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Abstract: Quantum computers willwork by evolving a high tensor power of asmall (e.qg.
two) dimensional Hilbert space by local gates, which can be implemented by applying
a local HamiltonianH for a timet. In contrast to this quantum engineering, the most
abstract reaches of theoretical physics has spawned “topological models” having a finite
dimensional internal state space with no natural tensor product structure and in which
the evolution of the state is discretfé,= 0. These are called topological quantum field
theories (TQFTSs). These exotic physical systems are proved to be efficiently simulated
on a quantum computer. The conclusion is two-fold:

1. TQFTs cannot be used to define a model of computation stronger than the usual
guantum model “BQP”.

2. TQFTs provide a radically different way of looking at quantum computation. The
rich mathematical structure of TQFTs might suggest a new quantum algorithm.

1. Introduction

A topological quantum field theory (TQFT) is a mathematical abstraction, which codi-

fies topological themes in conformal field theory and Chern—Simons theory. The strictly
2-dimensional part of a TQFT is called@pological modular functor (TMF). It (essen-

tially) assigns a finite dimensional complex Hilbert sp&q&) to each surfac& and

to any (self)-diffeomorphism of a surface a linear (auto)morphisyh) : V(X) —

V(Z'). We restrict attention to unitary topological modular functors (UTMF) and show
that a quantum computer can efficiently simulate transformations of any UTMF as a
transformation on its computational state space. We should emphasize that both sides
of our discussion are at present theoretical: the quantum computer which performs our
simulation is also a mathematical abstraction —fintumcircuit model (QCM) [D,Y].

* On leave from Landau Institute for Theoretical Physics, Moscow.
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Very serious proposals exist for realizing this model, perhaps in silicon, e.g. [Ka], but
we will not treat this aspect.

There is amarked analogy between the development of the QCM from 1982 Feynman
[Fey] to the present, and the development of recursive function theory in the 1930’s and
1940's. At the close of the earlier period, “Church’s thesis” proclaimed the uniqueness
of all models of (classical) calculation: recursive function theory, Turing machine,
calculus, etc.... This result was refined in the 1960s, by showing that most “natural”
models argpolynomially equivalent to the Turing machine. The present paper can be
viewed as supporting a similar status for QCMthesinherently quantum mechanical
model of calculation. The modern reconsideration of computation is founded on the
distinction betweempolynomial time and dower algorithms. Of course, all functions
computed in the QCM can be computed classically, but probably not in comparable
time. Assigning to an integer its factors, while polynomial time in QCM [Sh] is nearly
exponential time, exi® (nY/3poly(logn))) (an emphiric bound, the proved one is even
worse) according to the most refined classical algorithms. The origin of this paper is
in thought [Fr] that since ordinary quantum mechanics appears to confer a substantial
speed up over classical calculations, that some principle borrowed from the early, string,
universe might go still further. Each TQFT is an instance of this question since their
discrete topological nature lends itself to translation into computer science. We answer
here in the negative by showing that for a unitary TQFT, the transformati¢ginshave a
hidden poly-local structure. Mathematicall(h) can be realized as the restriction to an
invariant subspace of a transformatiphg; on the state space of a quantum computer
where eacly; is agate and the length of the composition is linear in the length of
h as a word in the standard generators, “Dehn twists” ofrthpping class group =
diffeomorphismg X)/identity component. Thus, we add evidence to the unicity of the
QCM. Several variants and antecedents of QCM, including quantum Turing machines,
have previously been shown equivalent (with and without environmental errors)[Y].

