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Abstract

Recognizing fine-grained categories (e.g., bird species)

highly relies on discriminative part localization and part-

based fine-grained feature learning. Existing approaches

predominantly solve these challenges independently, while

neglecting the fact that part localization (e.g., head of a

bird) and fine-grained feature learning (e.g., head shape)

are mutually correlated. In this paper, we propose a nov-

el part learning approach by a multi-attention convolution-

al neural network (MA-CNN), where part generation and

feature learning can reinforce each other. MA-CNN con-

sists of convolution, channel grouping and part classifica-

tion sub-networks. The channel grouping network takes

as input feature channels from convolutional layers, and

generates multiple parts by clustering, weighting and pool-

ing from spatially-correlated channels. The part classifi-

cation network further classifies an image by each individ-

ual part, through which more discriminative fine-grained

features can be learned. Two losses are proposed to guide

the multi-task learning of channel grouping and part clas-

sification, which encourages MA-CNN to generate more

discriminative parts from feature channels and learn bet-

ter fine-grained features from parts in a mutual reinforced

way. MA-CNN does not need bounding box/part annotation

and can be trained end-to-end. We incorporate the learned

parts from MA-CNN with part-CNN for recognition, and

show the best performances on three challenging published

fine-grained datasets, e.g., CUB-Birds, FGVC-Aircraft and

Stanford-Cars.

1. Introduction

Recognizing fine-grained categories (e.g., bird species

[1, 35], flower types [21, 24], car models [14, 17], etc.)

∗This work was performed when Heliang Zheng was visiting Microsoft

Research as a research intern.
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Figure 1: The ideal discriminative parts with four differ-

ent colors for the two bird species of “waxwing.” We

can observe the subtle visual differences from multiple at-

tended parts, which can distinguish the birds, e.g., the red

head/wing/tail, and white belly for the top bird, compared

with the bottom ones. [Best viewed in color]

by computer vision techniques has attracted extensive at-

tention. This task is very challenging, as fine-grained im-

age recognition should be capable of localizing and repre-

senting the marginal visual differences within subordinate

categories (e.g., the two species of Waxwing in Figure 1).

A large corpus of works [9, 33, 34] solve this problem by

relying on human-annotated bounding box/part annotations

(e.g., head, body for birds) for part-based feature represen-

tations. However, the heavy human involvement makes part

definition and annotation expensive and subjective, which

are not optimal for all fine-grained recognition tasks [3, 36].

Significant progresses have been made by learning

weakly-supervised part models by convolutional neural net-

works (CNNs) [2, 4, 15] with category labels, which have

no dependencies on bounding box/part annotations and thus
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can greatly increase the usability and scalability of fine-

grained recognition [25, 31, 35]. The framework are typ-

ically composed of two independent steps: 1) part localiza-

tion by training from positive/nagetive image patches [35]

or pinpointing from pre-trained feature channels [25], and

2) fine-grained feature learning by selective pooling [31] or

dense encoding from feature maps [17]. Although promis-

ing results have been reported, the performance for both part

localization and feature learning are heavily restricted by

the discrimination ability of the category-level CNN with-

out explicit part constrains. Besides, we discover that part

localization and fine-grained feature learning are mutually

correlated and thus can reinforce each other. For example

in Figure 1, an initial head localization can promote learn-

ing specific patterns around heads, which in return helps to

pinpoint the accurate head.

To deal with the above challenges, we propose a nov-

el part learning approach by multi-attention convolution-

al neural network (MA-CNN) for fine-grained recognition

without bounding box/part annotations. MA-CNN jointly

learns part proposals and the feature representations on each

part. Unlike semantic parts defined by human [9, 33, 34],

the parts here are defined as multiple attention areas with

strong discrimination ability in an image. MA-CNN con-

sists of convolution, channel grouping, and part classifi-

cation sub-networks, which takes as input full images and

generates multiple part proposals.

