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ABSTRACT
Diagnosing concurrency bugs—the process of understanding
the root causes of concurrency failures—is hard. Develop-
ers depend on reproducing concurrency bugs to diagnose
them. Traditionally, systems that a�empt to reproduce con-
currency bugs record �ne-grained thread schedules of events
(e.g., shared memory accesses) that lead to failures. Record-
ing schedules incurs high runtime performance overhead
and scales poorly, making existing techniques unsuitable in
production.

In this paper, we formulate the coarse interleaving hypothe-
sis, which states that the events leading to many concurrency
bugs are coarsely interleaved. �erefore, a �ne-grained and
expensive recording is unnecessary for diagnosing such con-
currency bugs. We test the coarse interleaving hypothesis
by studying 54 bugs in 13 systems and �nd that it holds in all
cases. In particular, the time elapsed between events leading
to concurrency bugs is on average 5 orders of magnitude
greater than what is used today in �ne-grained recording.

Using the coarse interleaving hypothesis, we develop Lazy
Diagnosis, a hybrid dynamic-static interprocedural pointer
and type analysis to diagnose the root causes of concur-
rency bugs. Our Lazy Diagnosis prototype, S������, relies
on commodity hardware to track thread interleavings at a
coarse granularity. S������ does not require any source
code changes and can diagnose complex concurrency bugs
in real large-scale systems (MySQL, h�pd, memcached, etc.)
with full accuracy and an average runtime performance over-
head of below 1%. Broadly, we believe that our �ndings can
be used to build more e�cient in-production bug detection
and record/replay techniques.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for pro�t or commercial advantage and that copies bear
this notice and the full citation on the �rst page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permi�ed. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior speci�c permission and/or a fee. Request
permissions from permissions@acm.org.
SOSP ’17, Shanghai, China
© 2017 ACM. 978-1-4503-5085-3/17/10. . .$15.00
DOI: 10.1145/3132747.3132767

CCS CONCEPTS
•So�ware and its engineering!Multithreading; Con-
currency control; So�ware testing and debugging;

ACM Reference format:
Baris Kasikci, Weidong Cui, Xinyang Ge, and Ben Niu. 2017. Lazy
Diagnosis of In-Production Concurrency Bugs. In Proceedings of
SOSP ’17, Shanghai, China, October 28, 2017, 17 pages.
DOI: 10.1145/3132747.3132767

1 INTRODUCTION
Bug diagnosis, the activity of identifying the root cause of
a failure, is expensive. According to a recent report [80],
testing and debugging with the purpose of bug diagnosis
amounts to 35% of all so�ware development costs, a �gure
expected to rise up to 41-50% by the end of 2018. Diagnosing
and �xing bugs is also time-consuming, taking up to 50% of
developers’ time [61].
Concurrency bugs, which happen due to synchroniza-

tion problems in multithreaded so�ware, are notorious for
being harder and more time-consuming to �x than other
types of bugs [56]. Concurrency bugs can have catastrophic
consequences [50, 88], and can compromise system secu-
rity [24, 94]. To diagnose concurrency bugs, developers need
to determine the exact interleavings of memory accesses
and/or synchronization operations leading to failures. Ac-
cording to practitioners in industry [32] and in the open-
source community [96], diagnosing and �xing concurrency
bugs can take weeks, or even up to a month.
To make ma�ers worse, certain concurrency bugs only

occur in production and cannot be reproduced in house due
to their non-deterministic nature. �is substantially compli-
cates debugging [42], because traditionally, developers rely
on reproducing bugs to �x them. In particular, a study by
Google revealed that developers lacked the means to diag-
nose and �x hard-to-reproduce bugs [81].
A notable method to diagnose concurrency bugs that

are di�cult to reproduce is record/replay systems [62, 64,
71, 77]. Record/replay systems record the execution of a
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program (inputs, system call return values, thread sched-
ules, etc.), which enable developers to reproduce failing ex-
ecutions and diagnose bugs. Despite improvements in the
past decade, multiprocessor record/replay of arbitrary multi-
threaded programs incurs large runtime performance over-
heads (200% in the worst case for the state of the art [92]),
making record/replay unsuitable for in-production usage.
Furthermore, expensive record/replay systems may perturb
executions and hide concurrency bugs [42]. For instance,
rr [64], Mozilla’s record/replay system, serializes concur-
rent executions, which may mask bugs that may only occur
during parallel executions.

Another promising approach to tackle hard-to-reproduce
in-production bugs is failure diagnosis systems [39, 42, 53].
�ese systems identify failure root causes using instrumen-
tation and/or non-commodity hardware support to record
events such as memory accesses, code execution paths, and
thread schedules. Although promising, these systems assume
that in-production code can be instrumented for sampling
purposes [51, 52], or use unscalable mechanisms to track
executions, or rely on custom hardware support for bug
diagnosis. None of these assumptions hold for real-world
so�ware. Consequently, there is no deployed in-production
system for concurrency bug diagnosis.

State-of-the-practice in-production bug diagnosis systems
(e.g., the ones used in industry) have stringent e�ciency
requirements. �erefore, they rely on post-mortem analysis
of crash dumps [2, 13, 31, 33]. �ese systems diagnose bugs
by mainly analyzing call stacks in a crash dump using a
mixture of custom heuristics and function white-listing. �e
most advanced in-production bug diagnosis system that we
are aware of is RETracer [23] fromMicroso�, which performs
a backward data-�ow analysis from a corrupt pointer to
identify the provenance of the corruption.

In this paper, we introduce the coarse interleaving hypoth-
esis, which states that the events leading to many concur-
rency bugs in real systems are coarsely interleaved. We
test the coarse interleaving hypothesis using 54 concurrency
bugs (order violations, atomicity violations, and deadlocks)
in 13 real systems. We �nd that the time elapsed between
events leading to concurrency bugs is at least 91 microsec-
onds, which is 5 orders of magnitude greater than what
�ne-grained recording provides. Consequently, a more e�-
cient coarse-grained time tracking mechanism is su�cient
to track thread interleavings in practice.

Using the coarse interleaving hypothesis, we develop Lazy
Diagnosis, a hybrid dynamic-static analysis technique for
accurate and e�cient concurrency bug diagnosis. Lazy Diag-
nosis relies on control �ow tracing with timing information
in modern hardware (e.g., Intel Processor Trace [35] or ARM
Embedded Trace Macrocell [14]). �e key idea behind Lazy

Diagnosis is to lazily bind dynamic control and timing in-
formation to an otherwise expensive static interprocedural
pointer and type analysis. �e control �ow trace allows
static analysis to only focus on executed code, and the coarse
timing information enables the analysis to be partially �ow
sensitive, resulting in accurate and e�cient root cause diag-
nosis.
As we will explain in §7, the coarse interleaving hypoth-

esis may not hold for concurrency bugs in programs with
a high degree of parallelism and �ne-grained concurrency.
If a concurrency bug does not meet the coarse interleaving
hypothesis, Lazy Diagnosis will not produce misleading re-
sults. Lazy Diagnosis will point out the events (e.g., memory
accesses, lock operations, etc.) that are likely involved in the
concurrency bugwithout providing the ordering information
between these events, which we believe is still useful.

Overall, we make the following contributions:
• Coarse interleaving hypothesis, which claims that a

coarse-grained timing information is su�cient to in-
fer thread interleavings leading tomany concurrency
bugs. We validate the hypothesis for 54 bugs in real
systems, and discuss implications of this hypothesis
to testing and debugging multithreaded programs.

