are randomly given, creat-
ing two subsets, (S′C , S

′
T ), and (2) a large historical

dataset of control outcomes SC. Our method links
the two datasets using a minimal set of modeling
assumptions (3).

4. PROBLEM STATEMENT
Recall that our goal is to construct a framework for learn-

ing predictors by leveraging both the small randomized trial
data (S′C , S

′
T ) and the large control-labeled dataset SC . The

main task we consider is predicting the treatment variable yT
for new, unobserved examples from a test set ST ∼ DX ,YT .
In other words, we’d like our predictor to generalize well to
YT on the general population. The challenge here is that our
data contains only a small number of treatment labels. The
solution we present in Sec. 5 utilizes all the available data
by modeling the relation between the control and treatment
variable. An illustration of our setup is given in Fig. 1.

A related task that is of high interest is to predict the
individualized treatment effect y∆ = yT −yC [14, 20]. Accu-
rate predictions of y∆ can in principle aid decision makers in
deciding what treatment to apply. Such predictions can also
be used to estimate the mean treatment effect E [y∆], and
by so offer an alternative to conventional estimators used in
randomized trials. As we show in Sec. 5, the individual-
ized treatment effect y∆ plays a central role in our learning
objective for all tasks we consider.

5. METHOD
At the core of our method lie only two simple modeling

assumptions: that predictions for both conditions are of the
form ŷ = 〈w, x〉,2 and that the models wC , wT for the con-
trol and treatment conditions, respectively, should be similar
under some notion.

For ease of exposition, consider first a regression task
where x ∈ Rd, yC , yT ∈ R, and our goal is to minimize the
squared loss of a linear predictor for the treatment variable,
namely ŷT = 〈wT , x〉. In Sec. 6 we show that our method
applies to both regression and classification, to a wide array
of loss functions, and to some non-linear predictors as well.

Since our task is to predict the treatment outcome yT
of a given sample x, a reasonable place to start would be in

2In general we assume that predictors are linear in some
feature representation ϕ(x), as we describe in Sec. 6.3.

considering a learning objective over the sample set S′T , as it
is the only one for which we have treatment labels. Applying
the squared loss and adding `2 regularization gives us:

min
wT∈Rd

1

M ′T

∑
i∈S′

T

(
〈wT , x

(i)〉 − y(i)
T

)2

+ λ‖wT‖22 (1)

As in any discriminative objective, the number of samples
greatly affects the quality of generalization of the learned
predictor. Unfortunately, for the above objective and under
our assumptions, S′T will not prove to be sufficiently large
for training a high-accuracy predictor for the treatment vari-
able. Put simply, our data does not include enough labeled
instances from YT .

Our approach remedies this deficiency by artificially aug-
menting S′T with samples that serve as a proxy for treatment
labels. As a first step, we will add to the objective in Eq.
(1) the samples from SC , our largest available dataset:

min
wT∈Rd

γ

M ′T

∑
i∈S′

T

(
〈wT , x

(i)〉 − y(i)
T

)2

+

(1− γ)

MC

∑
i∈SC

(
〈wT , x

(i)〉 − y(i)
C

)2

+ λ‖wT‖22 (2)

where γ ∈ [0, 1] controls the relative weight of each dataset
in the training objective. For ease of notation, we overload
SC to include all of the available control condition examples,
namely assume S′C ⊂ SC .

At a first glance using control outcomes yC when trying
to predict the treatment outcome yT may seem peculiar.
Nonetheless, work in multi-task learning has shown that
training a single predictor over several labels is beneficial in
practice when the conditional distribution of different labels
is similar [3]. However, even if the control and treatment
distributions do share similarities, our focus here is rather
on their differences. We therefore do not suffice with Eq.

(2), and in place of the control labels y
(i)
C we insert proxy

treatment labels ỹ
(i)
T which we define next.

Denote by ∆ = yC − yT the negative of the individual
treatment effect y∆, namely the difference between the con-
trol and treatment variables. We have already set ŷT to be
a linear function of x with weights wT ; extending this to ŷC
with weights wC gives us a linear estimator for ∆:

∆̂ = ŷC − ŷT = 〈wC , x〉 − 〈wT , x〉 = 〈w∆, x〉 (3)

where .w∆ = wC − wT . Replacing ŷC with the true labels
yC from SC and rearranging gives us our proxy:

ỹT = yC − ∆̂ = yC − 〈w∆, x〉 (4)

Note that this derivation is possible due to our view of the
tuple (x, yT , yC) as jointly distributed. This is in contrast
to the more conventional approach where the distribution
is modeled using tuples of the form (x, ν, yν), where ν ∈
{C, T} is the experimental condition and yν is the outcome
under that condition [7]. Our formulation induces a joint
distribution over pairs (x,∆) ∼ DX ,∆, which we utilize.