First, a convolutional feature channel often correspond-

s to a certain type of visual pattern [25, 35]. The chan-

nel grouping sub-network thereby clusters and weights

spatially-correlated patterns into part attention maps from

channels whose peak responses appear in neighboring loca-

tions. The diversified high-response locations further con-

stitute multiple part attention maps, from which we extract

multiple part proposals by cropping with fixed size. Sec-

ond, once the part proposals are obtained, the part classi-

fication network further classifies an image by part-based

features, which are spatially pooled from full convolution-

al feature maps. Such a design can particularly optimize

a group of feature channels which are correlated to a cer-

tain part by removing the dependence on other parts, and

thus better fine-grained features on this part can be learned.

Third, two optimization loss functions are jointly enforced

to guide the multi-task learning of channel grouping and

part classification, which motivates MA-CNN to generate

more discriminative parts from feature channels and learn

more fine-grained features from parts in a mutual reinforced

way. Specifically, we propose a channel grouping loss func-

tion to optimize the channel grouping sub-network, which

considers channel clusters of high intra-class similarity and

inter-class separability over spatial regions as part attention,

and thus can produce compact and diverse part proposals.

Once parts have been localized, we amplify each attend-

ed part from an image and feed it into part-CNNs pipeline

[1], where each part-CNN is learned to categories by using

corresponding part as input. To further leverage the pow-

er of part ensemble, features from multiple parts are deeply

fused to classify an image by learning a fully-connected fu-

sion layer. To the best of our knowledge, this work repre-

sents the first attempt for learning multiple part models by

jointly optimizing channel combination and feature repre-

sentation. Our contributions can be summarized as follows:

• We address the challenges of weakly-supervised part

model learning by proposing a novel multi-attention

convolutional neural network, which jointly learns fea-

ture channel combination as part models and fine-

grained feature representation.

• We propose a channel grouping loss for compact and

diverse part learning which minimizes the loss func-

tion by applying geometry constraints over part atten-

tion maps, and use category labels to enhance part dis-

crimination ability.

• We conduct comprehensive experiments on three chal-

lenging datasets (CUB Birds, FGVC-Aircraft, Stan-

ford Cars), and achieve superior performance over the

state-of-the-art approaches on all these datasets.

The rest of the paper is organized as follows. Section 2 de-

scribes the related work. Section 3 introduces the proposed

method. Section 4 provides the evaluation and analysis, fol-

lowed by the conclusion in Section 5.

2. Related Work

The research on fine-grained image recognition can be

generally classified into two dimensions, i.e., fine-grained

feature learning and discriminative part localization.

2.1. Fine­grained Feature Learning

Learning representative features has been extensively s-

tudied for fine-grained image recognition. Due to the great

success of deep learning, most of the recognition frame-

works depend on the powerful convolutional deep features

[15], which have shown significant improvement than hand-

crafted features on both general [8] and fine-grained cat-

egories. To better model subtle visual differences for fine-

grained recognition, a bilinear structure [17] is recently pro-

posed to compute the pairwise feature interactions by two

independent CNNs, which has achieved the state-of-the-art

results in bird classification [30]. Besides, some methods

(e.g., [35]) propose to unify CNN with spatially-weighted

representation by Fisher Vector [23], which show superior

results on both bird [30] and dog datasets [12]. Making the

use of the ability of boosting to combine the strengths of

multiple learners can also improve the classification accu-

racy [20], achieving the state-of-the-art performance.
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Figure 2: The framework of multi-attention convolutional neural network (MA-CNN). The network takes as input an image

in (a), and produces part attentions in (e) from feature channels (e.g., 512 in VGG [26]) in (c). Different network modules

for classification with light blue (i.e., the convolution in (b) and softmax in (g)), and part localization with purple (i.e., the

channel grouping in (d)) are iteratively optimized by classification loss Lcls over part-based representations in (f), and by

channel grouping loss Lcng, respectively. The softmax in (g) includes both a fully-connected layer, and a softmax function,

which matches to category entries. [Best viewed in color]

