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ABSTRACT

Internet data has surfaced as a primary source for inves-
tigation of different aspects of human behavior. A crucial
step in such studies is finding a suitable cohort (i.e., a set of
users) that shares a common trait of interest to researchers.
However, direct identification of users sharing this trait is
often impossible, as the data available to researchers is usu-
ally anonymized to preserve user privacy. To facilitate re-
search on specific topics of interest, especially in medicine,
we introduce an algorithm for identifying a trait of interest
in anonymous users. We illustrate how a small set of la-
beled examples, together with statistical information about
the entire population, can be aggregated to obtain labels on
unseen examples. We validate our approach using labeled
data from the political domain.

We provide two applications of the proposed algorithm to
the medical domain. In the first, we demonstrate how to
identify users whose search patterns indicate they might be
suffering from certain types of cancer. This shows, for the
first time, that search queries can be used as a screening
device for diseases that are currently often discovered too
late, because no early screening tests exists. In the second,
we detail an algorithm to predict the distribution of diseases
given their incidence in a subset of the population at study,
making it possible to predict disease spread from partial
epidemiological data.
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1. INTRODUCTION

Identifying people with specific demographics, interests,
or traits is a topic long of interest for researchers interested
in online behavior and communities [12, 13]. The ability to
identify a cohort—that is, a group of people with a common
defining characteristic—is a critical phase of the research
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process. For example, when studying how the internet is
used to seek medical advice, researchers have employed di-
verse heuristics to identify medical queries [19, 31] or health
information seekers [23, 37]. Such heuristics are usually suf-
ficient at identifying common queries and conditions, but
fail to capture small cohorts, such as users suffering from
an uncommon disease. While such groups could be identi-
fied using personal information, demographic data, or health
records, much of the data available to researchers is anony-
mous, in an effort to preserve the privacy of individuals.

In this paper, we introduce an algorithm for inferring in-
dividual attributes of a population of users by relying on a
small set of examples with known labels and statistical in-
formation about the entire population. In other words, we
show how to identify a cohort of interest by learning from
a small set of users—which we identified using a very ef-
fective yet low-recall heuristic—and information about the
distribution of the cohort of users in the entire population.

We validate the proposed algorithm by identifying the
political affiliation of Twitter users: given a set of users
and their tweets, we predict their political affiliation using
a small set of users with known political orientation and
statistics about the outcome of the elections. Our algorithm
determines the affiliation of such users more effectively than
other methods when the fraction of known users is small.

Finally, we present two applications of the proposed algo-
rithm. Both use the proposed system to create a cohort of
users whose search patterns indicate they might be suffering
from specific forms of cancer. No personal data or patient
history is used; rather, we combine a low recall, high preci-
sion heuristic with epidemiological data about incidence of
the cancer. Once the cohort has been determined, we show
how to use it to train and evaluate a classifier to pre-screen
for users who suffer from the cancer at study. This shows
how search queries can be used as a screening device for
diseases that are often discovered too late, because no early
screening tests currently exists. Furthermore, we present a
classifier that uses the cohort identified by the algorithm to
predict the incidence of disease in regions where it is not
known. Such application could be useful to estimate the
spread of a disease in regions where the number of reported
cases is not sufficient to carry out a statistical analysis.

In summary, our contribution is threefold:

e We study the problem of identifying cohorts of
users who share a common trait (e.g., they suffer
from the same medical condition) from a population;



e We propose and evaluate an algorithm that uses
fine-grained data on users and coarse-grained popula-
tion statistics to identify cohorts for research purposes;

e We describe and solve two possible applications
of the proposed algorithm: identification of users who
might suffer from certain types of rare cancers and
predicting the distribution of a disease in regions where
it is unknown.

2. RELATED WORKS

Traditionally, most of the medical research exploiting in-
ternet data has focused on population-level disease incidence.
The questions therein are of the form “how many people in a
given area are currently suffering from influenza?” [11]. Be-
cause of the large number of people involved, it is superfluous
to identify each individual with the condition. Instead, it is
sufficient to find correlations between disease incidence and
specific keywords [22, 24] or even website visits [17].

More recently, researchers have begun attempting to iden-
tify anonymous search engine users suffering from conditions
of interest, either to provide individual level predictions or
to learn from individual behaviors. For example, Yom-Tov
et al. [37] identified people suffering from mood disorders
according to their queries of drugs used to treat the disor-
der, as well as changes in their behavior near the time of
mood disorder events. In other work, Ofran et al. [18] used
a threshold on the number of cancer-specific queries to iden-
tify people who were likely diagnosed with cancer and then
track their information needs over time. Good correlation
was found between the number of people searching for can-
cer and disease incidence (but not prevalence) in the USA. A
more fine-grained approach was taken in Yom-Tov et al. [35]
where a small subset of users was found to have identified
themselves as suffering from a condition of interest. The
queries of this population were used to construct a classi-
fier that predicted whether the condition a user was asking
about most often was one they were suffering from. The
ability to identify users with specific conditions was then
used to analyze their search histories for precursors of dis-
ease. More recently, Paparrizos et al. [20] used people who
self-identified as suffering from pancreatic cancer to predict
their diagnosis ahead of time.