Plugging back into Eq. (2) and further regularizing gives:

min
wT ,w∆

γ

M ′T

∑
i∈S′

T

(
〈wT , x

(i)〉 − y(i)
T

)2

+

(1− γ)

MC

∑
i∈SC

(
〈wT , x

(i)〉 − ỹ(i)
T

)2

+

λ‖wT‖22 + ηR(w∆) (5)

where R is a regularization function, and η ∈ R will be
described shortly. Note that ỹT is in fact a function of w∆.

To gain insight into the above construction, we next ana-
lyze the learning objective under an alternative formulation.
Notice that by Eqs. (3) and (4), the second loss term and the
additional regularization term in Eq. (5) are equivalently:3∑

i∈SC

(
〈wC , x

(i)〉 − y(i)
C

)2

, ηR(wT − wC)

Under this representation, the choice of R and η respectively
determine the nature and magnitude of similarity between
wT and wC . For instance, setting R = ‖ · ‖22 will encourage
wT and wC to be close under a Euclidian metric, while set-
ting R = ‖ · ‖1 will induce sparsity on w∆, meaning that wT

and wC will be different only on a small subset of entries.
This gives an intuitive interpretation of our assumption

on the similarity of wC and wT via w∆; we assume that wC

models the baseline effect, while w∆ models the deviation
of the treatment effect as expressed by wT . This aligns well
with the probelm setup. Since SC is large, it should allow
for a good fit to the baseline effect of the control condition.
Given this, the fewer samples in S′T should now suffice to
fit the deviated treatment effect. This is especially true for
high-dimensional data, where learning requires a large num-
ber of samples. We will return to this in Sec. 6.3;

The value of η sets the de-facto linkage strength of the
two loss terms in Eq. (5). Setting η = 0 will allow wC to be
arbitrarily far away from wT , which will lead to a disjoint
objective - minimizing wT over S′T and wC over SC inde-
pendently. On the other hand, setting η =∞ will constrain
wT = wC and hence revert the objective back to Eq. (2).

While η controls the relation between wT and wC , γ sig-
nifies the importance of each sample set for training wT to
generalize well to the treatment variable. While S′T con-
tains actual treatment labels but is small, SC is sufficiently
large but contains only control labels (used as proxies for
the treatment variables). The purpose of γ is therefore to
allow us to balance these complementary properties. Setting
γ = 1 will revert the objective back to Eq. (1), while setting
γ = 0 will result in a training objective based only on SC . In
effect, the above notions model our belief in how, and how
well, ỹT serves as a proxy for yT .

6. EXTENSIONS
In the above section, we presented our method for a regres-

sion task under a squared loss function and an `2 regulariza-
tion term. Note however that our only modeling assumption
was that both ŷT and ŷC (and accordingly ∆̂) admitted to
a linear form under some joint feature representation. This
simple assumption allows us to apply our method to more

3This is similar to the regularization term of the Fused Lasso
approach [19] used for time-series prediction.

general learning settings and to non-linear predictors. For
some cases, it also provides a closed-form solution.

6.1 Classification
In our analysis thus far we have assumed a specific ridge

regression setting, with a squared loss and labels in R. Our
results however are not restricted to regression, an in fact
apply to general loss functions L(〈w, x〉, y) over linear pre-
dictors, and to general regularization terms Q(w) of the pre-
dictor’s parameters. The general form of Eq. (5) becomes:

min
wT ,w∆

γ

M ′T

∑
i∈S′

T

L
(
〈wT , x

(i)〉, y(i)
T

)
+

(1− γ)

MC

∑
i∈SC

L
(
〈wT − w∆, x

(i)〉, y(i)
C

)
+

λQ(wT ) + ηR(w∆) (6)

and applies to classification as well as to regression. For
losses used in margin-based binary classification methods,
y∆ signifies the difference in distances to the margin, rather
than the difference in the actual outcome. For an appropri-
ate definition of y∆ = yT − yC , Eq. (6) can also be applied
in principle to multi-class and multi-label classification and
to structured prediction. However, note that in such classi-
fication settings, the interpretation of y∆ as the individual
treatment effect no longer holds. For other tasks the role of
the regularization term R may also change.