2.2. Discriminative Part Localization

A large amount of works propose to leverage the extra

annotations of bounding boxes and parts to localize sig-

nificant regions in fine-grained recognition [9, 16, 22, 30,

33, 34]. However, the heavy involvement of human efforts

make this task not practical for large-scale real problem-

s. Recently, there have been numerous emerging research

working for a more general scenario and proposing to use

unsupervised approach to learn part attention models. A vi-

sual attention-based approach proposes a two-level domain-

net on both objects and parts, where the part templates are

obtained by clustering scheme from the internal hidden rep-

resentations in CNN [31]. Picking deep filter responses [35]

and multi-grained descriptors [27] propose to learn a set

of part detectors by analyzing filter responses from CNN

that respond to specific patterns consistently in an unsuper-

vised way. Spatial transformer [10] takes one step further

and proposes a dynamic mechanism that can actively spa-

tially transform an image for more accurate classification.

The most relevant works to ours come from [25, 31, 35],

which learn candidate part models from convolutional chan-

nel responses. Compared with them, the advantages of

our work are two folds. First, we propose to learn parts

generation from a group of spatial-correlated convolutional

channels, instead of independent channels which often lack

strong discrimination power. Second, the fine-grained fea-

ture learning on parts and part localization are conducted in

a mutual reinforced way, which ensures multiple represen-

tative parts can be accurately inferred from the consistently

optimized feature maps.

3. Approach

Traditional part-based frameworks take no advantage of

the deeply trained networks to mutually promote the learn-

ing for both part localization and feature representation. In

this paper, we propose a multi-attention convolutional neu-

ral network (MA-CNN) for part model learning, where the

computation of part attentions is nearly cost-free and can be

trained end-to-end.

We design the network with convolution, channel group-

ing and part classification sub-networks in Figure 2. First,

the whole network takes as input full-size image in Figure 2

(a), which is fed into convolutional layers in Figure 2 (b)

to extract region-based feature representation. Second, the

network proceeds to generate multiple part attention maps

in Figure 2 (e) via channel grouping and weighting layers

in Figure 2 (d), followed by a sigmoid function to produce

probabilities. The resultant part representations are gener-

ated by pooling from region-based feature representations

with spatial attention mechanism, which is shown in Fig-

ure 2 (f). Third, a group of probability scores over each part

to fine-grained categories are predicted by fully-connected

and softmax layers in Figure 2 (g). The proposed MA-CNN

is optimized to convergence by alternatively learning a soft-

max classification loss over each part representation and a

channel grouping loss over each part attention map.

3.1. Multi­Attention CNN for Part Localization

Given an input image X, we first extract region-based

deep features by feeding the images into pre-trained con-

volutional layers. The extracted deep representations are



denoted as W ∗ X, where ∗ denotes a set of operations

of convolution, pooling and activation, and W denotes the

overall parameters. The dimension of this representation

is w × h × c, where w, h, c indicate width, height and the

number of feature channels. Although a convolutional fea-

ture channel can correspond to a certain type visual pat-

tern (e.g., stripe) [25, 35], it is usually difficult to express

rich part information by a single channel. Therefore, we

propose a channel grouping and weighting sub-network to

cluster spatially-correlated subtle patterns as compact and

discriminative parts from a group of channels whose peak

responses appear in neighboring locations.

Intuitively, each feature channel can be represented as a

position vector whose elements are the coordinates from the

peak responses over all training image instances, which is

given by:

[t1x, t
1
y, t

2
x, t

2
y, ... t

Ω
x , t

Ω
y ], (1)

where tix, t
i
y are the coordinates of the peak response of the

ith image in training set, and Ω is the number of training

images. We consider the position vector as features, and

cluster different channels into N groups as N part detec-

tors. The resultant ith group is represented by an indicator

function over all feature channels, which is given by:

[1{1}, ...,1{j}, ...,1{c}], (2)

where 1{·} equals one if the jth channel belongs to the ith

cluster and zero otherwise.