The task of determining labels for individuals from popu-
lation statistics relates to the ecological inference problem.
Ecological inference aims at inferring characteristics about
individuals from ecological data (i.e., of the entire popu-
lation). As an example, it might be used to answer the
following question: “Given the number of votes for political
parties A and B in a precinct and the number of men and
women in the precinct, how many women voted for party
A?” Ecological inference has a long history in the fields of
statistics and social studies [15]. Recently, Flaxman, et al.
[10] used kernel embeddings of distributions to predict which
demographics groups supported Barack Obama in the 2012
US Presidential Election. Park and Gosh [21] introduced
LUDIA, a low-level rank approximation algorithm designed
that leverages ecological inference to predict hospital spend-
ing for individuals based on their length of stay. Culotta, et
al. [6] used website traffic data to predict demographics of
Twitter user. Ultimately, our problem differs from ecological
inference in that we are interested in identifying individuals
whose distribution is known rather than inferring behaviors
at an individual level from population data.

Another area of study that bears a similarity with our pro-
posed algorithm is Learning with Label Proportions (LLP).
In LLP, the training data is provided to the classifier in
groups on which only the distribution of classes in each
group is known. Many solutions have been proposed for
the problem [16, 26]; yet—to the best of our knowledge—
none of them is designed to bias the learning process by
incorporating individuals with known labels. Keerthi, et al.
[29] introduced a semi-supervised SVM classifier that uses
a small labeled dataset in conjunction to class proportion
on the training data to predict labels on test data. While
sharing some similarity with our algorithm, their method is
less generalizable, as it does not handle learning from train-
ing data drawn from sets with different class distributions.
Instead, our proposed approach solves this issue by conjunc-
tively optimizing correlation with all sets the training data
is drawn from.

Finally, many have studied semi-supervised learning (SSL),
the problem of learning when a combination of labeled and
unlabeled examples are available [4]. For example, Druck, et
al. [7] proposed a framework that leverages labeled features—
that is, features that are highly representative for a class—to
learn constrains for a multinomial logistic regression. More
recently, Ravi and Diao [27] have proposed a graph model to
efficiently use SSL on large datasets. Compared to a classic
SSL model, we not only leverage individual level features,
but also take advantage of population data.

3. METHODOLOGY

3.1 Notation

Throughout this paper, we will adhere to the following no-
tation: scalars are identified by lowercase italic letters (e.g.,
s), vectors by lowercase bold letters (e.g., v), and matrices
by uppercase italic letters (e.g., M). Calligraphy uppercase
letters (e.g., X) are used to denote sets.

Let X be a population of size n = |X|. To each element
of X, we associate the following: a features vector x;, =
{zij}j-,, alabel y; € {0,1}, and a property vector p; =
{pik}};:r y; has value “1” if the i-th example belongs to the
cohort of interest, “0” if its membership is unknown. We
refer to the n x m matrix of all features vector as X. A
feature could be, for example, the use of a certain phrase
by a user. p, represent a set of properties for an individual
we directly take advantage in the proposed method. For
example, a property of an individual could be the US state
where they are located; in this case, p, would be a 1 x 51
vector whose k-th position equals to “1” if the ¢-th individual
is located in the k-th state, “0” otherwise. While a property
vector p, is a feature vector for the i-th element of X, it is
convenient to consider it separately from x;, as it simplifies
the definition of the algorithm introduced in Section 3.2.

We denote by y a n x 1 vector holding all labels, while P
is a n X ¢ matrix whose element (i, k) represent the value of
the k-th property for the i-th element of the population.

We encode the known statistical information as a 1 x ¢
vector 7t containing statistical information about the prop-
erty of individuals in X. For example, given a disease and a
population of users located in the USA, = could be a vector
containing the incidence of the disease in each state.

Finally, we establish the notation for functions that will
be used extensively in the remainder of the paper. H(a,b)
indicates the harmonic mean between the values a and b. We



Algorithm 1: The proposed SGD algorithm.

Data: Features matrix X, labels vector y, property matrix
P, statistical information function 7, number of
iteration 7, and learning percentile §.

Result: Vector I = {l;} of confidence values of element in X

to be in the cohort of interest.

begin

w < initializeHyperplane( ); 0* < 0

forj=1,...,ndo

i < randomSample({1,...,n}); &; + X7

et (w+a)/|lw+ |

e (w—m)/l|w — x|

dt « X.ct;d  « X-c™

ot « H (Corr(w, P,d",5), Recall(y, d ¥, §))

o~ + H (Corr(ﬂ'7 P,d™,9),Recall(y, df,é))

if ot > 0~ and o7 > o* then

| w<ct;o* +of
else if o~ > o0* then
L w<c ;0" o

d* «— X-w
l + SoftmaxNormalize(d")

represent Spearman’s rank correlation coefficient between
values of vectors r and s as ps(r, s). Perc(r, ) returns the
value in r corresponding to the o' percentile; building on
the previous notation, we define the following operator:

PercSel(r,a) = {i | 7 > Perc(r,a) Vr;er} (1)

PercSel selects the set of indices of » whose corresponding
values are in the o' percentile. The result of such func-
tion can be used to extract the matching components of any
vector s:

[8],.o = {si | i € PercSel(r,a)} (2)

We will take advantage of the notation [s],  to identify

the o™ percentile of vector s with respect to weight vector
7 throughout the manuscript.