From a physical standpoint, the QCM derives from Schrddinger’s equation as de-
scribed by Feynman [Fey] and Lloyd [LI]. Let us introduce the model. Given a decision
problem, the first oclassical phase of the QCM is a classical program, which designs
aquantum circuit to “solve” instances of the decision problem of lengih A quantum
circuit is a compositiord,, of operators ogates g; € U(2) or U(4) taken from some
fixed list of rapidly computable matrickse.g. having algebraic entries. The following
short list suffices to efficiently approximate any other choice of gates [Ki]:

100 O
010 O

01 10
‘10’ ‘Oi’ andloo % %
ooL =L
V2 V2

Thegatesare applied on some tensor power spa® ®<( of “k qubits” and models
a local transformation on a systemloﬁpin% particles. The gatg acts as the identity
on all but one or two tensor factors where it acts as a matrix as above. This is the middle
or guantum phase of the algorithm. The final phase is to perform a local von Neumann
measurement on a final stat@,a = U,, (Vinitial) (Or 2@ commuting family of the same)
to extract a probabilistic answer to the decision problem. (The initial staggg must
also be locally constructed.) In this phase, we could declare that observing a certain

1 Theith digit of each entry should be computable in p@jtime.



Simulation of Topological Field Theories by Quantum Computers 589

eigenvalue with probability- % means “yes”. We are interested only in the case where
the classical phase of circuit design and the length of the designed circuit are both smaller
than some polynomial in. Decision problems which can be solved in this way are said
to be in the computational class BQbtunded-error quantum polynomial. The use of
C2, the “qubit”, is merely a convenience, any decomposition into factors of bounded
dimension gives an equivalent theory. We Bhig a quantum circuit ove? if all tensor
factors have dimension g.

Following Lloyd [LI], note that if a finite dimensional quantum system, 68§)®*,
evolves by a Hamiltonia#, it is physically reasonable to assert thatis poly-local,

L ~ ~
H = ) H,, where the sum has poly(k) terms and eaclt{;, = H; ® id, whereH,

i=1
acts nontrivially only on a bounded number (often just two) qubits and as the identity on
the remaining tensor factors. Now setting Plank’s congiaatl, the time evolution is
given by Schrédinger’s equatioht; = ¢2'' whereas gates can rapidly approximate
[Ki] any local transformation of the forna®™i*/¢_ Only the nonabelian nature of the

L .
unitary group prevents us from approximatidgdirectly from Hlez’”Hf . However, by
1=
the Trotter formula:

n

(eA/n+B/rl)" — €A+B +O<E),

where the erro© is measured in the operator norm. Thus, there is a good approximation
to U; as a product of gates:

Uy = (2 2Tamy" 4 2. o(i)
n

Because of the rapid approximation result of [Ki], in what follows, we will not discuss
guantum circuits restricted to any small generating set as in the example above, rather
we will permit a 2x 2 or 4 x 4 unitary matrix with algebraic number entries to appear
as a gate.

In contrast to the systems considered by Lloyd, the Hamiltonian in a topological
theory vanishes identicallyy = 0, a different argument - the substance of this paper - is
needed to construct a simulation. The reader may wonder how a theory with vanishing
H can exhibit nontrivial unitary transformations. The answer lies in the Feynman path-
integral approach to QFT. When the theory is constructed from a Lagrangian (functional
on the classical fields of the theory), which only involves first derivatives in time, the
Legendre transform is identically zero [At], but may nevertheless have nontrivial global
features as in the Aharonov-Bohm effect.

Before defining the mathematical notions, we would make two comments. First, the
converse to the theorem is also true. It has been shown recently [FLW] that a particular
UTMF allows efficient simulation of the universal quantum computer. Second, we would
like to suggest that the theorem may be viewed as a positive result for computation.
Modular functors, because of their rich mathematical structure, may serve as higher
order language for constructing a new quantum algorithm. In [Fr], it is observed that
the transformations of UTMF's can readily produce state vectors whose coordinates are
computationally difficult evaluations of the Jones and Tutte polynomials. The same is
now known for the state vector of a quantum computer, but the question of whether
any useful part of this information can be made to survive the measurement phase of
guantum computation is open.
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2. Simulating Modular Functors

We adopt the axiomatization of [Wa] or [T] to which we refer for details. Also see, Atiyah
[At], Segal [Se], and Witten [Wi].