To ensure the channel grouping operation can be opti-

mized in training, we approximate this grouping by propos-

ing channel grouping layers to regress the permutation

over channels by fully-connected (FC) layers. To gen-

erate N parts, we define a group of FC layers F (·) =
[f1(·), ..., fN (·)]. Each fi(·) takes as input convolution-

al features, and produce a weight vector di over different

channels (from 1 to c), which is given by:

di(X) = fi(W ∗X), (3)

where di(X) = [d1, ..., dc]. We omit subscript i for each

dc for simplicity. We obtain the channel grouping result

di(X) by two steps: 1) pre-training FC parameters in E-

qn. (3) by fitting di(X) to Eqn. (2), 2) further optimizing

by end-to-end part learning. Hence, Eqn. (2) is the super-

vision of Eqn. (3) in step (1), which ensures a reasonable

model initialization (for FC parameters). Note that we en-

force each channel to belong to only one cluster by a loss

function which will be presented later. Based on the learned

weights over feature channels, we further obtain the part at-

tention map for the ith part as follows:

Mi(X) = sigmoid(

c∑

j=1

dj[W ∗X]j), (4)

where [·]j denotes the jth feature channel of convolutional

features W ∗X. The operation between dj and [·]j denotes

multiplication between a scalar and a matrix. The resultant

Mi(X) is further normalized by the sum of each elemen-

t, which indicates one part attention map. Later we denote

Mi(X) as Mi for simplicity. Furthermore, the final convo-

lutional feature representation for the ith part is calculated

via spatial pooling on each channel, which is given by:

Pi(X) =
c∑

j=1

([W ∗X]j ·Mi), (5)

where the dot product denotes element-wise multiplication

between [W ∗X]j and Mi.

3.2. Multi­task Formulation

Loss function: The proposed MA-CNN is optimized by

two types of supervision, i.e., part classification loss and

channel grouping loss. Specifically, we formulate the ob-

jective function as a multi-task optimization problem. The

loss function for an image X is defined as follows:

L(X) =

N∑

i=1

[Lcls(Y
(i),Y∗)] + Lcng(M1, ...,MN), (6)

where Lcls and Lcng represents the classification loss on

each of the N parts, and the channel grouping loss, re-

spectively. Y(i) denotes the predicted label vector from the

ith part by using part-based feature Pi(X), and Y
∗ is the

ground truth label vector. The training is implemented by

fitting category labels via a softmax function.

Although strong discrimination is indispensable for lo-

calizing a part, rich information from multiple part propos-

als can further benefit robust recognition with stronger gen-

eralization ability, especially for cases with large pose vari-

ance and occlusion. Therefore, the channel grouping loss

for compact and diverse part learning is proposed, which is

given by:

Lcng(Mi) = Dis(Mi) + λDiv(Mi), (7)

where Dis(·) and Div(·) is a distance and diversity func-

tion with the weight of λ. Dis(·) encourages a compact

distribution, and the concrete form is designed as follows:

Dis(Mi) =
∑

(x,y)∈Mi

mi(x, y)[||x− tx||
2 + ||y − ty||

2], (8)

where mi(x, y) takes as input the coordinates (x, y) from

Mi, and produces the amplitudes of responses. Div(·) is

designed to favor a diverse attention distribution from dif-

ferent part attention maps, i.e., M1 to MN. The concrete

form is formulated as follows:

Div(Mi) =
∑

(x,y)∈Mi

mi(x, y)[max
k 6=i

mk(x, y)−mrg], (9)
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Figure 3: An illustration of the part attention learning. The

top row indicates two initial part attention areas around

“head” and “wing,” as well as the optimization direction

for each position. “+, -, ·” indicates “strengthen, weaken,

unchange,” respectively. The optimized part attentions are

shown in the bottom. Detailed analysis can be found in

Sec. 3.2.

where i, k indicates the index of different part attention

maps. “mrg” represents a margin, which makes the loss less

sensitive to noises, and thus enables robustness. The ad-

vantages for such a loss are two-fold. The first encourages

similar visual patterns from a specific part to be grouped to-

gether, and thus strong part detector can be learned, while

the second encourages attention diversity for different parts.