• Lazy Diagnosis, a novel hybrid dynamic-static pro-
gram analysis technique that leverages the coarse
interleaving hypothesis to accurately and e�ciently
diagnose concurrency bugs. Lazy Diagnosis can di-
agnose bugs in unmodi�ed programs running on
commodity hardware. Lazy Diagnosis does not rely
on sampling, which leads to low root cause diagnosis
latency (i.e., it can quickly diagnose bugs).

We implemented Lazy Diagnosis in our prototype system
S������ 1. We tested S������ using real systems such as
MySQL, Memcached, Apache h�pd, SQLite, Transmission.
S������ diagnosed concurrency bugs with 100% accuracy
with a runtime performance overhead of 0.97% on average.
S������ can diagnose concurrency bugs a�er a single fail-
ure because it does not rely on sampling. Although S������
is geared towards the Intel platform, Lazy Diagnosis can be
implemented on other platforms with control �ow tracing
capability (e.g., ARM).�erefore, we believe that our tech-
niques are broadly applicable, and S������ is suitable for
real-world adoption.
In the rest of this paper, we �rst discuss the challenges

of developing concurrency bug diagnosis techniques (§2),
followed by a discussion of the coarse interleaving hypothe-
sis (§3). We then describe the design of Lazy Diagnosis (§4)
followed by the implementation (§5) and evaluation (§6) of
S������. A�er discussing limitations (§7) and the related
work (§8), we �nally conclude the paper (§9).

1Snorlax is a lazy, but powerful Pokémon
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2 CHALLENGES OF CONCURRENCY BUG
DIAGNOSIS

We now explain the key challenges of diagnosing concur-
rency bugs which apply to testing and debugging concur-
rency bugs as well. We also explain how challenges of con-
currency bug diagnosis are interrelated.

2.1 Overhead Challenge
A fundamental challenge in building e�ective concurrency
bug diagnosis techniques is the runtime performance over-
head incurred on the programs monitored for diagnosis pur-
poses. Low runtime performance overhead is especially im-
portant for diagnosing in-production bugs.

To reduce performance overhead, existing techniques em-
ploy a variety ofmethods. �e �rst technique is to use custom
hardware support [16, 76, 77], which hurts applicability. �e
second major technique is to use sampling [15, 17, 42, 44, 51,
52]. Alas, sampling techniques can signi�cantly reduce the
probability of diagnosis. For instance, according to our evalu-
ation (§6.3), the diagnosis probability can be reduced at least
by a factor of 3.7⇥ and up to 2523⇥. Furthermore, certain
sampling techniques modify the source code or instrument
in-production code on-the-�y, which may not be practical
or even possible. Moreover, modi�cation or instrumentation
of deployed programs could perturb program behavior and
mask bugs [42].

Certain techniques perform heavyweight in-house analy-
ses [43] to avoid any runtime performance overhead. �ese
techniques may take a long time to analyze executions (e.g.,
up to 5000⇥ longer than real executions).
Lazy Diagnosis solves the overhead challenge with a hy-

brid dynamic-static program analysis that combines non-
intrusive and low-overhead hardware control �ow tracing,
coarse-grained timing information, and powerful interproce-
dural static program analysis (§4). Control �ow traces allow
static analysis to reduce its scope to executed code (§4.2),
and timing information enables partial �ow sensitivity (§4.4),
resulting in accurate diagnosis without sacri�cing perfor-
mance.

2.2 Accuracy Challenge
Bug diagnosis techniques need to be accurate (i.e., provide
correct results) to be adopted and used by developers in the
real world. For instance, if the results of a data race detector
contain too many false positives, developers may end up
losing a lot of time weeding out the false positives, or worse,
they will simply not use the detector.
It is di�cult to correctly identify the program state that

leads to a failure in a complex large-scale so�ware. An ac-
curate concurrency bug diagnosis system needs to correctly
track the statements leading to failures and their execution

order. �e accuracy challenge is also related to the overhead
challenge. Tracking execution information is necessary for
accurate diagnosis, but this can be expensive, especially for
in-production code.
Existing techniques rely on either non-commodity hard-

ware support [76, 77] or heavyweight analyses that are not
suitable for in-production usage [43], whereas Lazy Diagno-
sis achieves high accuracy thanks to its hybrid dynamic-static
interprocedural program analysis (§4).

2.3 Bug Diagnosis Latency Challenge
Existing bug diagnosis techniques are prone to long diagno-
sis latencies or low diagnosis probabilities due to sampling.
�ere are two predominant sampling strategies. �e �rst
strategy is sampling in time [17, 40, 51, 52], i.e., turning mon-
itoring on and o� at certain time intervals, and the second
is sampling in space [42, 44] which turns on monitoring for
certain portions of a program. Prior work has shown that
sampling in time can dramatically increase the latency of
bug diagnosis (up to 100⇥ according to [16]), and we show
in our evaluation that sampling in space can cause an even
more drastic increase (up to 2523⇥ §6.3).

Reducing the bug diagnosis latency of hard-to-reproduce
bugs requires monitoring programs continuously. To our
knowledge, there is no in-production system that continu-
ously monitors entire program executions for bug diagnosis
purposes. �e only related work to do so uses custom hard-
ware [39] that is not readily available.

Lazy Diagnosis relies on e�cient control �ow tracing in
modern commodity hardware (Intel PT [35] or ARMETM [14])
to continuously track executions, thereby reducing bug di-
agnosis latency.

3 COARSE INTERLEAVING HYPOTHESIS
In this section, we evaluate the coarse interleaving hypoth-
esis, which claims that coarse-grained timing information
is su�cient to determine the thread interleaving of events
(shared memory accesses and synchronization operations)
leading to concurrency bugs. In the rest of the text, we refer
to these events as target events or target instructions.

We de�ned diagnosis of a bug as the identi�cation of the
failure’s root cause (§1), where the root cause of a failure is
intuitively the real reason behind the failure. More precisely,
we de�ne the execution order of target events across threads
as the root cause of concurrency bugs. Although we do not
a�empt a formal proof, we borrow this notion of root cause
from the notion of causation de�ned by Halpern et al. [34].
In particular, the execution order of events such as memory
accesses are the only events pertinent to the occurrence of
concurrency bugs we have encountered (deadlocks, order
violations, and atomicity violations), and any other event is
immaterial to reproducing these bugs.
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Figure 1: Patterns of concurrency bugs and target
events

3.1 Concurrency Bug Patterns
Target event pa�erns vary based on the type of the con-
currency bug. In this paper, we consider deadlocks, order
violations, and atomicity violations. Order violations and
atomicity violations are in many cases caused by one or more
data races, which are unsynchronized accesses to shared vari-
ables from multiple threads.
We show the bug types and associated target event pat-

terns in Figure 1. LA denotes an a�empt to call a lock acqui-
sition function to acquire the lock A. R and W denote read
and write instructions to the same memory location respec-
tively. �e arrow sign between events denotes an ordering
in time. It is not a formal happens-before relationship [48]
established by synchronization operations except in the case
of the deadlock pa�ern.