3.2 Proposed Algorithm

Recall that, given a population X, we wish to identify
a subset of X—i.e., a cohort—such that all members of the
cohort share a property of interest. A solution for such prob-
lem should return a vector I of real values between 0 and 1
expressing the likelihood of each individual in X of being
part of the cohort of interest. A naive solution consists of
using a classifier trained on the set of known members in
the cohort. However, as we will describe in Section 4.2 and
Table 1, this approach does not work well when the size of
the set of users with known labels is small.

The algorithm we propose in this paper addresses this
issue by conjunctively maximizing two quantities: (7) the
correlation between the counts of properties in the §** per-
centile of users and the statistical information vector = (e.g.,
the correlation between the number of users in the §** per-
centile for each state and the incidence of the disease in
each state), and (i) the fraction of known positive users
(i.e., users whose label is “17) in the 6*® percentile. By opti-
mizing for both quantities at the same time, we exploit the
individual features of users that whose label is known, as

well as statistical information about the distribution of the
cohort of interest.

The algorithm works by finding a linear separating hyper-
plane which assigns a predicted label to each user given the
features thereof. We formally define the two aforementioned
quantities as follows: Let d = X-w be the vector of signed
distances of elements from the decision hyperplane w; then,
[P] a4, is the n' X t property matrix associated with ele-

ments whose distances from w are in the 6" percentile. In
other words, [P] 4,5 contains the property vectors of those
elements with distance from the decision hyperplane greater
or equal than Perc(d,d). Thus, we can define quantity (7)
as:

Corr(m, P,d, 8) = ps (m, 177 [P1,,)  (3)
where 1" is the unit vector of size 1 x n’.

The fraction of known positive users (1) is the recall of the
algorithm on known users; that is, the fraction of positive
users whose distance from w is in the §*® percentile:
ilvi=1 Vyi € [ylys}

Hyi lyi=1 Vyi €y}

Recall(y, d, d) :=

The two quantities determined by functions “Corr” and “Recall”

are combined by considering the harmonic mean of the two
as the objective function. We chose this mean as it penalizes
the algorithm if the two quantities diverge significantly.

We used a modification of the Perceptron algorithm [28]
in which a stochastic gradient descent learns the hyperplane
w separating elements of the positive and negative classes
that maximizes the objective function described previously.

The details of the procedure are shown in Algorithm 1.
The algorithm iterates n times over all elements in the pop-
ulation; at each iteration, it randomly samples an element
i; then, it generates two candidate hyperplanes ¢ and ¢~
by respectively adding and subtracting x; from w. If any of
the two candidate hyperplanes increases the value of the ob-
jective function, it then replaces w. Finally, the confidence
vector d* is calculated by multiplying the feature matrix X
with w, and normalized by applying a Softmax normaliza-
tion [25] to obtain the likelihood vector I.

We note that the objective function defined in Algorithm 1
is not convex. While this implies that we cannot provide
strong theoretical guarantees about the stability of the al-
gorithm, we experimentally verified that the classifier leads
to consistent results (Section 6.1).

4. VALIDATION

We validate the proposed algorithm on a dataset contain-
ing US Twitter users with known political affiliation. This
task has been studied in the past (e.g., [1, 5, 6]); in this
paper, we use it as a benchmark for the proposed algorithm.

We show how the algorithm introduced in Section 3.2,
when combined with statistical data on the outcome of the
2012 US presidential election, can be used to infer the politi-
cal affiliation of users. To do so, we hide a fraction  of users
with known political affiliation by assigning them the label
“0”; then, we measure the ability of the stochastic gradient
descent in identifying these hidden users.
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Figure 1: ROC curve of the stochastic gradient descent algo-
rithm. The fraction of “hidden” Republicans is kept constant
at v = 0.75, while the learning percentile ¢ is varied.

4.1 Data Description

Similarly to [8], we took advantage of a set of Twitter
users with known political affiliation to evaluate our system.
Our dataset contains 372,769 users who explicitly expressed
support for Barack Obama and 22,902 users who expressed
preference for Mitt Romney during the 2012 US presidential
election. For the remainder of the paper, we will refer to the
two groups as “Democrats” and “Republicans”; while the set
of all users will be identified as U.

The political affiliation of members of U was determined
by two sets of hashtags used by the supporters of the two
parties during the election (e.g. “#romneyryan2012”, “#vo-
teobama”; the complete list is available in [8]). This heuristic
was found to have over 95% accuracy [§].

The set T of all tweets generated by users in U between
August 1%, 2012 and November 15", 2012 was extracted.
We discarded all users for whom no location data was avail-
able (i.e., none of their tweets was geotagged), tweeted from
two or more US states, or less than 30 times. We identify
the set of the 15,472 remaining users (900 Republicans and
14,572 Democrats) as X.