Such a design with geometry constraints can enable the net-

work to capture the most discriminative part (e.g., heads for

birds), and accomplish robust recognition from diversified

parts (e.g., wings and tails) if heads are occluded.

Alternative optimization: To optimize the part local-

ization and feature learning in a mutually reinforced way,

we take the following alternative training strategy. First, we

fix the parameters from convolutional layers, and optimize

the channel grouping layers in (d) in Figure 2 by Lcng in

Eqn. (6) to converge for part discovery. Second, we fix the

channel grouping layer, and switch to optimize the convo-

lutional layers in (b) and softmax in (g) in Figure 2 by Lcls

in Eqn. (6) for fine-grained feature learning. This learning

is iterative, until the two types of losses no longer change.

Since the impact of Lcls can be intuitively understood,

we illustrate the mechanism of the distance loss Dis(·) and

the diversity loss Div(·) in Lcng by showing the deriva-

tives on the learned part attention maps Mi. The part atten-

tion maps in an iteration over head and wing for a bird are

shown in the top-row in Figure 3, with the brighter the area,

the higher the responses for attention. Besides, we visual-

ize the derivatives for each position from the part attention

Table 1: The statistics of fine-grained datasets in this paper.

Datasets # Category # Training # Testing

CUB-200-2011 [30] 200 5,994 5,794

FGVC-Aircraft [19] 100 6,667 3,333

Stanford Cars [13] 196 8,144 8,041

map, which shows the optimization direction. The yellow

“+” shows the areas which needs to be strengthen, and the

blue “-” shows the region which needs to be weaken, and

the grey “·” shows unchange. Based on the optimization on

each position, the background area and the overlap between

the two attention maps change to be smaller in the next it-

eration (shown in the bottom in Figure 3), which benefits

from the first and second term in Eqn. (7), respectively.

3.3. Joint Part­based Feature Representation

Although the proposed MA-CNN can help detect part-

s by simultaneously learning part localization and fine-

grained part features, it is still difficult to represent the sub-

tle visual differences existed in local regions due to their

small sizes. Since previous research (e.g., [5, 18, 34]) has

observed the benefits by region zooming, in this section, we

follow the same strategy.

In particular, an image X (e.g., 448× 448 pixels) is first

fed into MA-CNN, which generates N parts by cropping

a square from X, with the point which corresponds to the

peak from each Mi as the center, and the 96 × 96 area as

part bounding box. Each cropped region are amplified into

a larger resolution (e.g., 224 × 224) and taken as input by

part-CNNs, of which each part-CNN is learned to classify

an part (e.g. head for a bird) into image-level categories.

To extract both local and global features from an image, we

follow previous works [1, 18, 33] to take as input for Part-

CNN from both part-level patches and object-level images.

Thus we can obtain joint part-based feature representations

for each image:

{P1, P2, ... PN , PO}, (10)

where Pi denotes the extracted part description by part-

CNN, and N is total number of parts; PO denotes the fea-

ture extracted from object-level images. To further leverage

the benefit of part feature ensemble, we concatenate them

together into a fully-connected fusion layer with softmax

function for the final classification.

4. Experiment

4.1. Datasets and Baselines

Datasets: We conduct experiments on three challenging

datasets, including Caltech-UCSD Birds (CUB-200-2011)

[30], FGVC-Aircraft [19] and Stanford Cars [13], which

are widely-used to evaluate fine-grained image recognition.
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Figure 4: Four bird examples of the visualized part local-

ization results by (a) initial parts by channel clustering,

(b) optimizing channel grouping loss Lcng, and (c) joint

learning Lcng + Lcls.

(b) part attention by channel grouping

(c) part attention by joint learning
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Figure 5: An example of comparison of four part at-

tention maps for an image in (a) by optimizing channel

grouping loss Lcng in (b), and joint learning Lcng +Lcls

in (c).

The detailed statistics with category numbers and data splits

are summarized in Table 1.