Deadlocks happen when a group of threads are each wait-
ing for one another to release a lock to progress with their
execution. A deadlock pa�ern between two threads is in Fig-
ure 1.(a), where�read 1 which is already holding the lock
LB a�empts to acquire LA. LA is held by �read 2, which in
turn is a�empting to acquire LB . We denote the time elapsed
between the two lock acquisition a�empts as �T . Lazy Di-
agnosis is not limited to deadlocks with two threads, but we
only show an example with two threads for brevity.
Order violations happen when two threads access the

same memory location, at least one of the accesses is a write,
and the sequence of accesses violates the program’s correct-
ness. An order violation pa�ern is in Figure 1.(b), where
we denote the time elapsed between the two accesses in an
order violation as �T .

Atomicity violations happen when developers do not prop-
erly identify sections of code that need to execute atomically
and fail to enclose them in critical sections [57]. We show
the pa�erns of single-variable atomicity violations in Fig-
ure 1.(c), namely RWR, WWR, RWW, WRW, since they are

the most common ones [56]. Atomicity violations may in-
volve order violations, however their key characteristic is
the violated atomicity of a code section. We focus on single
variable atomicity violations, because as we discuss in §7, it
is challenging for Lazy Diagnosis to diagnose multi-variable
atomicity violations without tracing the data �ow of a pro-
gram. We refer to the time elapsed between the �rst and
the second access as �T1 and the time elapsed between the
second and the third access as �T2.
It is possible to determine the order of target events if

the time elapsed between the events can be measured. A
developer can then �x the associated concurrency bugs e.g.,
by ensuring that threads do not acquire locks in the order
that leads to a deadlock or by using proper synchronization
to eliminate the order or the atomicity violation.

3.2 Evaluating the Coarse Interleaving
Hypothesis

We now brie�y discuss the systems we used to test the coarse
interleaving hypothesis. Our benchmarks are widely-used
real-world systems. MySQL [66] is a popular relational data-
base system used by companies such as Google, Facebook,
and Twi�er; Apache h�pd [7] is the most widely used web
server in the world, powering around 50% of all the web-
sites [69]; memcached is a distributed object cache used by
companies such as Amazon, Youtube, and Facebook [28];
SQLite [86] is an embedded database used in Chrome, Fire-
fox, and iOS; Transmission is a cross-platform BitTorrent
client [78]; Pbzip2 is a parallel compression and decompres-
sion tool [30]; aget is a parallel wget utility [26]; the Java
Development Kit (JDK) [72] is the implementation of the
Java Platform; Apache Derby is a relational database imple-
mented entirely in Java [9]; Apache Groovy is a dynamic
programming language [10] used by services such as Euca-
lyptus [27] and Jenkins [38]; DBCP is Apache’s connection
pooling infrastructure for relational database connections in
Java [8]; Apache Log4j is a Java-based logging utility [11];
Apache Lucene is an indexing and search library [12].

To measure the time elapsed between target events, we
�rst identify the target instructions leading to each con-
currency bug. We then instrument C/C++ programs us-
ing clock gettime() and Java programs using System.nano-
Time(), which also relies on clock gettime() [29]. �e instru-
mentation is solely for the purposes of evaluating the coarse
interleaving hypothesis. Lazy Diagnosis and S������ do
not rely on any instrumentation or source code modi�cation.
�e instrumentation calls to time measurement functions are
injected as immediate predecessors [3] of target instructions.

Linux uses the nanosecond-granularity time stamp counter
(TSC) in Intel processors to implement clock gettime() [55].
�e reliability of our results depends on the accuracy of the
TSC, and in particular, whether it is properly synchronized
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Table 1: Average time elapsed for deadlocks (�T in Figure 1.a) and standard deviation (��T ) in microseconds

Table 2: Average time elapsed for order violations (�T in Figure 1.b) and standard deviation (��T ) in microseconds

Table 3: Average times elapsed for atomicity violations (�T1,�T2 in Figure 1.c) and standard deviations (��T 1,��T 2)
in microseconds

across multiple cores in our test machine which has an Intel
Skylake i7-6500U CPU. Fortunately, Intel CPUs since Ne-
halem have invariant TSC [36], meaning that the TSC is
synchronized across the CPUs [95]. Furthermore, the TSC is
not a�ected by CPU frequency changes.
We reproduced all the 54 concurrency bugs in 13 sys-

tems that we could reproduce, while measuring time elapsed
between target events. We chose these systems and bugs be-
cause they were previously used for evaluating concurrency
bug diagnosis and debugging tools [16, 42, 97], and there are
publicly available frameworks to reproduce these bugs reli-
ably [54, 83]. To correctly evaluate the coarse interleaving
hypothesis, we did not instrument these programs (e.g., by
inserting delays) to increase the bug reproduction probabil-
ity. Consequently, in some cases, we had to run programs a
few thousand times (less than 5000 in any case) to reproduce
the bugs.

We show the results of our study in Tables 1–3. �e elapsed
times represent averages over 10 runs, and we also provide

standard deviations. �e �rst row in each table shows the
system name as well as the bug tracker id (N/A if the bug
ID is not available). As a summary, the average time elapsed
between target events is between 154 and 3505 microseconds.
�e shortest time elapsed is 91 microseconds. We discard
the overhead of calling time measurement functions, which
we measured to be always less than 1 microsecond in total
for a given execution.

3.3 Implications of�e Coarse
Interleaving Hypothesis

Our evaluation results of the coarse interleaving hypothesis
are encouraging. In particular, our results show that it is pos-
sible to diagnose all the concurrency bugs we studied using
an e�cient time tracking mechanism that is roughly 5 orders
of magnitude coarser than what a �ne-grained record/replay
system would provide.

We compute themagnitude of the granularity di�erence as
follows: Our study in the previous section revealed that the
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shortest time elapsed between target events was 91 microsec-
onds. On the other hand, multi-processor record/replay
should be able to provide nanosecond granularity. Consider
an L1 cache hit, which takes around one nanosecond (4 cy-
cles in Skylake [84]). A record/replay system should be able
to track the exact order in which multiple L1 cache hits from
di�erent cores execute, which requires nanosecond record-
ing granularity. We then compute the 5 orders of magnitude
ratio as 91us

⇠1ns = 91000 ⇠105.
As we show for our Lazy Diagnosis prototype implemen-

tation, S������, modern hardware is able to provide such
granularity with an average performance overhead of 1%.

We posit that the coarse interleaving hypothesis holds for
real large-scale systems because of the inherent complexity
of such systems (e.g., many operations, context switches,
network communication, etc.). We acknowledge that the
coarse interleaving hypothesis does not hold for operations
in highly concurrent so�ware such as a concurrent linked
list, where a formal veri�cation of correctness may be pos-
sible [18]. However, based on our study, we conclude that
the coarse interleaving hypothesis is useful, and as we show
in the next section, it can be used to e�ciently diagnose
concurrency bugs in practice.

We also believe that the coarse interleaving hypothesis can
be useful for designers of bug detection tools and techniques
such as record/replay systems and symbolic analysis tools.
Recent work has shown that it is possible to build an e�cient
record/replay system if a multithreaded program has no data
races [60]. Although this is true, record/replay systems are
especially valuable for debugging hard-to-reproduce failures
due to concurrency bugs such as data races. In many cases,
the coarse interleaving hypothesis can be used to e�ciently
record the order of racing accesses, thereby enabling the
design of e�cient record/replay engines that can work in the
presence of data races. Similarly, symbolic analysis engines
that a�empt to synthesize executions with data races [43,
99, 100] can leverage the coarse interleaving hypothesis to
e�ciently record the order of racing accesses rather than
a�empting to synthesize thread schedules with data races.