A surface is a compact oriented 2-manifold with parameterized boundaries. Each
boundary component has a label from a finiteSet {1, a, b, c, ...} with involution
7, 1 = 1. In examples, labels might be representations of a quantum group up to a
given level or positive energy representations of a loop group, or some other algebraic
construct. Technically, to avoid projective ambiguities each surfaceprovided with
a Lagrangian subspade c H1(Z; Q) and each diffeomorphisnf : & — X’ is
provided with an integer “framing/signature” so the dynamics of the theory is actually
given by a central extension of the mapping class group. Since these extended structures
are irrelevant to our development, we suppress them from the notation. We use the letter
¢ below to indicate a label set for all boundary components, or in some cases, those
boundary components without a specified letter as label.

Definition 1. A unitary topological modular functor (UTMF) isa functor V fromthe
category of (labeled surfaces with fixed boundary parameterizations, label preserving
diffeomor phisms which commute with boundary parameterizations) to (finite dimen-
sional complex Hilbert spaces, unitary transformations) which satisfies:

1. Digoint union axiom: V(Y1 L1 Y, £1 L1 £2) = V (Y1, £1) ® V (Y2, £2).
2. Gluing axiom: let Y, arisefrom Y by gluing together a pair of boundary circles with
dual labels, x gluestox, then

V(Y 0) = PV, (L x, D).
xel

3. Duality axiom: reversing the orientation of ¥ and applying ™ to labels corresponds to
replacing V by V*. Evaluation must obey certain naturality conditions with respect
to gluing and the action of the various mapping class groups.

4. Empty surface axiom: V(¢) = C.

. . C, if a=1
.D V., =V(D,a) =4 . .
5. Diskaxiom: V, = V(D, a) {07 it at1
o _|c, it a=b
6. Annulus axiom: V., = V (A, (a, b)) = 0. if axb

7. Algebraic axiom: The basic data, the mapping class group actions and the maps F
and S explained in the proof (from which V may be reconstructed if the Moore and
Seiberg conditions are satisfied, see[MS or [Wa] 6.4, 1-14) is algebraic over Q for
somebasesin V,, Va.z, and Ve, where V. denotes V (P, (a, b, ¢)) for a(compact)
3-punctured sphere P. 3-punctured spheres are also called pants.

Comments.

(1) From the gluing axiomy may be extended via dissection from simple piebDes
A, andP to general surfaces. But V(X) must be canonically defined: this looks
quite difficult to arrange and it is remarkable that any nontrivial examples of UTMFs
exist.



Simulation of Topological Field Theories by Quantum Computers 591

(2) The algebraic axiom is usually omitted, but holds for all known examples. We
include it to avoid trivialities such as a UTMF where action by, say, a boundary
twist is multiplication by a real number whose binary expansion encodes a difficult
or even uncomputable function: e.g. #fbit is 0 iff the ;™ Turing machine halts.

If there are nontrivial parameter families of UTMF's, such nonsensical examples
must arise — although they could not be algebraically specified. In the context of
bounded accuracy for the operation of diffeomorphisiig), Axiom 7 may be
dropped (and simulation by bounded accuracy quantum circuits still obtained), but
we prefer to work in the exact context since in a purely topological theory exactness
is not implausible.

(3) Axiom 2 will be particularly important in the context ofpants decomposition of a
surfaceX. This is a division ofX into a collection of compact surfac@&shaving the
topology of 3-punctured spheres and meeting only in their boundary components
which we call “cuffs”.

Definition 2. A quantum circuit U : (CP)® — (CP)®F =: W is said to simulate
on W (exactly) a unitary transformation ¢ : § — S if thereis a C-linear imbedding
i S C (CP)®F invariant under U sothat U oi = i o 7. The imbedding is said to
intertwine T and U. We also require that i be computable on a basisin poly(k) time.