We use the set Tx of tweets associated with users in X
to construct the feature matrix X. For each user, we ex-
tracted the following features from their tweets: hashtags,
mentions, domain name of URLs, and words occurring 10 or
more times in the corpus (except stopwords). Prior works
found such features to be effective at predicting the political
affiliation of users [1, 5, 6, 8]; in this work, we investigate
their effectiveness when paired with the proposed algorithm.

We represent the state each user in & belongs to through
property matrix P; in other words, P is a 15,472 x 51 matrix
where position (7, k) is equal to 1 if the i-th user tweets from
the k-th state (according to geo-tagging), 0 otherwise.

The population statistic vector 7 was derived from the
total count of votes casted for the Republican and Demo-
crat candidates in each US state as disclosed by the official
Federal Election Commission report [9]. Specifically, the k-
th value of @ represents the number of Republican voters
for each inhabitant in the k-th state. We normalized 7 by
the number of active users in each state within the time
frame of data collection; this gave us the expected number
of Republican Twitter users in each state.

4.2 Results

In this section, we illustrate the performance of the pro-
posed algorithm in identifying Republican users whose label
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Figure 2: ROC curve of the stochastic gradient descent al-
gorithm. The learning percentile is kept constant at 6 = 0.9,
while the fraction of “hidden” Republicans ~y is varied.

have been hidden. Recall that, in order to quantify the abil-
ity of Algorithm 1 to correctly label users in X', we remove
the label of a fraction v of republican users; that is, we as-
sign them the label “0”. Therefore, we tested the algorithm
for various values of -, as well as multiple values of learning
percentile 6. The exploration of different parameters allows
us to test how the algorithm behaves when number of users
in the cohort is not known (if available, such number could
be used to tune §). All the experiments were executed under
five-fold stratified cross validation; the number of iterations
n was set to 30,000 to ensure reaching a stable point.

We report the results of our experiments in Figures 1 and
2, as well as in Tables 1 and 2. Specifically, Figure 1 shows
the Receiver Operating Characteristic (ROC) curves pro-
duced by varying values of the learning percentile §. For
this experiment, v is fixed at 0.75.

Two observations can be made about the results. First, we
note that the performance of the classifier, as measured by
the Area Under the Curve (AUC), increases as d approaches
0.9; then it starts declining. We explain this behavior by ob-
serving that the number of elements in the 10" percentile
is close to the number of Republican in X’; therefore, as ¢
approaches this value, the performance of the proposed al-
gorithm increase. Past the 10" percentile, more noise is
introduced, thus affecting the quality of classification out-
come. We remark that the decline in performance is not
abrupt; this characteristic is desirable, as in applications of
the proposed algorithm (such as those shown in Section 5)
the exact size of the cohort of interest is often unknown.

Second, we observe that classifiers with larger values of
0 (e.g., § = 0.95) have a higher true positive rate associ-
ated with lower false positive rate (bottom left of Figure 1).
This is likely due to the fact that such classifiers make fewer
mistakes on elements they have high confidence in (i.e., the
values in ! for with high-confidence elements are close to 1).

For the second experiment (Figure 2) we varied the frac-
tion of hidden users v between 0.9 (i.e., only 10% of Re-
publicans are disclosed) and 0.1 (90% of Republicans are
disclosed). We observe the AUC increases as -y decreases;
that is to be expected, as less hidden republicans equals a
more diverse pool of training examples. However, to our
initial surprise, we also noticed that the performance of the
classifier show little improvement for values of v < 0.75.
Such behavior is beneficial for the applications where this
algorithm will be used, where typically only a small set of
users of the cohort of interest is known.



Classifier AUC
Linear Stochastic Gradient Descent (LSGD) | 0.667
LSGD + property vectors as features 0.614
Support Vector Machine (SVM) from [5] 0.703
SVM [5] + property vectors as features 0.629
Proposed SGD (6 = 0.9) 0.875

Table 1: Comparison of the proposed algorithm to

previously-proposed baselines. When a small fraction of Re-
publican users is used for training (v = 0.75), the algorithm
outperforms a linear SGD baseline and the system from [5]
(difference is statistically significant, Wilcoxon signed-rank
test, p < 0.05).

Rank Feature ‘Weight
1 #4moredays 0.0517
2 ##landslide 0.0490
3 #loveofcountry 0.0377
4 #whyiamnotvotingforobama 0.0244
5 #whyimnotvotingforobama 0.0229
6 #bengahzi 0.0148
7 anncoulter.com 0.0129
8 searchnc.com 0.0112
9 #bengha 0.0111
10 personalliberty.com 0.0110

Table 2: Top ten features for classifier § = 0.9,y = 0.75.
Websites ranked 7, 8, and 10 are right-leaning publications.