4 DESIGN OF LAZY DIAGNOSIS
As discussed in §2, the key challenge of building accurate
concurrency bug diagnosis tools is achieving low overhead.
�e key reason why existing diagnosis tools incur high over-
head is because the mechanisms they use to accurately track
the interleaving of shared memory accesses and synchroniza-
tion operations across multiple threads are expensive [92].
�e coarse interleaving hypothesis suggests that it is possi-
ble to use a relatively coarse-grained and inexpensive time
tracking mechanism to determine the execution order of
target events as long as the granularity is su�cient.
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Figure 2: Design of Lazy Diagnosis

In this section, we present the design of Lazy Diagnosis,
which builds on the coarse interleaving hypothesis. Lazy
Diagnosis relies on e�cient control �ow tracing with timing
information that is present in modern processors (Intel PT
or ARM ETM) to continuously monitor the execution of pro-
grams. For instance, Intel PT generates a per-thread trace
that contains both control �ow events (e.g., taken branches)
and timing events (e.g., TSC) that are synchronized across all
CPUs. Lazy Diagnosis uses control �ow traces with timing
information to perform an interprocedural dynamic-static
analysis for concurrency bug diagnosis. �e analysis is in-
terprocedural, because concurrency bugs can span multiple
functions.
Figure 2 shows the high-level design of Lazy Diagnosis.

Lazy Diagnosis operates in a client-server model, where
the program is run on client machines in production, while
continuously collecting control �ow traces, and the server
performs the core of Lazy Diagnosis’ analysis. Note that
a client in our model can be either a desktop or a server
machine.
�e control �ow trace with timing information is gen-

erated upon a failure such as a crash or a deadlock, or on
demand (step 1 ). Lazy Diagnosis performs steps 2 to 7
a�er the server receives the �rst control �ow trace upon a
failure to identify the most likely root cause of the failure. To
increase the statistical signi�cance and hence the accuracy
of bug diagnosis in step 7 , Lazy Diagnosis gathers further
control �ow traces from successful executions, generated at
the location where the failure occurred previously (step 8 ).
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We now explain how the key components of Lazy Diag-
nosis work to solve the e�ciency, accuracy, and root cause
diagnosis latency challenges we outlined in §2. In partic-
ular, we discuss trace processing (§4.1), hybrid points-to
analysis (§4.2), type-based ranking (§4.3), bug pa�ern com-
putation (§4.4), and statistical diagnosis (§4.5).

4.1 Trace Processing
First, trace processing uses control �ow traces from clients
to identify the executed instructions (step 2 , Figure 2). In
this context, when we say instructions, we refer to instruc-
tions used by Lazy Diagnosis, where the actual format is
implementation-dependent (e.g., LLVM IR).�is step does
not take into account the timing information in the traces
or the dynamic sequence of instructions (e.g., an instruction
executed multiple times counts as having executed once).

We illustrate the result of step 2 on the hypothetical con-
trol �ow graph of the program, where blue nodes correspond
to executed code as per the trace, and other nodes are grayed-
out. �e nodes on the graph represent basic blocks, which
are contiguous instruction sequences without a branch. �e
edges represent branches, whose executions are tracked by
control �ow tracing. Hybrid points-to analysis uses the re-
sults of this to reduce the scope of the analysis (§4.2).

Second, trace processing uses the control �ow trace with
the timing information to generate a dynamic instruction
trace of executed instructions that are partially-ordered in
time, i.e., a subset of the executed instructions are ordered
with respect to each other (step 3 , Figure 2). �e instructions
in this trace are partially-ordered, because in practice, the
granularity of the timing information in an e�cient control
�ow tracing mechanism (e.g., Intel PT) is too coarse to infer a
total order of all instructions. Nevertheless, as per the coarse
interleaving hypothesis, we show that a partial order is suf-
�cient to diagnose real concurrency bugs (§6.1). �e results
of this step are used by bug pa�ern computation (§4.4).

Trace processing happens whenever the server receives a
control �ow trace from a failing execution, or from a success-
ful execution at the request of the server. �e server requests
traces to be generated for successful executions (step 8 )
to increase the statistical accuracy of root cause diagnosis
(step 7 ). However, we note that Lazy Diagnosis does not
employ statistical sampling like prior root cause diagnosis
techniques [39, 42, 51–53].
Lazy Diagnosis instructs clients to generate traces from

successful executions at the same program counter where a
failure previously occurred. It may not be always possible to
generate a trace at a previous failure location (e.g., if the fail-
ure is in error handling code), in which case the server will
instruct control �ow traces to be generated at predecessor

p = &l
MemLocl 2 p

p = q

p ◆ q

⇤p = q
⇤p ◆ q

p = ⇤q
p ◆ ⇤q

(1) (2) (3) (4)

Figure 3: Constraint inference rules for inclusion-
based points-to analysis [4]

basic block(s) of the block where the failure occurred previ-
ously. Lazy Diagnosis clients iterate over predecessor blocks
until they reach a block where a trace can be generated.

4.2 Hybrid Points-to Analysis
Lazy Diagnosis uses trace processing results from step 3 to
perform the hybrid interprocedural points-to analysis (step
4 , Figure 2) that establishes a mapping between pointers
and memory locations (e.g., Pointeri can point to locations
MemLock to MemLock+m ). �e hybrid points-to analysis is lazy
in that it computes the points-to set only whenever the server
receives a new control �ow trace from a client, as opposed
to o�ine, in an eager manner.
�e key insight behind the hybrid points-to analysis is

that we can relatively quickly perform an otherwise slow
and unscalable interprocedural program analysis using the
control �ow information gathered from clients.
Hybrid points-to analysis is an inclusion-based points-

to analysis [5]. In short, such an analysis iterates over all
the instructions in a program while generating constraints,
which are then fed into a constraint solver to determine
points-to sets. In Figure 3, we provide four inference rules
assuming C/C++ as the source language (the rules are similar
for other languages), where MemLocl is a memory location
representing the address of object l. Pointers are represented
by p and q. Rule (1) states that the assignment p = &l creates
a constraint stating that the memory location of l is in the
set of locations pointed to by p. Rule (2) states that the
assignment p = q generates a constraint stating that the set
of locations pointed to by p are a superset of the locations
pointed to by q (i.e., the points-to set of p includes the points-
to set of q, hence the name inclusion-based).
Inclusion-based points-to analysis is more accurate [25]

than the othermajor class of interprocedural analysis, namely
uni�cation-based points-to analysis [87]. Although inclusion-
based points-to analysis is more expensive than uni�cation-
based points-to analysis, hybrid points-to analysis employs
scope restriction to improve the e�ciency of inclusion-based
analysis, while leveraging its higher accuracy.

Scope restriction Lazy Diagnosis restricts the scope of
interprocedural analysis to the instructions that executed.
�is reduces the amount of code that Lazy Diagnosis needs
to analyze by 9⇥ on average (§6.1). Scope restriction enables
Lazy Diagnosis to operate on code that actually executed, but
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%7 = load %struct.Queue*, %struct.Queue** %fifo

store %struct.Queue* %1, %struct.Queue** %q
  
store i32* %21, i32** %bufSize8
  

1

2

CRASH

Rank based
on type

IF

I1

I2

Figure 4: Type-based ranking example. �e failure in
this example is a crash. �e ranking favors the Queue*

type over the i32* type, because the instruction where
the failure occurs operates on the type Queue*.

it comes at the cost of potentially missing points-to relations
because, in practice, control �ow traces are limited in size.
For instance, we capture the last 6764 branches on average
with a 64KB ring bu�er in our evaluation. However, we
will show that scope restriction does not impact root cause
diagnosis accuracy in our evaluation.