Since we prove efficient simulation of the topological dynamics for UTME st
is redundant to dwell on “measurement” within V, but to complete the computational
model, we can posit von Neumann type measurement with respect to any efficiently
computable framé in V.. The spac&? above, later denoted = C?, is defined by

X = & 3Vabc and the computational spadé := X®*. We have sef := V(%)
(a,b,c)eLl
and assumed is divided intok “pants”, i.e. Euler clas§X) = —k. Any frame F

extends to a frame fov (X) via the gluing axiom once a pants decompositiorrzos
specified. Thus, measurementiirbecomes a restriction of measuremeniinit may

be physically more natural to restrict the allowable measurements(@) to cutting
along a simple closed curyeand measuring the label which appears. Mathematically,
this amounts to transforming to a pants decompositionwéhk one of its decomposition

or “cuff” curves and then positing a Hermitian operator with eigenspaces equal to the
summands o¥/ (X) corresponding under the gluing axiom to labelsny ~ andx on

yT, xeLl.

A labeled surfacgX, ¢) determines a mapping class grovg = M(Z,¢) =
“isotopy classes of orientation preserving diffeomorphismx gfreserving labels and
commuting with boundary parameterization”. For example, in the casespanctured
sphere with all labels equal (distinct){ = SFB(n), the spherical framed braid group
(M = PSFBn), the pure spherical framed braid grQqu prove the theorem below,
we will need to describe a generating sefor the variousM’s and withinS chains
of elementary moves which will allow us to prepare to apply any € S subsequent to
having applied1 € S.

EachM is generated bpehn-twists andbraid-moves (See [B]). A Dehn-twistD,,
is specified by drawing a simple closed curve (s.q:c0n X, cutting alongy, twisting
27 to the right along’ and then regluing. A braid-mowg; will occur only when a s.c.c.
§ cobounds a pair of pants with two boundary components off the labels of the
boundary components are equal thrbraids them by a right -twist. In the case that
all labels are equal, there is a rather short lisDofind B generators indicated in Fig. 1
below. Also sketched in Fig. 1 is a pants decomposition of diam:etér) log bl(E)),
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Fig. 1.

meaning the graph dual to the pants decomposition has diameter order log the first Betti
number ofx.

The s.c.cy (8) label Dehn (braid) generator®, ( and Bs). Figure 1 contains a punc-
tured annulugt; note that the composition of oppositely oriented Dehn twists along the
two “long” components 0§ A, y andy’ yield a diffeomorphism which moves the punc-
tures about the loop. The figure implicitly contains such af for each(y, p), where
p is apreferred puncture. They curves come in three types:

(1) The loops at the top of the handles which are curves (“cuffs”) of the pants decom-
position,

(2) loops dual to type 1, and

(3) loops running under adjacent pairs of handles (which cut through(ﬂ(im(blx))
many cuffs). (See Fig. 1, where cuffs are marked by a “c”.)

Each punctured annulus is determined as a neighborhood (of a s.g.e¢inion an
arcn from y to p). To achieve general motions pfaroundx, we require these arcs to
be “standard” so that for eagh 71(X, p) is generated byy - y - 71}, wherexX = %
with punctures filled by disks, and the disk corresponding terving as a base point.
This list of generators is only linear in the first Betti numbeibf

In the presence of distinct labels, many of tBgeare illegal (they permute unequal
labels). In this case, quadratically many generators are required. Figure 2 displays the
replacements for th8’s, and additionalA’s andD'’s.

Figure 2 shows a collection df’s sufficient to effect arbitrary braidingithin each
commonly-labeled subset of punctures, a quadratically large collection of new Dehn
curves{e} allowing a full twist between any pair of distinctly labeled punctures. (If
the punctures are arranged along a convex arc of the Euclidean cglltimen each
€ will be the boundary of a harrow neighborhood of the straight line segment joining
pairs of dissimilarly labeled punctures.) Finally a collection of punctured annuli, which
enable one puncturg; from each label — constant subset to be carried around each free
homotopy class fronfy }(respecting the previous generation conditionAefX, p;).