Baselines: We divide compared approaches into two cat-

egories, based on whether they use human-defined bound-

ing boxes (bbox) or part annotations. We don’t compare

with the methods which depend on part annotations in test-

ing, since they are not fully-automatic. In the following,

the first five methods use human supervision, and the latter

eight are based on unsupervised part learning methods. We

compare with them, due to their state-of-the-art results. All

the baselines are listed as following:

• PN-CNN [1]: pose normalized CNN proposes to com-

pute local features by estimating the object’s pose.

• Part-RCNN [34]: extends R-CNN [6] based frame-

work by part annotations.

• Mask-CNN [29]: localizing parts and selecting de-

scriptors by learning masks.

• MDTP [28]: mining discriminative triplets of patches

for as the proposed parts.

• PA-CNN [14]: part alignment-based method gener-

ates parts by using co-segmentation and alignment.

• PDFR [35]: picking deep filter responses proposes to

find distinctive filters and learn part detectors.

• FV-CNN [7]: extracting fisher vector features for fine-

grained recognition.

• MG-CNN [27]: multiple granularity descriptors learn

multi-region of interests for all the grain levels.

• ST-CNN [10]: spatial transformer network learns in-

variance to scale, warping by feature transforming.

• TLAN [31]: two-level attention network proposes

domain-nets on both objects and parts to classification.

• FCAN [18]: fully convolutional attention network

adaptively selects multiple task-driven visual attention

by reinforcement learning.

• B-CNN [17]: bilinear-CNN proposes to capture pair-

wise feature interactions for classification.

• RA-CNN [5]: recurrent attention CNN framework

which can locate the discriminative area recurrently for

better classification performance.

4.2. Implementation Details

To make fair comparison, we conduct experiments as the

same settings as baselines. Specifically, we use the same

VGG-19 [26] model pre-trained on ImageNet for both part

localization in MA-CNN with 448 × 448 inputs, and clas-

sification in Part-CNN with 224 × 224 inputs , where the

larger resolution inputs in MA-CNN can benefit discrimi-

native part learning. The output of each Part-CNN is ex-

tracted by Global Average Pooling (GAP) [37] from the last

convolutional layer (i.e., conv5 4 in VGG-19) to generate

the 512-dim features for classification. For FGVC-Aircraft

and Stanford Cars datasets, PO in Eqn. (10) is the original

image; for CUB-200-2011, we also use the cropped high-

convolutional response area (e.g., with a threshold of one

tenth of the highest response value) as object-level repre-

sentation. The λ in Eqn. (7) and mrg in Eqn. (9) are em-

pirically set to 2 and 0.02, which are robust to optimization.

The concrete form of channel grouping layers is constructed

by two fully-connected layers with tanh activation. We run

experiment using Caffe [11], and will release the full model

in the near future.

4.3. Experiment on CUB­200­2011

Part localization results: We compare part localization

results under different settings by the proposed MA-CNN

network for qualitative analysis. The settings include part

localization by 1) clustering with Eqn. (1) and Eqn. (2),

2) optimizing parts only by channel grouping Lcng, and 3)

joint learning by both channel grouping Lcng and part clas-

sification Lcls. We set the part numbers N as 2, 4, 6, and

take four parts as an example to show the learned part local-

ization results in Figure 4.

We can observe from Figure 4 (a) that although the ini-

tialized red part detector can localize heads for the four bird-

s, other part detectors are not always discriminative. For ex-

ample, the green detector locates inconsistent parts for the

four birds, including feet, tails, beaks and wings, respec-

tively, which shows the inferior part learning results. Be-

sides, multiple part detectors (e.g, the red and blue) attend



Table 2: Comparison of part localization in terms of classifi-

cation accuracy on CUB-200-2011 dataset. Detailed Anal-

ysis can be found in Sec. 4.3.

Approach Accuracy

MA-CNN (inital) 82.0

MA-CNN (Lcng) 85.3

MA-CNN (Lcls + Lcng) 86.5

on the same regions, which are difficult to capture the di-

verse feature representations from different part locations.