Finally, hybrid points-to analysis is �ow insensitive, i.e., it
discards the execution order of program instructions. Hybrid
points-to analysis leverages the conservativeness of �ow
insensitivity when analyzing a multi-threaded program. �e
execution order of instructions in a multithreaded program
cannot be inferred based on the order of instructions in the
code. In a multithreaded program, instructions from di�erent
threads can be arbitrarily interleaved to a�ect the points-
to information, and �ow insensitivity models this behavior.
However, Lazy Diagnosis introduces �ow sensitivity among
target instructions during bug pa�ern computation (§4.4).
�is approach allows us to use the timing information in a
conservative way.

4.3 Type-Based Ranking
Type-based ranking takes as input the points-to set of the
operand of a failing instruction. �e operand depends on the
type of the failure: for a deadlock, the operand is a pointer to
a lock object, and for a crash, the operand is an invalid pointer
(e.g., due to memory corruption). Type-based ranking then
ranks the instructions accessing the memory locations in the
points-to set of the operand, based on the likelihood with
which these instructions could be involved in a concurrency
bug (Figure 2, step 5 ). We discuss the speci�cs of retrieving
the operand from the instruction where the failure occurred
in the implementation section (§5).
Type-based ranking highly ranks the instructions that

operate on types that exactly match the type of the operand
involved in the failure. Type-based ranking operates on static
instances of instructions. In the bug pa�ern computation
section (§4.4), we explain how Lazy Diagnosis takes into
account the dynamic instances of the instructions.
Figure 4 shows an example of type-based ranking using

the LLVM IR (intermediate representation) [49]. We assume
that the failure in this example is a crash. If is the instruction

I1

I2

IF
“executes before”

“executes before”

1

2

Figure 5: Partial �ow sensitivity across instructions
involved in a concurrency bug (I1, I2 and If from Fig-
ure 4). �e “executes before” relationship is based on
the timing information in the control �ow trace, and
it is not a “happens before” [48] relationship.

where the failure occurred, and based on the hybrid points-to
analysis, If , I1, and I2’s operands (circled on the �gure) might
point to the same memory location. Type-based ranking
ranks I1, the store instruction operating on type Queue*, with
rank 1, because If also operates on the same type. However
type-based ranking ranks I2, the store instruction operating
on the 32-bit integer pointer type i32*, with rank 2.

Lazy Diagnosis does not discard any instruction based on
its rank, because instructions operating on di�erent types
can be involved in the same concurrency bug. A type mis-
match occurs due to type casts, where for instance, an i32*

could be referring to a Queue*. Type-based ranking merely
prioritizes the remaining stages of the analysis to improve
bug diagnosis latency. In our evaluation (§6), type-based
ranking decreases root cause diagnosis latency by 4.6⇥.

4.4 Bug Pattern Computation
Bug pa�ern computation takes as input the output of type-
based ranking and the partially-ordered dynamic instruction
trace generated by trace processing, and identi�es pa�erns
that may have caused concurrency bugs (step 6 , Figure 2).
Lazy Diagnosis is able to identify the pa�erns of deadlocks,
order violations and atomicity violations from Figure 1.
As discussed in §3, concurrency bug diagnosis requires

knowing the execution order of target instructions involved
in the bug. Lazy Diagnosis determines the execution order
of target instructions using partial �ow sensitivity.

Partial flow sensitivity: It uses the partially-ordered dy-
namic instruction trace (step 3 , Figure 2) to add the ordering
information between the dynamic instances of instructions
that were previously ranked based on their types. Figure 5
shows how the instructions I1, I2, and IF from Figure 4 are
augmented with “executes before” relations. Partial �ow sen-
sitivity establishes executes-before relations across dynamic
instances of instructions, as opposed to type-based ranking
that operates on static instances of instructions. However,
for brevity purposes, in Figure 5, we assume that each static
instance of I1, I2 and If from Figure 4 only has one dynamic
instance in the trace. �erefore, we refer to the dynamic and
static instances of the instructions with the same name.
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I2

T1 T2
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Figure 6: Patterns of potential concurrency bugs for
the instructions in the example from Figure 4. Ti
stands for thread i. I1 and I2 are writes (store); If is
a read (load).

Next, bug pa�ern computation uses the partially-ordered
instructions to generate potential deadlock, order violation,
and atomicity violation pa�erns.

Deadlocks: Major operating systems like Windows [31]
and Ubuntu Linux [91] and execution environments such as
the JVM can identify [73] that a failure occurred due to a
deadlock. If the failure was due to a deadlock, Lazy Diagnosis
generates potential deadlock pa�erns using the type-ranked
and partially �ow-sensitive instructions. Lazy Diagnosis
determines which of the generated pa�erns is the root cause
of the deadlock with great certainty in the �nal stage, namely,
statistical diagnosis (§4.5).

Order violations and atomicity violations: It is not
easy to know whether a failure occurred due to an order
violation or an atomicity violation. �erefore, if the failure
is a crash, Lazy Diagnosis generates potential pa�erns of
both order and atomicity violations that may have caused
the crash.

Figure 6 shows potential order and atomicity violation pat-
terns that Lazy Diagnosis generates using the instructions
from the example in Figure 4, which fails with a crash. Since
the failure instruction (If ) is a read (load), and the other
instructions (I1, I2) are write (store) instructions, the likely
pa�erns are a WR order violation, and a WWR atomicity vi-
olation. Just as for deadlocks, Lazy Diagnosis determines the
root cause of a failure with great certainty in the statistical
diagnosis stage (§4.5).
Bug pa�ern computation uses additional out-of-band in-

formation such as thread IDs (e.g., T1, T2 in Figure 6) when
computing concurrency bug pa�erns. For instance, bug pat-
tern computation requires instructions involved in an order
violation to be executed by di�erent threads. It is possible to
use thread IDs, because in practice, the control �ow traces
are per thread (with the proper kernel driver support).

4.5 Statistical Diagnosis
Statistical diagnosis [39, 51–53] determines the likelihood
that the pa�erns computed by bug pa�ern computation are
the root causes of concurrency bugs (step 7 , Figure 2).
Statistical diagnosis computes the F1 score [79] for each

pa�ern, which is the harmonic mean of precision (P) and
recall (R) (F1 = 2 P .R

P+R ). In the context of Lazy Diagnosis,
precision indicates the number of executions that fail among
those executions that were predicted to fail based on the
presence of a pa�ern. Recall indicates the number of execu-
tions that were predicted to fail based on the presence of a
pa�ern among the executions that failed.
A high F1 score for a concurrency bug pa�ern indicates

that the presence of the pa�ern is positively correlated with
the failure. A high F1 score is also a strong indicator that the
pa�ern is the root cause of a concurrency bug (as we show
in our evaluation). �e e�ectiveness of statistical diagnosis
is due to the nature concurrency bugs we discussed in §3.
In particular, we de�ned the pa�erns in Figure 1 as the root
causes of concurrency bugs. Consequently, a high F1 score
(i.e., the presence of a pa�ern) is an indicator that the pa�ern
in question is likely the root cause.