6.2 Closed form solution
When applying our method to ridge regression (as in Sec.

5), setting R(·) = ‖·‖22 allows for a closed form solution of the
objective in Eq. (5). This is accomplished by transforming
the objective into a canonical ridge regression form:

min
w
‖w>X − Y ‖22 + α‖w‖22 (7)

for which the solution is:

ŵ = (X>X + αI)−1X>Y (8)

We now show how to construct the data matrix X, label vec-
tor Y , and regularization constant α, so that the minimizer
of Eq. (5) can be extracted from ŵ.

Since the objective in Eq. (5) includes the minimization
over both wT and w∆, we first set w to be their concate-
nation, namely w = (wT , w∆) ∈ R2d. Under this expanded
representation, we next set:

i ∈ S′T : Xi· = c1· (x(i), 0) Yi = c1y
(i)
T

i ∈ SC : Xi· = c2· (x(i),−c3x(i)), Yi = c2y
(i)
C

(9)

where 0 is a vector of zeros of size d, and the constants are:

c1 =
√
γ/M ′T , c2 =

√
(1− γ)/MC , c3 =

√
λ/η

Finally, letting α = λ and plugging into Eq. (8) gives the
solution for wT and w∆ of our original objective in Eq. (5).

6.3 Non-linear predictors
While linear predictors are easy to work with and often

work well in practice, they lack the expressive power that
non-linear predictors offer. As our method is not constrained
to a specific representation, a straightforward way for incor-
porating non-linearity is via kernels, as we describe next.

The construction in Eq. (9) shows how the regularization
of w∆ can be achieved by a simple expansion of the feature



Task Measure S′T SC ST ′∪C ∆ ST

Stay
length

Mean r2 0.153 0.068 0.167 0.219 0.323
% bench. 47% 21% 52% 68% 100%

Above
median

Accuracy 0.711 0.709 0.711 0.725 0.749
% bench. 95% 95% 95% 97% 100%

Table 1: Results of the prediction and classifica-
tion tasks on the diabetes treatment dataset. The
proposed method (∆) reaches the highest accuracy,
compared to methods which use subsets of the avail-
able data.

representation. In cases where R = Q decomposes, a similar
procedure can be applied to a more general settings. When
γ = 1/2, setting the expanded features φ(x) = (x,0) for

x ∈ S′T and φ(x) = (x,−cx) for x ∈ SC with c =
√
λ/η

allows for R and Q to share a single constant λ, and due to
decomposability define a single regularization function over
the new expanded model w̃ ∈ R2d.

Since the above holds for any feature representation ϕ(x),
kernel-supporting methods can be readily applied. For a
linear kernel K(x, x′) = 〈x, x′〉, the expanded kernel K̄ is:

K̄(x, x′) = 〈φ(x), φ(x)′〉 = g(x, x′)·K(x, x′),

g(x, x′) =

{
c2 x, x′ ∈ SC

1 o.w.
(10)

For a general feature representation ϕ(x), the closure of ker-
nels under addition gives us:

K̄(x, x′) = g(x, x′)· 〈ϕ(x), ϕ(x′)〉 (11)

Hence, our method can be applied to wide class of regular-
ized kernel methods. General values of γ can be incorpo-
rated into losses which support differential sample weights,
such as kernel ridge regression, SVMs, SVRs, and others.

Due to their high dimensionality, kernel methods, as well
as many other non-linear predictors, require a considerable
number of samples to learn properly. This makes using ker-
nels only on the small S′T unrealistic, while applying them
to SC does not optimize for the treatment condition. As
mentioned in Sec. 5, our method utilizes the large number
of samples in SC to learn the baseline effect of the control
condition. This makes learning with kernels feasible, while
still taking advantage of the treatment samples in S′T .

Finally, we note that since many non-linear deep archi-
tectures include a linear output layer, our method can po-
tentially be applied to such. In a similar fashion to the con-
struction in Sec. 6.2, such an architecture should include two
linear output layers - one for wT and one for w∆ - and cor-
responding regularization terms. We leave the exploration
of such an approach for future work.