We compared the proposed system with a simple Linear
Stocastic Gradient Descent (LSGD), as well as with the Sup-
port Vector Machine (SVM) classifier proposed by Conover,
et al. in [5]. For all three systems, we kept the ratio of
hidden Republican users set to v = 0.75, as we were inter-
ested in studying how the proposed algorithm compares to
other algorithms when only a small set of users in the co-
hort is known. As shown in Table 1, the proposed algorithm
outperforms both baselines, confirming that combining sta-
tistical information about the distribution of the cohort in
the population with weights learned from individual features
is an effective strategy to solve the task introduced in this
paper. For the two baselines, we experimented with using
just the features in X to train the classifiers, as well as con-
catenating P - w with the features matrix X. Interestingly,
the performance of the two baselines decrease when aug-
menting X with P-7r, suggesting that the naive approach of
expanding the feature set with population statistics is not
effective at identifying the cohort of users.

The features that were assigned the highest weights are
the most indicative phrases used by positive (Republican)
users. We report features with the highest weight in w for
the classifier § = 0.9,7 = 0.75 in Table 2. We note that
the hashtags ranked in 1°¢, 3" 4% 5th 6" 9th places are
typically used in right-wing circles; the remaining hashtag
(“#landslide”) while related to the election, is not unique
to the rhetoric on any of the two political parties. Finally,
we note that the all URLs shown in Table 2 are of websites
leaning on the right side of the political spectrum.

S. APPLICATIONS

We present two applications of the algorithm introduced
in the previous sections. The first (Section 5.2) deals with
identifying users of a search engine whose search patterns
suggest a higher risk of developing a certain type of cancer;
the second (Section 5.3) is concerned with predicting the
incidence of two forms of cancer in regions of the USA.

Features in Z
list of ovarian/cervical
cancer symptoms™
g most common terms
in queries Q before
disease mention
list of symptoms™

Features in X
list of ovarian/cervical
cancer symptoms™
g most common terms
in queries Q after
disease mention
list of symptoms™*
list of diseases™
list of names of drugs
list of names of US hospitals

Table 3: Features used to construct matrices X and Z. Fea-
tures in X are extracted from queries issued after the first
query mentioning the disease, while features in Z are ex-
tracted from queries issued before the first query mentioning
the disease. ¢ was set to 2,000 after empirical evaluation.

We focus on ovarian cancer and cervical cancer. These
relatively rare cancers (affecting approximately 12 and 10,
respectively of 100,000 women in the USA), are also quite
deadly: Indeed, though ovarian cancer accounts for only
3% of all cancers in women, it is the deadliest cancer of
the female reproductive system [32]. One reason for this is
that symptoms of these cancers are relatively benign, which
means that many women are diagnosed at late stages of the
cancer, though treatment is most effective in early stages.
Additionally, no simple screening test is available for these
cancers [3]. Thus, the ability to pre-screen for these cancers
using Internet data could be of significant importance.

5.1 Data Description

Two sets of Bing users were considered to evaluate the
applications introduced in this section. The first popula-
tion, which we identify as X°Y, consists of users who are
likely to be suffering from ovarian cancer. Our interest in
studying this disease is due to the fact that, despite its low
incidence (it only accounts for 3% of all cancers in women),
ovarian cancer is the deadliest cancer of the female reproduc-
tive system [32]. Furthermore, while treatment for ovarian
cancer is the most effective in early stages, no screening test
is available yet [3]. The second population of users is of users
who are potentially suffering from cervical cancer. Such dis-
ease, while less deadly than ovarian cancer, has a similar
incidence, thus being another useful dataset to validate the
applications presented in this section. We refer to this group
as X,

We stress that it is traditionally very challenging to iden-
tify those users in X°Y or X" who are affected by the afore-
mentioned conditions using Internet data, because both dis-
eases have a low incidence rate, thus causing any heuristic—
such as extracting all users who issue a specific query—to
retrieve too few individuals. Thus, we apply the algorithm
introduced in Section 3 to obtain an estimate of the proba-
bility of each user of suffering from cancer.

For the remainder of the paper, we will refer to the set of
users X to describe all procedures that are common to both
X and X°"; differences will be pointed out when necessary.

To obtain X, we proceed as follows: First, using the
websites of the Center for Diseases Control (CDC) and the
American Cancer Society, we produced a list of symptoms
and drugs commonly associated with the each of the two
diseases. The two lists were expanded using two experts-to-
laypeople synonym mappings, MedSyn [34] and Behavioral
[36]. This expansion was made so as to bridge the gap be-
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Figure 3: pROC curves for ovarian cancer (top) and cervical cancer (bottom). The values of the learning percentile § are
reported above each figure. The AUC of C; under multiple values of 6 are shown alongside the optimal and baseline classifiers.
Values of § maked as * are statistically different from the best runs (Wilcoxon signed-rank test, p < 0.05).

tween the vocabulary used by health experts and expressions
preferred by laypeople [30]. We extracted all Bing users in
the United States who have queried in English in a span of
five months: Ovarian cancer from April to August 2015 and
cervical cancer from June 2015 to October 2015, for any of
the symptoms or drugs associated with the cancer and the
name of the cancer itself. Finally, we extracted the US state
of origin of each user through reverse IP address lookup to
take advantage of the state-level incidence statistics for the
two types of cancer. Users who were associated with two
or more US states were discarded. This heuristic identified
3,167 users who potentially have ovarian cancer and 9, 327
users who might have been diagnosed with cervical cancer.
Not all users in the two sets are affected by the respective
diseases; rather, the heuristic was used to reduce class im-
balance before using the proposed algorithm to derive their
likelihood of having the condition. We refer to the set of all
queries issued by all users in X as Q.