Although more diverse parts can be generated by introduc-

ing the channel grouping loss in Figure 4 (b), the learned

part detectors are still not robust to distinguish some similar

parts. For example, it is difficult for the green one to dis-

criminate the thin beak and feet for “blue jay” and “evening

grosbeak.” Further improvement is limited by the feature

representations from the pre-trained convolutional layers,

which are obtained by regressing global bird features to cat-

egory labels, and the fine-grained representation on a spe-

cific part is hard to be learned. The proposed MA-CNN

adopts an alternative strategy for learning both part localiza-

tions and fine-grained features on a specific part, and thus

we can obtain consistent prediction on four parts, where red,

blue, yellow, and green detectors locate head, breast, wing

and feet, respectively. To better show the feature learning

results, we show the part attention maps, which are generat-

ed by feature channel grouping over the 512 channels from

VGG-19. We can observe from Figure 5 that the attention

maps by joint learning tend to focus on one specific part

(e.g., the feet in the green part in Figure 5 (c)). However,

the green attention map learned without feature learning in

Figure 5 (b) generate multiple peak responses over both feet

and beak, which reflects the inadequate capability to distin-

guish the two body areas from birds.

We further conduct quantitative comparison on part lo-

calization in terms of classification accuracy. All compared

methods use VGG-19 model for part-based classification,

but with different part localization settings. We can see

from Table 2 that significant improvements (4.0% relative

increase) in the second row are made by the proposed chan-

nel grouping network with loss Lcng, compared with the re-

sults from parts which are obtained by initial channel clus-

tering in the first row. The performance can be improved

from joint learning in the third row, by further locating more

fine-grained parts (e.g., feet), with the relative accuracy gain

of 1.4% compared with the second row.

Fine-grained image recognition: We compare with t-

wo types of baselines based on whether they use human-

defined bounding box (bbox)/part annotation. Mask-CNN

[29] uses the supervision with both human-defined bound-

ing box and ground truth parts. B-CNN [17] uses bound-

ing box with very high-dimensional feature representations

(250k dimensions). We first generate two parts (i.e., around

Table 3: Comparison results on CUB-200-2011 dataset.

Train Anno. represents using bounding box or part anno-

tation in training.

Approach Train Anno. Accuracy

PN-CNN(AlexNet) [1] X 75.7

Part-RCNN(AlexNet) [34] X 76.4

PA-CNN [14] X 82.8

MG-CNN [27] X 83.0

FCAN [18] X 84.3

B-CNN (250k-dims) [17] X 85.1

Mask-CNN [29] X 85.4

TLAN(AlexNet) [31] 77.9

MG-CNN [27] 81.7

FCAN [18] 82.0

B-CNN (250k-dims) [17] 84.1

ST-CNN (Inception net) [10] 84.1

PDFR [35] 84.5

RA-CNN [5] 85.3

MA-CNN (2 parts + object) 85.4

MA-CNN (4 parts + object) 86.5

heads and wings, as shown in the red and yellow squares

in Figure 4) with the same number of parts as Mask-CNN

[29]. As shown in Table 3, the proposed MA-CNN (2 parts

+ object) can achieve comparable results with Mask-CNN

[29] and B-CNN [17], even without bbox and part anno-

tations, which demonstrates the effectiveness. By incorpo-

rating with four parts, we can achieve even better results

than Mask-CNN [29]. Compared with RA-CNN [5], we

can obtain comparable result by MA-CNN (2 parts + objec-

t) and a relative accuracy gain with 1.4% by MA-CNN (4

parts + object), which shows the power of multi-attention.

We even surpass B-CNN (without Train Anno.) [17] and

ST-CNN [10], which uses either high-dimensional features

or stronger inception network as baseline model with near-

ly both 2.9% relative accuracy gains. Note that MA-CNN

(4 parts + object) outperforms MA-CNN (2 parts + object)

with a clear margin (1.3% relative gains), but the perfor-

mance saturates after extending MA-CNN to six parts. The

reason is mainly derived from the facts that MA-CNN (2

parts + object) captures the parts around heads and wings,

and MA-CNN (4 parts + object) further locates around feet

and breasts. Therefore, it is difficult for MA-CNN (6 parts

+ object) to learn more discriminative parts from birds and

the recognition accuracy saturates.