7. EXPERIMENTS
In this section we evaluate the performance of our method

on three counterfactual prediction tasks: A simulated med-
ical clinical trial, a web search engine experiment, and a
social choice question. Since our learning goals include pre-
dictions regarding the treatment variable yT , our data must
contain a large pool of ground-truth labels for this class.
This is a necessary condition for ensuring a sound evaluation

Task Measure S′T SC ST ′∪C ∆ ST

Value
Mean r2 0.564 0.651 0.660 0.688 0.716
% bench. 79% 91% 92% 96% 100%

Top
decile

Accuracy 0.849 0.831 0.853 0.861 0.875
% bench. 97% 95% 97% 98% 100%

Table 2: Results of the prediction and classification
tasks on the housing dataset. The proposed method
(∆) reaches the highest accuracy and 96% or more
of the benchmark (ST ), which uses data from the
entire treatment dataset.

procedure. Unfortunately, for the same reasons that moti-
vate our work, most datasets do not include many labeled
treatment instances, as they are typically hard, expensive,
and time consuming to acquire.

To this end, we focus on three datasets. The first dataset
contains information on the clinical status of approximately
100,000 diabetes patients. Our task is to predict the length
of hospitalization for each patient, given their treatments
so far. The second dataset comprises of a large collection
of around 20,000 houses along with their attributes. Our
task is to estimate the market price of a house given its at-
tributes. While the datasets themselves were not collected
by a randomized trial procedure, we partition the records
into control and treatment conditions in a way which emu-
lates a realistic controlled trial scenario. This allows us to
validate our predictions on the treatment variable.

The third dataset is from the domain of search engine op-
eration. Search engines regularly modify and improve their
ranking algorithm and other parameters such as the user in-
terface. In many cases decisions are based on the results of a
large number of A/B tests, where the current ranking algo-
rithm is compared to a new alternative. In this setting, early
and accurate predictions of query-centric measures like the
click-through rate (CTR) and its derivatives are of great im-
portance. Thus, we focus on this prediction, which can also
assist in early termination of treatments which are predicted
to be as good as (or worse than) the current treatment.

At its core, our method provides a way to model the link-
age between a small randomized trial and a large historical
dataset. Our goal in this section is therefore to evaluate the
added benefit of using our model when such data is avail-
able. In Sec. 6, we describe why and how our method can
be applied to a large set of loss functions and predictors.
It therefore makes sense to compare the performance of our
method to methods which use the same loss and predictor
class, while considering different unlinked combinations of
the available datasets. Specifically, we compare our method
(denoted as ∆ in the tables) to training only on S′T , only
on SC , and on the union of both sets ST ′∪C = S′T ∪ SC .
As for other linear methods described in Sec. 2, [17, 18]
assume that the data includes loss terms and propensity
scores, while the linear method in [7] does not outperform
standard ridge regression.

We evaluated performance on two tasks: predicting indi-
vidual treatment outcomes (yT ), and predicting the in-
dividual treatment effect (y∆). As mentioned, all meth-
ods were evaluated on a held-out test set which included
treatment labels, where results were averaged over 10 ran-
dom splits of the data. All of the results presented in Tables
1, 2, and 3 are significant with a p-value of well below 0.0001



Task Measure S′T SC ST ′∪C ∆ ST S′T SC ST ′∪C ∆ ST

Individual treatment
outcome yT

Mean r2 -0.04 0.19 0.21 0.26 0.30 0.26 0.22 0.24 0.33 0.36
% bench. - 65% 72% 89% 100% 72% 63% 68% 94% 100%

Individual treatment
effect y∆

Mean r2 -0.08 0.18 0.20 0.24 0.26 0.22 0.22 0.23 0.31 0.32
% bench. - 70% 76% 90% 100% 69% 67% 72% 95% 100%

Average effect E [y∆] Abs. diff. 0.23 0.27 0.24 0.14 0.06 0.05 0.24 0.23 0.07 0.05

25:75 split 75:25 split

Table 3: Search engine ranking results for predicting individualized treatment outcomes and effects (higher
is better) and the average treatment effect for an A/B test (lower is better) using different sample training
sets. The proposed method (∆) links both samples by enforcing similarity. Results are averaged over all A/B
tests. ST is used as a high-end benchmark.

under the Friedman test.4 For all tasks we used ridge regres-
sion as a learning objective, and applied `2 regularization for
our method. Meta-parameters were chosen on a small held-
out validation set. Our high-end benchmark for performance
is based on learning over a large treatment-labeled training
set ST . As this type of data is typically hard to obtain,
this benchmark serves as an empirical upper bound on the
overall achievable accuracy.