Thus for distinct labels the generating sets are built from curves ofitypé ¢ and
8 by Dehn twists aroungt, y’, ande, braid moves around. Denote byw, any such
curveiw € Q = {{y} U{y'Jufetu {5}}.
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Fig. 2.

Since various’s intersect, itis not possible to realizealsimultaneously as cuffs in
a pants decomposition. However, we can start with the “base point” pants decomposition
D indicated in Fig. 1 (note of type(1) are cuffs irD, buty of types (2) or (3) are not)
and for anyw find a short path of elementary movésands (defined below) to a pants
decompositiorD,, containingw as a cuff.

Lemma 2.1. Assume X # 52, disk, or annulus, and D the standard pants decomposition
sketched in Fig. 1. Any » as above, can be deformed through O(log bl(E)) Fand S
moves to a pants decomposition D,, in which w is a cuff.

We postpone the proof of the lemma and the definition of its terms until we are
partly into the proof of the theorem and have some experience passing between pants
decompositions.

Theorem 2.2. SupposeVisaUTMFand i : ¥ — X isadiffeomorphismof lengthn in
the standard generators for the mapping class group of 3 described above (see Figs. 1
and 2). Then there are constants depending onlyon V, ¢ = ¢(V) and p = p(V) such
that V(h) : V(2) — V() issimulated (exactly) by a quantum circuit operating on
“qupits’ C? of length < ¢ - n - logb1(X).

The collection{cuffs} refers to the circles along which the pants decomposition
decomposes; the “seams” are additional arcs, three per pant which cut the pant into
two hexagons. Technically, we will need each parito be parameterized by a fixed
3-punctured sphere so these seams are part of the d&tafam simplicity, we choose
seams to minimize the number of intersections V.

The theorem may be extended to cover a more general form of input. The original
algorithm [L] which writes aD,, @ a s.c.c., as a word in standard generatysis
super-exponential. We define the combinatorial length,of(«), to be the minimum
number of intersections as we varyby isotopy ofa with {cuffs} U {seams. The best
upper-bound (known to the authors) to the lengtof D, as a word in the mapping
class group spanned by a fixed generating set is of the fgf ) < super-exponential
function f(¢). For this reason, we consider as inputz), whereh is a composition
of k Dehn twists onwy, ..., o and j braid moves alongy, ..., g; in any order.
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ThenV (k) is costed as the sum of the combinatorial length of the simple closed curves
needed to writex as Dehn twists and braid moves within the mapping class group,

J k
L(h) = .Elﬁ(ﬁi) + .Elﬂ(a,-). We obtain the following extension of the theorem.
1= 1=

Extension.? The maph, : V(Z) — V() is exactly simulated by a quantum circuit
QC with length (QC)< 11¢(h) composed of algebraic 1 and 2-quit gates.

Pre-Proof. Some physical comments will motivate the provf.x) are quantized gauge
fields onX (with a boundary condition given by labelsand can be regarded as a finite
dimensional space of internal symmetries. This is most clear when gEnus 0, X is

a punctured sphere, the labeled punctures are “anyons” [Wil] and the relevant mapping
class group is théraid group which moves the punctures around the surface of the
sphere. An internal staiee V (%) is transformed t&J () € V(X) under the functorial
representation of the braid group. ké(b) to be defined the braiding must be “complete”

in the sense that the punctures (anyons) must return setwise to their initial position.
Infinitesimally, the braiding defines a Hamiltoniahon V (£)® E, whereE is an infinite
dimensional Hilbert space which encodes the position of the anyons. The projection of
H into V() vanishes which is consistent with the general covariance of topological
theories. Nevertheless, when the braid is complete, the evolutidi will leave V (%)
invariantand itiS_J|V(z) = Uwhichwe will simulate. Anyons inherently reflect nonlocal
entanglementsoitis notto be expected thaX ) has any (natural) tensor decomposition
and none are observed in interesting examples. Thus, simulatidnasfan invariant
subspace of a tensor prody€t”’)®* is the best result we can expect. The mathematical
proof will loosely follow the physical intuition of evolution in a super-space by defining,

in the braid case (identical labels and geru®), two distinct imbeddings “odd” and
odd