We note that execution traces from successful executions
are necessary for increasing the accuracy of statistical di-
agnosis. In our evaluation, S������ was able to accurately
diagnose failure root causes by gathering information from
10⇥ more successful executions than failing executions. In
practice, traces from successful executions are abundant and
easy to obtain for most in-production so�ware.
If there are multiple pa�erns with the same F1 score, de-

velopers will need to manually identify the root cause from
these pa�erns. We have not seen this in our evaluation (§6).

5 IMPLEMENTATION OF SNORLAX
S������, our current prototype of Lazy Diagnosis, is built to
analyze C/C++ programs compiled using clang [22]. We rely
on clang to generate an LLVM bitcode �le that is used by the
server-side analysis. However a di�erent implementation
with another program analysis framework is possible [68,
85]. S������ also relies on Intel PT for generating control
�ow traces with timing information. �is step too can be
implemented on other platforms [14, 58]. S������ does not
require the program for which it is diagnosing concurrency
bugs to be modi�ed in production.

On the client side, S������ relies on a custom 3773 LOC
Intel PT driver for Linux that exposes an ioctl interface for
con�guring the driver to save the trace when the program
executes a speci�c instruction, or whenever a fail-stop event
such as a crash occurs. �e driver uses hardware breakpoints
(i.e., watchpoints) to detect that the execution reached a
speci�c program counter.
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We did not modify the Linux kernel itself, because our
driver is a loadable module. We con�gured Intel PT to hold
64 KB of control trace per thread (con�gurable up to 128 MB)
in memory in a ring-bu�er. �e ring-bu�er mode overrides
the control �ow trace for each thread once the trace size
reaches the bu�er size. �e ring-bu�er mode keeps all the
trace in memory until a failure occurs or the trace is saved
on-demand, thereby avoiding any I/O overhead of saving
the trace to persistent storage during operation.

We con�gured our Intel PT driver to insert timing packets
(MTC and CYC packets [36]) into Intel PT trace at the highest
possible frequency. �is con�guration does not set a speci�c
frequency, but instructs Intel PT to inject as many timing
packets as possible. Timing packets occupied on average 49%
of the trace bu�er size. �is does not hurt S������’s accu-
racy as we discuss in the next section. In fact, timing packets
allow S������ to determine target instruction orderings,
thereby increasing root cause diagnosis accuracy.
On the server side, to decode Intel PT traces, we rely on

the stock decoder from Intel [37]. We rely on the LLVM
compiler toolchain [49] to implement the hybrid points-to
analysis as well as the type-based ranking (total of 2618 LOC).
For e�ciency purposes, programs running in production do
not contain the debug information. To mimic this behavior,
we strip the debug information from generated binaries and
use it on the server side to map the program counter of the
failure to the LLVM intermediate representation.

S������ limits the maximum number of traces gathered
from successful executions for the purposes of statistical
diagnosis to 10⇥ of the number of failing executions—an
upper limit we empirically determined to be su�cient for
full root cause diagnosis accuracy.

�e client-server communication code as well as the bug
pa�ern classi�cation and statistical diagnosis modules are
wri�en in a total of 1486 LOC of Python. S������ clients
retrieve the failure code (e.g., crash or hang) from Ubuntu’s
built-in ErrorTracker [91].

6 EVALUATION OF SNORLAX
In this section, we aim to answer the following questions
regarding S������: Can S������ accurately diagnose con-
currency bugs (§6.1)? How e�cient S������ is in diagnosing
concurrency bugs (§6.2)? How does S������ compare to a
state of the art bug diagnosis system (§6.3)?
To answer these questions, we evaluate S������ using

concurrency bugs in real C/C++ systems such as MySQL (650
KLOC), Apache h�pd (223 KLOC), memcached (9 KLOC),
SQLite (100 KLOC), Transmission (60 KLOC), pbzip2 (2 KLOC),
and aget (842 LOC). We use these benchmarks, because they
have been used to evaluate previous concurrency bug detec-
tion and diagnosis tools [54, 97], and we compare S������
to one such tool, namely Gist [42].

On the client side, we ran our experiments with a 2 core
Intel Skylake i7-6500U CPU with Intel PT support and 8 GB
of RAM running Ubuntu 16.04 with kernel version 4.8.0-41.
On the server side, we used an 8 core Intel Xeon E5-1620
CPU with 16 GB of RAM and the same Linux setup.
We used existing test cases to trigger the bugs [97]. For

each buggy execution trace, we gathered an additional 10
traces from successful executions at the failure location
where each bugmanifests itself. On average, S������ clients
gathered 6764 control events (e.g., branches, calls) and 6695
timing packets per thread.

6.1 Accuracy
In this section, we �rst evaluate the accuracy of S������
by comparing S������’s diagnosis results with the bug �x
patches of the applications we evaluated. We also compare
S������’s diagnosis results to those of a state-of-the art
concurrency bug diagnosis tool, Gist. We then quantify the
contribution of techniques used in Lazy Diagnosis to S����
���’s diagnosis accuracy.
S������ was able to accurately diagnose the root cause

of all the concurrency bugs we evaluated. We manually ana-
lyzed the bug �xes of all the 11 concurrency bugs and found
that developers eliminated the pa�erns that S������ diag-
nosed as the root causes of all these bugs. We also compared
S������’s diagnosis results with Gist’s diagnosis results and
con�rmed that the root causes diagnosed by Gist and S����
��� are the same. However, in the next section, we show
that Gist’s root cause diagnosis latency can be orders of mag-
nitude larger than S������’s, making Gist less practical for
in-production usage.
More formally, we adopt an accuracy metric from prior

work [42] called ordering accuracy, namely AO . AO de�nes
to what extent the order of target instructions diagnosed
by a tool di�ers from the ground truth, i.e., the manually
diagnosed and veri�ed order of instructions leading to the
failure. Ordering accuracy uses the normalized Kendall tau
distance [46], � , which measures the pairwise disagreements
between ordered lists. For instance, for ordered lists of in-
structions [I1, I2, I3] and [I1, I3, I2], � = 1, because the pairs
[I1, I2] and [I1, I3] have the same ordering, whereas the pair
[I2, I3] has di�erent orderings in the two lists. If the or-
dered list of instructions that S������ computes is OS and
the manually computed (ground truth) list of ordered in-
structions is OM , then the ordering accuracy is de�ned as
AO = 100 ⇤ (1� � (OS ,OM )

# of pair s inOS[OM
). We computed the order-

ing accuracy for all the concurrency bugs S������ diagnosed
in our evaluation, and obtained 100% for each one.
�e accuracy is 100% thanks to the timing packets in-

jected in the control �ow trace by Intel PT. For all the bugs
we reproduced, timing packets’ granularity was �ne enough
to accurately determine the order of target events leading
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Figure 7: Contribution of each stage of Lazy Diagnosis to S������’s accuracy. On the x-axis, we show system
names and the bug ids (N/A if bug id is not available). We start the y-axis at 80% to make the contribution of the
last four stages clearer.

to concurrency bugs. More speci�cally, the longest time
elapsed between the timing packets in our experiment was
65 microseconds, whereas the shortest time elapsed between
target events was 91 microseconds. Our results show that
S������ was able to leverage the coarse interleaving hy-
pothesis to accurately diagnose concurrency bugs.