For both conditions, we identify a set of users who are
known (by their own admission) to be affected by cancer,
as in [35]. This was done by finding all users who issued a
query starting with “i have <condition>” or “i was diagnosed
with <condition>”, where <condition> is either “ovarian
cancer” or “cervical cancer”. We will refer to these users
as “self-identified users” or SIUs. Through this heuristic,
we extracted 140 users for ovarian cancer, and 41 users for

cervical cancer. We assigned the label “1” to this subset of
X, while the rest of the users were labeled as “0”.

We define two features matrix X and Z using the queries
in Q. For each user, X contains features extracted from
queries issued after the first query mentioning the disease.
For example, the i-th row of X° contains features extracted
from all queries submitted by the i-th user in X°" after
searching for “ovarian cancer”for the first time. Conversely,
Z contains features extracted from all queries issued before
the first query mentioning the disease. A full list of features
used in X and Z is reported in Table 3. The features matrix
Z is used by the classifiers introduced in Sections 5.2 and
5.3. Matrix Z is comprised of queries mentioning symptoms
and most common tokens, excluding stopwords, numbers, or
names of the top one hundred websites in the US as ranked
by Alexa (http://alexa.com). The latter was used so as
to remove navigational queries. The number of tokens in
7 exceeded, for both datasets, fifty thousand. In an effort
to remove noise, we decided to keep only the top ¢ tokens;
q was set to 2,000 after empirical evaluation. The feature
matrix X is used by the stochastic gradient descent to infer,
for each user, their likelihood of being affected by cancer;
therefore, we also consider names of diseases, drugs, and US
hospital as features. Upon completion of the feature extrac-
tion phase, matrices X°, X", Z°Y, and Z°" contain 7605,
8766, 2176, and 2170 features respectively.
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Figure 4: In green, Spearman’s rank correlation coefficient
ps between the users identified by classifier C2 and disease
incidence as a function of users identified by Ca. p-values
are shown in purple. For ovarian cancer, C, achieve a sta-
tistically significant correlation (ps = 0.35, p < 0.05) when
963 users in X, are classified as positive (for cervical cancer:
ps = 0.35, 1,483 individuals).

As in Section 4.1, we represent the state each user in X
belongs to through the property matrix P. The population
statistic vector 7 was obtained from the CDC [33]. Similarly
to Section 4.1, the vector was normalized by the number of
active Bing users in each state during the data period.

5.2 Suggesting Medical Pre-Screening to Users

Here, we introduce a classifier designed to identify search
engine users who show signs of being potentially affected by
cancer. The classifier is designed to assess, for each searcher,
their risk of developing cancer based on their query logs. The
classifier is based on the labels inferred using the proposed
algorithm, and uses past queries to assess if users will later
be classified as suffering from the cancer of interest.

A logistic classifier C; is trained to achieve the desired
goal. The classifier uses the feature matrix Z; to obtain la-
bels to train the system on, we proceed as follows: first, we
run the stochastic gradient descent on input (X, P, y, 7,7, 0),
where X, P, and y are as defined in Section 5.1, 7 is set to
10, 000 for ovarian cancer and to 30,000 for cervical cancer,
and ¢ is varied between 0.95 and 0.80. Then, once obtained
the confidence vector I for elements in X', we extract users
whose risk factor is in the 8*® percentile of I, as well as those
users whose risk factor is in the A\*" percentile of I. The for-
mer are used as positive training examples, while the latter
are used as negative training examples.

Since we expect the number of users with no cancer to be
greater than the number of users with cancer, we fix A =
3(1 — ). Therefore, the training set contains three negative
examples for each positive example, somewhat mitigating
the class imbalance probelm. The weighting of each class
was adjusted accordingly when training the classifier.

As a baseline, we consider a linear SVM trained solely
on self-identified users. This baseline was adapted from
the classifier introduced by Yom Tov, et al. [35] to iden-
tify search engine users who have specific medical issues.
Specifically, we use SIUs as positive training examples and
a sample of users from the remainder of the population as
negative examples. Similarly to C;, we sample three times
the number of SIUs as negative examples.

5.2.1 Results

Standard ROC methodology plots the fraction of correctly
classified positive instances as a function of the fraction of

incorrectly classified negative instances; however, in this set-
ting, such technique cannot be applied, as the true labels of
the examples are not known. Instead, only a probability of
the labels’ correctness is known.