“‘even”, V(%) E}(Cl’)@‘ = W and constructing the local evolution by gates acting on

the target space. The imbeddings are named for the fact that in the usual presentation of
the braid group, the odd (even) numbered generators can be implemented by restricting
an action ori¥ to image oddV (%) (everV (%)).

Proof. The case genug) = 0 with all boundary components carrying identical labels
(this contains the classical, uncolored Jones polynomial case [J, Wi]) is treated first. For
any numbey of puncturesq4 = 10 in the illustration) there are two systematic ways of

dividing X into pants (3-punctured spheres) along cumves {a1, ..., a4_3} Oralong
B = {B1...., By—3} So that a sequence gf F moves (§-moves in physics notation)

transformse to 8.
Let X = D 4.p.c)er3 Vabe be the orthogonasum of all sectors of the pants Hilbert

space. Distributing®) over @, the tensor powek®@~2 := W is the sum over all

labelings of the Hilbert space fdrf(¢ — 2) pants. Choosing parameterizatio,is

identified with both the label sum spa@cuﬁ) and sumx tE)' Now X is assembled
cu

from the disjoint union by gluing annE orE so the gluing axiom defines imbeddings
i(@) andi(B) of V(Z, ¢) as a direct summand &f®@—2 = w.

2 Lee Mosher has informed us that the existence of the linear bguay (but without control of the
constants) follows at least for closed and single punctured surfaces from his two papers [M1] and [M2].
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Fig. 3.

Consider the action of braid move about «.. Thisactsalgebraically asf («;) onasingle

X factor of W and as the identity on other factors. This action leaves i («) (V(z,0)
invariant and can be thought of as a“ qupit” gate:

O(a;) = V(braidy,) : X — X,

wheredimensiondim(X) = p. Similarly the action of V (braidg,) Ieav&si(g) invariant.

Itiswell known[B] that the union of Ioops& U B determinesacomplete set of generators
of the braid group. The general element w, which we must simulate by an action on W
isaword in braid moves on «’sand g’s. Part of the basic data — implied by the gluing
axiom for aUTMF is afixed identification between elementary gluings:

Faped - @ Viab ® Vieda — @ Vybc & V}\da
xel yeLl
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Fig. 4.

corresponding to the following two decompositions of the 4-punctured sphere into two
pairs of pants (thedotted linesare pant “ seams’, the uncircled number indicate boundary
components, the letters label boundary components, and the circled numbers order the
pairs of pants.):

For each F, we choose an extensionto aunitary map F/ : X Q@ X — X Q) X.
Then extend F’ to F by tensoring with identity on the g — 4 factors unaffected by F'.
The composition of g F's, extended to ¢ F’s, corresponding to the ¢ movesillustrated
in the case ¢ = 10 by Fig. 3. (For ¢ > 10 imagine the drawings in Fig. 3 extended

periodically.) These defineaunitary transformation 7 : W — W with Toi(E) =i(B).
The word w in the braid group can be simulated by  on W, where 7 is written as a
composition of the unitary maps 7', 71, 6(«;), and 6(B;). For example,

Bsa1 By Laras
would be simulated as
t=T"100(Bs) 0T 00(a1) o T Lo0(B;1) 0T 00(a1) 0 O(3).