4.4. Experiment on FGVC­Aircraft

Since the images of aircrafts have clear spatial struc-

tures, we can obtain good part localization result by the pro-

posed MA-CNN network with four part proposals, which

are shown in Figure 6 (c). The classification results on

FGVC-Aircraft dataset are further summarized in Table 4.

The proposed MA-CNN (4 parts + object) outperforms the

high-dimensional B-CNN [17] with a clear margin (6.9%



(a) CUB-Birds (b) Stanford-Cars 

(c) FGVC-Aircraft 

Figure 6: Part localization results for individual examples from (a) CUB-Birds, (b) Stanford-Cars, and (c) FGVC-Aircraft.

The four parts on each dataset show consistent part attention areas for a specific fine-grained category, which are discrimina-

tive to classify this category from other.

Table 4: Comparison results on FGVC-Aircraft dataset.

Train Anno. represents using bounding box in training.

Approach Train Anno. Accuracy

MG-CNN [27] X 86.6

MDTP [28] X 88.4

FV-CNN [7] 81.5

B-CNN (250k-dims)[17] 84.1

RA-CNN [5] 88.2

MA-CNN (2 parts + object) 88.4

MA-CNN (4 parts + object) 89.9

relative gains), which shows the effectiveness of multiple

part proposes. MDTP [28] also proposes to detect parts by

bounding box annotation and geometric constraints. How-

ever, they don’t make full use of convolutional networks to

refine the features for localization. Compared with MDTP

[28], the 1.7% relative gain from MA-CNN (4 parts + objec-

t) further shows the important role for joint learning of fea-

tures and parts. Compared with RA-CNN [5], MA-CNN (2

parts + object) gets the comparable result and MA-CNN (4

parts + object) achieves 1.8% relative accuracy gain. A sim-

ilar performance saturation is observed by using six parts on

FGVC-Aircraft dataset.

4.5. Experiment on Stanford Cars

The classification results on Stanford Cars are summa-

rized in Table 5. Car part detection can significantly im-

prove the performance due to the discrimination and com-

plementarity from different car parts [32]. For example,

some car models can be easily identified from headlight-

s or air intakes in the front. We can observe from Fig-

ure 6 (b) that the four parts learned from cars are consis-

tent with human perception, which include the front/back

view, side view, car lights, and wheels. Due to the accurate

part localization, MA-CNN (4 parts + object) can achieve

a relative accuracy gain of 4.2%, compared with FCAN

Table 5: Comparison results on Stanford Cars dataset. Train

Anno. represents using bounding box in training.

Approach Train Anno. Accuracy

R-CNN [6] X 88.4

FCAN [18] X 91.3

MDTP [28] X 92.5

PA-CNN [14] X 92.8

FCAN [18] 89.1

B-CNN (250k-dims) [17] 91.3

RA-CNN [5] 92.5

MA-CNN (2 parts + object) 91.7

MA-CNN (4 parts + object) 92.8

[18] under the same experiment setting. This result from

our unsupervised part model is even comparable with PA-

CNN [14], which uses bounding boxes. We can observe

the marginal improvement compared with RA-CNN [5], be-

cause the multiple attention areas (e.g., the front view and

the car lights) locate close enough, which have been attend-

ed by RA-CNN as a whole part.

5. Conclusions

In this paper, we propose a multiple attention convolu-

tional neural network for fine-grained recognition, which

jointly learns discriminative part localization and fine-

grained feature representation. The proposed network does

not need bounding box/part annotations for training and can

be trained end-to-end. Extensive experiments demonstrate

the superior performance on both multiple-part localization

and fine-grained recognition on birds, aircrafts and cars. In

the future, we will conduct the research on two directions.

First, how to integrate the structural and appearance models

from parts for better recognition performance. Second, how

to capture smaller parts (e.g., eyes of a bird) to represent the

more subtle differences between fine-grained categories by

unsupervised part learning approaches.
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