Finally, in Figure 7, we show to what extent each stage of
Lazy Diagnosis (steps 2–7 in Figure 2) improves S������’s
accuracy. To quantify this contribution, we compute how
much every stage of Lazy Diagnosis reduces the number of
instructions to be analyzed. In comparison to a purely static
analysis, trace processing reduces the number of instructions
to be analyzed by a geometric mean of 9⇥, contributing 87.9%
towards full accuracy. �e next big contribution comes from
type-based ranking, which further reduces the number of
instructions to be analyzed by a geometric mean of 4.6⇥,
contributing an additional 9.7% towards full accuracy. Over-
all, for all the bugs, each of the �ve stages is necessary to
achieve 100% accuracy.

6.2 E�ciency
In this section, we evaluate S������’s e�ciency by �rst mea-
suring the performance overhead of control �ow tracing on
client executions in production. We then measure how long
it takes S������ to perform its analysis once a new control
�ow trace is obtained from a client and how much faster

S������ is compared to the same static analysis but without
the control �ow trace (i.e., a whole-program analysis).
To evaluate the performance overhead of control �ow

tracing using Intel PT, we use tests wri�en by other re-
searchers [97], SQLite’s performance tests, Apache’s bench-
marking tool ab [6], and MySQL’s benchmarking tool [65].
To measure performance overhead for MySQL, h�pd, and
SQLite, we measure the drop in throughput and for all the
other benchmarks, we measure the increase in runtime.

We show performance overhead results in Figure 8. Across
all programs, control �ow tracing incurs a runtime perfor-
mance overhead of 0.97% on average. �e highest average
overhead as well as the peak overhead we recorded during
our experiments is for pbzip2 at 1.78% and 1.91%, respectively.
We conclude that S������ incurs low runtime performance
overhead in client executions, and therefore it is suitable for
in-production usage.
Table 4 shows the average server-side analysis time of

S������ (steps 2–7 in Figure 2) and the average speedup of
the analysis compared to a purely static analysis. A�er the
�rst full-program static analysis, S������ takes on average
2.5 seconds to perform its server-side analysis whenever a
new trace is received. S������’s hybrid points-to analysis
is a function of the trace size and not the program size (aside
from constant factors due to pre-processing the program
binary), enabling S������ to diagnose bugs for large-scale
so�ware. �e geometric mean of S������’s speedup over
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Figure 8: Runtime performance overhead of control
�ow tracing with Intel PT

Table 4: S������’s average analysis times (in seconds)
and speedups (as a factor) versus the static analysis
without the control �ow trace. Standard deviations
are all below 3%

pure static analysis is 24⇥. �e speedup is greater for larger
programs, because the dynamic trace corresponds to a rela-
tively small portion of the program.

6.3 Comparison to the State of the Art
In this section, we compare S������ to a state of the art
open source concurrency bug diagnosis tool, Gist [42, 83].
First, we list the key di�erences between S������ and Gist
in terms of assumptions, practicality, and static analysis. We
then argue that S������’s concurrency bug diagnosis la-
tency is substantially lower than Gist’s. A�er it, we compare
the scalability of Gist and S������ as the number of ap-
plication threads increases, and show that S������ scales
be�er. Finally, we compare Gist and S������ in terms of
their generality.

Intrusiveness: Gist [42] repeatedly modi�es the source
code to instrument programs in production to gather infor-
mation for root cause diagnosis, which may not be possible
or desirable in practice. S������ does not modify or in-
strument programs running in production, because Intel PT
tracks the control �ow transparently. �is makes S������
non-invasive and therefore more practically applicable.

Bug Recurrence Requirement: Gist employs sampling
in space by turning monitoring on for a single bug it is trying
to diagnose per execution. Consequently, if the number of
bugs Gist is trying to diagnose is large, the probability that
Gist is monitoring the events for the right bug decreases.
For instance, at the time of this writing, Chromium has 684
open race condition bugs [89], which would reduce the root
cause diagnosis latency of Gist by a factor of 684 compared
to an always on monitoring for all the bugs. S������ on the
other hand, does not employ sampling and has always-on
monitoring, where it captures a control �ow trace whenever
a failure occurs. �erefore, S������ is not impacted by the
number of bugs it is trying to diagnose at a given time.

Static Analysis: S������’s and Gist’s static analysis
have di�erent designs and purposes. Gist’s static analysis
computes a static backward slice which includes all the pro-
gram instructions that could e�ect the failing instruction.
Gist then re�nes the static slice a�er every recurrence of
the failure to improve bug diagnosis accuracy. S������ per-
forms static points-to analysis to identify potential target
events. S������ then uses control �ow traces to determine
the execution order of target events.

Diagnosis Latency: Gist requires on average 3.7 recur-
rences of a failure before it can diagnose a bug [42]. �is
is because, every time a failure recurs, Gist’s analysis itera-
tively broadens its scope to reduce overhead and increase ac-
curacy. S������ is always on and tracing the entire control
�ow that �ts into the Intel PT bu�er. �erefore, it requires
a failure to occur once to be able to diagnose the bug. In
summary, S������ has on average at least 3.7⇥ lower bug
diagnosis latency compared to Gist. In practice, S������’s
latency is lower than Gist’s by at least a further factor equal
to the number of bugs being diagnosed. For instance, in the
case of Chromium, S������ would have on average 2523⇥
lower latency than Gist. In fact, this estimate is conservative,
and in practice, Gist’s bug diagnosis latency is unbounded.
�is is because Gist does not know in which executions a
previously-observed bug will recur, and a bug for which Gist
is trying to perform diagnosis may occur at an arbitrary time
in the future.

Scalability: Finally, we measure the scalability of S����
��� and Gist when monitoring client executions in produc-
tion. For this, we double the application thread count from 2
until we reach 32, while measuring the runtime performance
overhead. For each thread count, we represent the average
overhead across all applications (i.e., we con�ate the over-
head) to determine the scalability di�erences between the
two tools for a range of programs.
We show the scalability results in Figure 9. �e aver-

age overhead of S������ increases from 0.87% to 1.98%,
because the Intel PT driver has to manage a separate bu�er
for each thread. Gist has low overhead for low thread counts.
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Figure 9: Scalability of S������ and Gist with the num-
ber of application threads

However, its overhead increases with an increasing thread
count. In particular, Gist’s overhead increases from 3.14% for
2 threads all the way to 38.9% for 32 threads. �e poor scala-
bility of Gist is due to blocking synchronization it employs to
track the order of shared memory accesses. S������ lever-
ages the coarse interleaving hypothesis to avoid such syn-
chronization and the associated high overhead. We conclude
that S������ scales be�er than Gist with the increasing
number of application threads.

Generality: Gist does not rely on the coarse interleaving
hypothesis to diagnose bugs. �erefore, in theory, it can
perform diagnosis for a broader class of bugs than S������.
However, Gist’s generality comes at the expense of poor
scalability and increased overhead, making it less practically
applicable.

7 DISCUSSION
In this section, we discuss open questions and current limi-
tations of our prototype S������.

Applicability of coarse interleaving hypothesis: �e
coarse interleaving hypothesis does not hold for all classes of
programs (e.g., a highly contended concurrent data structure,
or a highly concurrent program running on a many-core
machine). As a result, the coarse interleaving hypothesis
cannot be leveraged to build tools that can diagnose concur-
rency bugs if the events involved in the bug are interleaved
at a granularity that cannot be tracked e�ciently. However,
our evaluation with 54 bugs suggests that the coarse inter-
leaving hypothesis holds for a broad range of bugs in real
systems, thereby making it useful. Moreover, even if the
coarse interleaving hypothesis does not hold, S������ is
able to determine target events leading to concurrency bugs
without the ordering information, which is still useful in
practice.