Asdescribed t haslength < 2g length w. The dependence on g can be removed by
dividing X into £ overlapping pieces %;, each ; aunion of 6 consecutive pants. Every

loop of «U B iscontained well within some piece ¥; so instead of moving between two
fixed subspaces i, (V) andig(V) C W, when we encounter a 8, do constantly many F
operationsto find anew pants decomposition modified locally to contain 8;. Then 6 (8;)
may be applied and the F operations reversed to return to the « pants decomposition.
The resulting simulation can be made to satisfy length T < 7 length w. This completes
the braid case with all bounding labels equal - an important case corresponding to the
classical Jonespolynomial [J. O

Proof of Lemma. We have described the F-move on the 4-punctured sphere both geo-
metrically and under the functor. The S-move is between two pants decompositions on
the punctured torus 7. (Filling in the puncture, a variant of S may act between two
distinct annular decomposition of 7'2. We suppress this case since, without topological
parameter, there can be no computational complexity discussion over asingle surface.)
By [Li] or [HT] that one may move between any two pants decompositions via a
finite sequence of moves of three types: F, S, and diffeomorphism M supported on the
interior of a single pair of pants (see the Appendix [HT]). To pass from D, our “base
point” decomposition, to D,,, F and S moves alone suffice and the logarithmic count is
a consequence of thelog depth nest of cuff loops of D on the planar surface obtained by
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Fig.5.V(S): @ Vs — D Vays
xel yeLl -

cutting X along type (1) y curves. Below we draw examples of short paths of F and S
moves taking D to a particular D,,.
The logarithmic count is based on the proposition.

Proposition 2.3. Let K be a trivalent tree of diameter = d and f be a move, which

locally replaces {>—<} andwith {I}, then any two leaves of K can be made adjacent
by < d moves of type f. (Here we consider abstract trees rather than onesimbedded in
the plane.)

Passing from K to apunctured sphere obtained by imbedding (K, univalent vertices)
into (3R, R?), thickening and deleting the boundary R2, the f move induces the
previously defined F move. O

Some example of paths of F, S moves (Fig. 6).

Continuation of the proof of thetheorem. For the general case, we compute on numerous
imbeddings of V(X) into W (rather than on two: i (V (X)) and ig(V (X)) asin the
braid case). Each imbedding is determined by a pants decomposition and the imbedding
changes (in principle) via the lemma every time we come to a new litera of the word
. Recall that @ € M, the mapping class group, is now written as aword in the |etters
(and their inverses) of type D,,, D)’,, D¢, and Bs. Pick as a home base a fixed pants

decomposition Dy corresponding to io(V (X)) C W. If the first literal is a twist or
braid aong the s.c.c. w, then apply the lemma to pass through a sequence of F and
S moves from Dy to Dy containing w as a “cuff” curve. Asin the braid case, choose
extensions F and S to unitary automorphisms of W and applying V to the composition
givesatransformation T; of W suchthat iy = T10ig, i1 beingtheinclusion V(X) — W
associated with D1. Now executethefirst literal w; of w asatransformation 6 (w1), which
leaves i1 (V (%)) invariant and satisfies: 6(w;) o i1 = i1 0 V(w1). Finaly apply 7, to
return to the base inclusion io(V(E)). The previous three steps can now be repeated for
the second literal of w: follow Ty 0 6(w1) o T1 by Ty * 0 6(w2) o T2. Continuing in this
way, we construct a composition T which simulates w on W:

t=T, 080T, Y o Ty o b(wy) o Th.
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From Lemma 2.1 the length of this simulation by one (correﬁponding to S and G(wi))
and two (corresponding to F moves) qupit gates is proportional to n =length » and
logb1(X), where p = dim(X).

Proof of Extension. What is at issue is the number of preparatory moves to change the
base point decomposition D to D,, containing y = o; or f; asacuff curvel <i < kor
J- We have defined the F and S moves rigidly, i.e. with specified action on the seams.
This was necessary to induce a well defined action on the functor V. Because of this
rigid choice, we must add one more move — an M move — to have a complete set of
moves capabl e of moving between any two pants decompositions of a surface (compare
[HT]). The M moveis simply a Dehn twist supported in a pair of pants of the current
pants decomposition; it moves the seams (compare Chapter 5 [Wa]). Notethat if M isa
+1 Dehntwisit in as.c.c. w then, under the functor, V (M) isarestriction of 6 (w) inthe
notation above.