Techniques to adapt ROC analysis to probabilistic labels
have been proposed in the literature; in this work, we take
advantage of the methodology introduced by Burl, et al.
in [2]. Let ¢ be the probabilistic output of classifier Cy,
c = {c1,...,cn}. Recall that I = {l;}}=; (where I; € [0, 1]
for all ¢) is the likelihood of each element in the population
of being in the cohort of interest, i.e., for this application, of
suffering from cancer. Then, for each decision threshold 7;
of classifier C1, the following two quantities can be defined:

pTPR(7:) = (35-115)/(S-11;) (5)
pFPR(7:) = (Z5_1 (1 — 1;))/(Z)=1 (1 — 1)) (6)

The set of points (pTPR(7;), pFPR(7;)) for all values of
7; define a curve in the ROC plane, which we refer to as
probabilistic Receiving Operating Curve, or pROC.

A few observations can be made regarding any pROC
curve. First, we point out that, unlike in standard ROC
analysis, the maximum AUC achievable by any C; is less
than one. This is due to the fact that, even in case of perfect
classification, the true and false positive rate are bounded by
the probabilistic labels in I. A corollary is that for any value
of the false positive rate, the probabilistic true positive rate
of the classifier is a lower bound on the actual true positive
rate. This explains why, in Figures 3, the optimal pROC
curve—which is obtained when the labels are known with
complete accuracy—is described by a curve rather than the
segments [(0,0), (0,1)] and [(0,1), (1, 1)].

Results of classifier C; on the dataset of ovarian cancer
and cervical cancer users are reported in Figures 3a and
3b. Each run is evaluated using five-fold stratified cross
validation. For both dataset, we present three groups of
pROC curves, each one associated with a different value of
the learning percentile §. Each group consists of the optimal
classification pROC curve, four curves associated with four
values of training percentile 6, and the pROC curve of the
baseline classifier.

First, we note that all configuration of the classifier per-
form substantially better than the baseline. This is to be
expected, as the baseline classifier is trained on very few ex-
amples. Furthermore, we observe that the baseline classifier
for cervical cancer is decisively worse than the baseline clas-
sifier for ovarian cancer. We believe that the phenomenon
is due to the fact that the number of self-identified cervi-
cal cancer users is substantially smaller than the number
of self-identified ovarian cancer users. Thus, both a small
number of SIUs and the population-level data are needed to
correctly identify users.

Third, we note that, for all values of §, not all classifiers
are significantly different from each other (Wilcoxon signed-
rank test, p < 0.05) with the exception of § = 0.80. This
is a desirable outcome: since the size of users in the cohort
of interest is unknown, a classifier that is resistant to small
variations of the tuning parameters is beneficial.

Lastly, we study the differences in classification outcomes
for fixed values of 8. We notice that, once again, there are no
significant differences between 0 = 0.99 and 0 = 0.95. For
the cervical cancer dataset, this is the case for 8 = 0.90 as
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Figure 5: Silouette charts for the similarity between SIUs
(denoted by “17) and non-SIUs identified as patients (de-
noted by “0”). Negative values imply similarity between
classes and positive values dissimilarity.

well. However, we observe that, as 6 decreases, the perfor-
mance of the classifier becomes less stable. In particular, the
classification outcomes associated with different values of §
significantly differ (Wilcoxon signed-rank test, p > 0.05).
This event is likely to be caused by that fact that, as § and
~ decrease, users who are not affected by cancer might be
part of the learning or training percentile, which naturally
decreases the accuracy of the classifier.

5.3 Predicting Disease Distribution

In this section we show how the probabilistic labels com-
puted by the proposed algorithm can be exploited to predict
the incidence of diseases in areas for which it is not known.
Specifically, we introduce a logistic classifier Co that iden-
tifies search engine users affected by the disease of interest
in states with unknown incidence. The incidence in each re-
gion can then be determined by dividing the number of users
identified by the number of active search engine users. Thus,
we can infer disease incidence in areas where it is unknown,
which is an important utility for epidemiologists interested
in the spread of a disease.

The procedure to train Cz is not dissimilar from the one
used to train C; (Section 5.2). However, unlike C;, matrices
X and Z were combined to train the system.The learning
percentile 6 and the training percentile 8 were set to 0.90
and 0.95, respectively; these value were chosen based on the
results described in Section 5.2.1. The classifier is evaluated
using the dataset introduced in Section 5.1 under five-fold
cross validation.

5.3.1 Results

The results of the classifier C> on the ovarian and cervical
cancer datasets are shown in Figure 4. We report Spear-
man’s rank correlation coefficient ps between the number
of users identified by classifier C2 and disease incidence as
reported by the Center of Disease Control as a function of
the percentage of users identified as positive by C,. Before
calculating the correlation, counts of users identified by the
classifier in each state were normalized by the number of
total search engine users in the state.