7.1 Hospitalization of diabetes patients
The Diabetes dataset5 contains data from 10 years (1999-

2008) of clinical care at 130 US hospitals and integrated de-
livery networks [16]. The ’new’ treatment which we attempt
to estimate is whether prescription of diabetes medications
prior to hospitalization would have changed the hospitaliza-
tion length. We focused on patients for which the reason
of admission was unknown, as these represent the difficult
cases, of which there were 4,785 patients in the data. We
simulated a clinical trial by randomly selecting 25% of the
population into X ′, some of whom were prescribed diabetes
medications, and some who were not, and used a 25:75 split.

We evaluate performance on two tasks: predicting the hos-
pitalization length, and predicting whether the length would
be above the median. The results of these experiments are
shown in Table 1. As the results show, our method pro-
vides better predictions of the treatment effect and outcome,
compared to methods which are based on subsets of avail-
able data. Moreover, this prediction is close in its quality to
that achieved by a learner which uses the actual treatment
information.

7.2 House pricing Dataset
The House Sales in King County dataset6 contains records

of 21,613 houses sold in King County, USA, a region which
includes Seattle. Along with the market price of each house,
the data includes 19 numerical and categorical attributes for
each house including the number and types of rooms, size,
number of floors, and geographic location. Of special in-
terest is an attribute which determines whether the house
was renovated or not. By considering this as a treatment
indicator variable and partitioning accordingly, we can sim-

4Save for the classification task in Table 1 where p = 0.009.
5https://archive.ics.uci.edu/ml/datasets/Diabetes+
130-US+hospitals+for+years+1999-2008
6https://www.kaggle.com/harlfoxem/
housesalesprediction

ulate the following counterfactual question: Does renovating
increase a house’s value, and if so, by how much?

As houses were not randomly assigned to each condition,
the data does not represent a true randomized controlled
trial. This of course raises questions as to whether predic-
tions can be used to answer the above question. Nonetheless,
our method still applies here, as we do not assume a random
assignment, but rather use it as motivation.

We evaluated performance on two tasks: a regression task
in which we predict the value of a house, and a classification
task in which we predict whether the value is in the top
decile. In both tasks we assign all houses which did not
undergo renovation to the control condition, and all those
which did to the treatment condition. These amounted to
20,699 and 914 houses, respectively. We used 75:25 train-
test splits, and set the experimental sub-population X ′ to
be all houses in a random subset of zip codes, representing
about 25% of all zip codes. This is similar to a setting where
only certain areas residential areas participate in a survey.

Results for all tasks are presented in Table 2. We re-
port the mean R2 for the task of predicting a house’s value,
and mean accuracy for predicting the attribution to the top
decile. Results show that the highest accuracy in both pre-
diction tasks is obtained by the proposed method. Moreover,
these accuracies are within a few percentage points from the
accuracy obtained when using data from benchmark dataset.
Thus, the proposed method can replace the use of a large
RCT, which would be expensive and difficult to execute, in
this kind of setting.

7.3 Search Engine Dataset
We collected queries submitted to the Bing search engine

on June 1st 2016 which were randomly assigned to internal
A/B tests, and whose frequency was at least 1,000. As ex-
amples x we took all of the queries that appeared in the
control condition, and focused on tests which included all of
these queries. Our dataset contains 277 comparable treat-
ment conditions and one control condition, each with 1,572
distinct query examples, for a total of 437,016 instances.

Features included both categories of the queries and fea-
tures of the query words. Categorization was determined
using a proprietary classifier [24] developed by the Microsoft
Bing team to assign each query into a set of 63 categories,
including, for example, commerce, tourism, video games,
weather-related, and adult-themed queries. The classifier is
used by Bing to determine whether to display special results
such as instant answers. Queries can be classified into multi-



ple categories (e.g., purchase of flight tickets would be classi-
fied into both tourism and commerce). Word-based features
included some basic attributes such as the number of char-
acters, number of tokens, minimal and maximal token size,
and a numeric token indicator. In addition, a bag-of-words
representation of the tokens was computed, and applied us-
ing the feature hashing trick [22].

To generate labels, for each query and for each experi-
mental condition, we computed CTR estimates by pooling
all relevant query instances. Since the distribution of CTR
is highly skewed, and since some queries have CTR= 0, we
set label values to y = log(CTR + ε) for ε = 10−10. The
above process ensured that for a given x our data included
both yC and yT , from which y∆ was computed.