Presence of Intel PT : S������ relies on Intel PT, which
is only available on Intel processors since the Broadwell
microarchitecture (i.e., a�er 2014). Lazy Diagnosis is not
limited to Intel PT, and it can be implemented using other
current technologies such as ARM ETM.

Limited control flow trace: In our experiments, S����
��� uses a 64 KB control �ow trace ring bu�er, which was
su�cient to diagnose all the concurrency bugs with the low
overhead numbers we reported. �is �nding corroborates
the short-distance hypothesis from prior work [103], which
states that a concurrency bug propagates through a short
data/control dependency chain. For bugs where the short-
distance hypothesis does not hold, a 64 KB, or even a 128
MB (the largest bu�er that we currently support) bu�er may
not be su�cient. �e solution to this limitation presents a
performance challenge. We can record an entire Intel PT
trace by saving the in-memory trace bu�er to persistent stor-
age every time the bu�er is full. �is solution will increase
the runtime performance overhead as well as the storage
overhead.

Type-based ranking heuristic: �is heuristic may not
always reduce the root cause diagnosis latency, especially
if the target events involved in a concurrency bug consist
of accesses to data via generic pointers (e.g., a pointer to
an integer). In our evaluation (§6), the type-based ranking
heuristic reduced root cause diagnosis latency by a factor of
4.6⇥.

Failing instruction not in the bug pa�ern: S������
assumes that the failing instruction is part of the bug pa�ern.
If this assumption is not correct, Snorlax may not be able
to diagnose failure root causes. Although recent work [23]
reported that 85% of 140 real-world bugs at Microso� had
the failing instruction as part of the bug pa�ern, we will still
explore handling other cases in future work. One possibility
is to perform additional static analysis to �nd instructions
with control/data dependencies to the failing instruction and
include them in S������’s analysis.

Non fail-stop failures: S������ is an automated root
cause diagnosis system. �erefore it requires the failures to
be either fail-stop, or it requires developers to de�ne custom
modes of failure (e.g., using assertions) allowing S������ to
automatically determine that failure has occurred. S������
cannot diagnose latent bugs that corrupt a system’s state
without any externally-observable e�ect.

Multi-variable atomicity violations: �ese violations
do occur in real systems [56]. Lazy Diagnosis focuses on
detecting single-variable atomicity violations. We leave the
handling of multi-variable cases to future work.

Privacy implications: S������ does not track any data
values in the programs it analyzes, but it tracks control �ow,
which can potentially leak private information. One way to
alleviate this problem is to use techniques such as symbolic
analysis to anonymize control �ow traces [20].

8 RELATEDWORK
Lazy Diagnosis’ design is in�uenced by Exterminator [70],
which is the �rst system to suggest collaborative bug �xing
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by merging patches generated by multiple users. Similarly,
Clearview [75] automatically generates patches to �x vul-
nerabilities in production. Lazy Diagnosis can assist these
techniques in the generation of patches for concurrency
bugs.
Lazy Diagnosis’ design is also in�uenced by Windows

Error Reporting (WER) [23, 31], which is the �rst bug di-
agnosis technique that is widely deployed in production.
Neither WER nor any other widely deployed bug diagnosis
technique can diagnose concurrency bugs e�ectively. We
believe Lazy Diagnosis can complement WER and other bug
diagnosis systems and enable them to diagnose concurrency
bugs e�ciently and e�ectively.

SherLog [98] used dynamic and static analysis to automat-
ically generate control and data �ow information to diagnose
bugs in sequential programs. Conseq [103] computes static
program slices and perturbs recorded executions to detect
bugs. Lazy Diagnosis can allow SherLog to work for concur-
rency bugs and lower Conseq’s performance overhead.
PRES [74] and HOLMES [21] record execution informa-

tion such as function calls and use this information for bug
diagnosis. PRES uses recorded pro�les to perform state space
exploration to reproduce failures, and HOLMES performs
bug diagnosis. Lazy Diagnosis can be used to improve the
e�ciency and e�ectiveness of both techniques.
ProRace [102] detects data races in production by using

performance counters, control �ow traces and program anal-
ysis. S������ can do root cause analysis for concurrency
bugs other than data races, namely atomicity violations and
deadlocks. Furthermore, S������ only relies on control �ow
tracing to perform its o�ine analysis and performs a multi-
stage program analysis that di�ers from ProRace’s analysis.
Delta debugging [101] isolates program inputs and the

control �ow leading to a failure by repeatedly reproducing
a bug. Ochiai [1] and Tarantula [41] record failing and suc-
cessful executions and replay them to isolate root causes.
Lazy Diagnosis does not rely on expensive record/replay
techniques nor does it assume bugs can be reproduced.
Castor [60] is a recent record/replay system that relies

on commodity hardware support as well as instrumentation
to enable low-overhead recording. Castro uses hardware-
synchronized time stamp counters to order events without
incurring any contention. We believe that Castor constitutes
another example of how the coarse interleaving hypothesis
can be used to improve the e�ciency of an existing analysis
(i.e., record/replay in the case of Castor).

As we discussed previously, certain techniques rely on
non-commodity hardware extensions for root cause diagno-
sis [39] and record/replay [63, 67]. Lazy Diagnosis relies on
modern commodity hardware.

We borrow statistical analysis of LazyDiagnosis from prior
work on cooperative bug isolation [15, 39, 53]. However, un-
like prior work on cooperative bug isolation, Lazy Diagnosis
does not rely on statistical sampling for bug diagnosis, which
results in low bug diagnosis latency.

Symbiosis [59] and Portend [43, 45] perform symbolic pro-
gram analysis to synthesize executions. Symbiosis uses syn-
thesized executions for concurrency bug diagnosis, whereas
Portend uses such executions to classify data races. Lazy Di-
agnosis can be used to help such tools synthesize executions
faster in the absence of test cases that can reproduce failures.

Dynamic program slicing [82, 90, 93] relies on reproducing
failures and tracking the control and data �ow information,
which is then used for bug diagnosis. Dynamic slicing is
expensive and is not suitable for in-production usage. Lazy
Diagnosis can provide failing thread schedules to dynamic
slicing techniques and improve their e�ciency.
Many prior systems have focused on testing and bug de-

tection in concurrent programs [19, 47, 103]. S������ is
complementary to all these systems, as it can diagnose the
root causes of bugs detected by such systems.

9 CONCLUSION
In this paper, we introduced the coarse interleaving hypothe-
sis which states that the events leading to many concurrency
bugs are coarsely interleaved. We showed that the coarse
interleaving hypothesis holds in a number of real large-scale
systems, and the time elapsed between events leading to con-
currency bugs is on average �ve orders of magnitude greater
than what �ne-grained recording provides. We leverage the
coarse interleaving hypothesis to design Lazy Diagnosis, a
hybrid dynamic-static program analysis technique for diag-
nosing concurrency bugs in real-world so�ware. Our Lazy
Diagnosis prototype, S������, can diagnose concurrency
bugs in large-scale so�ware with full accuracy. Lazy Diag-
nosis has lower overhead, be�er scalability, and lower bug
diagnosis latency than a state-of-the-art bug diagnosis sys-
tem. Unlike prior work, Lazy Diagnosis does not require any
modi�cations to the source code at any time. We believe
that Lazy Diagnosis is suited for diagnosing in-production
concurrency bugs.
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