For both datasets, the classifier is able to obtain a statis-
tically significant correlation (Spearman’s rank correlation
test, p < 0.05) between the normalized number of users
identified and the incidence of the disease. Co reaches the
highest correlation of ps = 0.35 when 30% of users are la-
beled as positive on the ovarian cancer dataset (Figure 4a);
similarly, it obtains a correlation of p;, = 0.30 when 16%
of users are label as positive on the ovarian cancer dataset
(Figure 4b). We note that the large difference in percentage

SIUs | non-SIUs | SIUs to non-SIUs
Cervical | 0.942 0.918 0.934
Ovarian | 0.938 0.926 0.936

Table 4: Average cosine similarities among SIUs, among
non-SIUs identified as suffering from the condition of inter-
est, and between SIUs and non-SIUs.

of positively label users between the two datasets is mostly
due to the fact that X'°Y and X" are of different sizes; in
fact, Ca classifies a similar number of users as positive at the
at the point of maximum correlation: 963 for ovarian can-
cer dataset and 1,483 for the cervical cancer dataset. The
smaller difference in terms of individuals classified as posi-
tive is more consistent with the US incidence provided by
the CDC, which is similar for the two diseases.

We also point out that, for both datasets, correlation fol-
lows a similar pattern: when C» labels very few users (left
side of Figures 4a and 4b) the correlation with CDC data
is low and not significant; then, as the number of positively
classified users increases the correlation value improves up
to reaching statistical significance. However, it declines and
looses significance as the number of users classified as pos-
itive approaches the size of the population (right side of
Figures 4a and 4b).

Finally we note that, while the correlation values are mod-
est, previous research [35] that used only SIUs found a cor-
relation of 0.45 between HIV incidence and number of users.
Thus, our correlations are close to those achieved using only
users who are known to be suffering from a condition.

6. ADDITIONAL OBSERVATIONS
6.1 Stability of the Algorithm

As the stochastic gradient descent algorithm attempts at
separating positive and negative users in X with hyperplane
w, it is natural to ask whether the solution it identifies for a
given dataset is stable. This is especially the case with the
formulation defined in this work, as the objective defined in
Algorithm 1 is not convex. To answer this question, we ran
Algorithm 1 ten times and measured (7) the rank correlation
between the scores of users from any two runs and (i) the
inter-run agreement between all runs. Results show that, for
the dataset introduced in Section 4.1, the Spearman’s rank
correlation between any two runs is at least 0.8 (statistically
significant, p < 0.05); furthermore, the inter-run agreement
is 0.73, which suggests high agreement among runs. Simi-
lar results are obtained for the datasets introduced in Sec-
tion 5.1. This shows that the stochastic gradient descent
achieves very similar prediction despite the sampling process
in Algorithm 1, lending additional credence to the hypoth-
esis that users identified by the algorithm do indeed share
the trait of interest.

6.2 The Similarity of SIUs to Other Patients

Previous work [20, 35] used anonymous self-identified users
(SIUs) to identify behaviors associated with other users suf-
fering from the condition of interest. Having noted the poor
performance of predicting diseases using only SIUs, in this
section we ask whether this performance could be because
the behavior of SIUs is not representative of other users suf-
fering from the condition of interest.



We compared all SIUs of a condition (ovarian or cervical
cancer) with non-SIUs in the top 10% of users found by the
Perceptron run at a 95% threshold (i.e., 6 = 0.95).

Table 4 shows the average cosine similarity (computed
from X) between users within the two classes and between
users of different classes. As the table demonstrates, SIUs
are most similar among themselves. Non-SIUs are least sim-
ilar, and the similarity between non-SIUs and SIUs is in be-
tween the two user classes. A different way to observe these
similarities is through the silhouette graphs [14] shown in
Figure 5. As the graphs show, there are some similarities be-
tween groups (SIUs vs. non-SIUs), as demonstrated by the
negative values on the charts, but also significant amounts
of dissimilarities (positive values on the graphs).

These results imply that SIUs are different from other
users identified as suffering from the conditions of interest.
This lends additional support to the importance of using the
proposed algorithm to identify additional users beyond the
small number of self-identified users.

7. CONCLUSION

In this paper, we introduced a novel algorithm for identi-
fying cohorts of interest among internet users. Our approach
exploits a small set of users whose membership to the cohort
of interest is known (e.g., they self identified themselves)
alongside statistics on the entire population. The algorithm
was validated on a political dataset of tweets in Section 4.
Then, in Section 5, we introduced two applications of the
proposed algorithm. First, we discussed a classifier designed
to pre-screen for specific forms of cancer using search engine
queries. This system could be of great help in detecting
diseases that have a set of nonspecific symptoms, no screen-
ing test, or may have increased risk if not diagnosed early.
However, further research is required to validate whether the
sensitivity and specificity of this approach is high enough to
be of practical purpose. The second application we inves-
tigated dealt with predicting the incidence of a disease in
regions in which it is not known. The proposed classifier
would be of high value in cases where the incidence of a
disease is too low to be measured in a specific region by tra-
ditional surveillance methods, or when a disease is spreading
within a population. Alternatively, such system could also
be helpful in those cases where, for technical reasons, inci-
dence of a disease was not reported.

An important observation stemming from our work is that,
when studying anonymous users, SIUs are insufficiently rep-
resentative of the population. This is both because of the
dearth of SIUs, but also, possibly, because there is some-
thing unique in the behavior of those users who self-identify.
However, SIUs are crucial for identifying the cohort. This
observation means that algorithms such as the one proposed
herein are needed for the study of anonymous users.
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