A distinct characteristic of this dataset is that for most
search phrases, the data includes both yC (the CTR un-
der the default ranker) and yT (the CTR under the new
ranker). This is because, for common search phrases, re-
sponses will be recorded under both control and treatment
conditions. The above allows us to directly evaluate the
individual treatment effect y∆. Moreover, since the data in-
cludes a large collection of alternative rankers (but only one
default ranker), we can compare the effect of many treat-
ments to the same control condition.

Running search engine A/B tests is an expensive proce-
dure. Tests are therefore often limited in time and resources,
and are allocated only a small fraction of the overall traf-
fic. This causes CTR estimates to be unrepresentative, as
high-frequency queries will be assigned to an A/B test more
often than low-frequency queries, which may not appear in
trials at all. Therefore, our proposed algorithm can poten-
tially shorten A/B test by reaching a conclusion as to the
benefit of a new ranking algorithm using only the popular
queries (which are easy to collect), but inferring the benefit
for rare queries as well, solely based on a complete historical
record of the control condition and a small random trial over
a non-representative population (e.g., popular queries).

Since our estimation procedure requires a full set of ground-
truth treatment labels, we can use only query instances
which participated in trials. This requires us to mimic the
above setting using A/B test data alone, by constraining
S′T to contain only queries whose frequency is in the top
τ th-quantile. For instance, by setting τ = 0.75, we guaran-
tee that S′T contains only queries with frequency in the top
quartile. To keep S′T small, we further discard a random
25% of the qualified examples.

For comparison of the proposed method we use the results
of learning on ST with τ = 0.75. This means learning on
most of the available data, necessitating a long A/B test to
collect the rarer queries. We refer to this learning task as
the benchmark.

Results for all prediction tasks appear in Table 3. For in-
dividualized treatment outcomes and effects we report the
mean R2 and its fraction of the benchmark. For average
treatment effect we report the absolute difference from the
true effect, which we estimate on a large distinct dataset.
As can be seen, our method significantly outperforms learn-
ing using the available subsets of the data by a significant
margin. Indeed, the accuracy of the proposed algorithm is
not far from that of the benchmark, reaching approximately
90% or more of the potential accuracy for both tasks.

To explore the effect of trial duration (represented here
by thresholding frequency), we repeated the above proce-
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Figure 2: Accuracy of the regression algorithm as
a function of the fraction of queries used for train-
ing, by datasets used for training. As the fraction
of queries increases (τ decreases), S′T includes more
queries. This mimics a setting where the length of
an A/B test determines the frequency threshold of
observed items. The proposed method (∆) quickly
reaches performance close to that of the benchmark,
which uses the treatment information for all queries.

dure for various values of τ . To accentuate results, we fo-
cus on the the top 10% of trials for which the difference
between conditions was a-priori most significant, and em-
ployed a 50:50 train-test ratio. Results are presented in Fig.
2. Our method enjoys a fast growth rate in accuracy, and
should potentially allow for shorter trial lengths, or for early
stopping of trials, when the new treatment is deemed to be
inferior to existing treatments.

8. DISCUSSION
Randomized controlled trials (RCTs) are the gold stan-

dard for testing new treatments and interventions. RCTs
are widely used by Internet websites, by medical authori-
ties, and, increasingly, by governments. However, RCTs are
difficult and expensive to run. Nowadays, historical data is
available in many settings where RCTs are considered. How-
ever, as these data were collected using an existing policy,
utilizing these data has proven difficult.

In this paper we proposed a new algorithm for using his-
torical data in conjunction with the results of small RCTs,
to counterfactually infer the outcomes of large RCTs. Our
method can additionally be used as an early stopping crite-
rion for RCTs, when the method predicts that the benefit
of a new treatment will not be larger than those of the ex-
isting treatment. Thus, our method can provide benefit to
existing RCTs.

The proposed method is based on two assumptions: The
first is that the outcome of each treatment can be predicted
using a linear predictor. The second is that the difference
between the predictor of the current treatment and the pre-
dictor of the proposed treatment is not large. In Sec. 6.3
we showed extensions to the method which overcome the
first assumption. We hypothesize that predictions can be
improved by using robust regression, or through inclusion
of a confidence measure for each point in our data. Such
extensions are left for future work.
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