Asin[HT], the cuff curves of D may beregarded aslevel curves of aMorsefunction
f : £ — R, constant on boundary components which we assume to have minimum
complexity (= total nhumber of critial points) satisfying this constraint. Isotope « (we
drop the index) on X to have the smallest number of local maximums with respect to f
and isdigoint from critical pointsof f on X.

Now generically deform f in athin annular neighborhood of y so that y becomesa
level curve. Consider the graphic G of the deformation f;, 0 < r < 1. For regular ¢ the
Morse function f; determines a pants decomposition: let the 1- complex K consist of
¥/ ~wherex ~ yif x and y belong to the same component of alevel set of f;, and let
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L C K bethesmallest complex towhich K collapses relative to endpoints associated to
boundary components. For examplein Fig. 8, the top tree does not collapse at al while
inthe lower two treesthe edge whose end islabeled, “local max” is collapsed away. The
preimage of one point from each intrinsic 1-cell of L not containing a boundary point
constitutes a {cuffs} determining a pants decomposition D;. For singular to, let D¢
and D,y4. may differ or may agree up to isotopy. The only change in D occurs when ¢
isacrossing point for index= 1 handles where the two critical points are on the same
connected component of a level set f,_l(r). There are essentially only three possible
“Cerf-transitions’ and they are expressible as a product of 1, 2, or 3 F and S moves
together with braid moves whose number we will later bound from above. The Cerf
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transitions on D are shown in Fig. 7, together with their representation as compositions
of elementary moves.

Critical points of f|,, become critical points of f; of the same index once the de-
formation as passed an initial g > 0, and before any saddle-crossings have occurred.
Let P be a pant from the composition induced by f and§ C y N P an arc. Applying
the connectivity criterion of the previous paragraph, we can see that flattening a local
maxima can effect at most the two cuff circles which § meets, and these by elementary
Cerf transition shown in Fig. 8.

If y crossesthe seam arcsthen the transitions are of the Cerf type, precomposed with
M -movesto remove these crossings as shown in Fig. 9. Dynamically seam crossings by
y produce saddle connections in the Cerf diagram.

Thetotal number of these twistsis bounded by length (). The number of flattening
moves as above is less than or equal |y N cuffs| < length(y). The factor of 11 in the
statement allowsupto 5 F, S, and M movesfor expressing each Cerf singularity which
arises in passing from D, to D,, and the same factor of 5 to pass back from D,, to D,
again, while saving at least one step to implement the twist or build move along y . This
completes the proof of the extension. 0O
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We should emphasize that although, we have adopted an “exact” model for the oper-
ation of the UTMF, faithful simulation as derived above does not depend on a perfectly
accurate quantum circuit. Several authors have proved a threshold theorem [Ki, AB],
and [KLZ]: If therate of large errors acting on computational qubits (or qupits) is small
enough, the size of ubiquitous error small enough, and both are uncorrelated, then such
a computational space may be made to simulate with probability > % an exact quan-
tum circuit of length = L. The simulating circuit must exceed the exact circuit in both
number of qubits and number of operations by a multiplicative factor < poly (log L).

3. Simulating TQFT’s

We conclude with a discussion about the three dimensional extension, the TQFT of a
UTMPF. In al known examples of TMF sthereis an extension to a TQFT meaning that

it is possible to assign a linear map V(%) by V(X') subject to several axioms [Wal
and [T] whenever £ and X’ cobounds a bordism » (with some additional structure).
The case of bordisms with a product structure is essentially the TMF part of the theory.
Unitarity is extended to mean that if the orientation of the bordism 4 is reversed to b,
we have bI = (). It isknown that a TMF has at most one extension to a TQFT and
conjectured that this extension always exists. Non-product bordisms correspond to some
loss of information of the state. This can be understood by factoring the bordism into
pieces consisting of a product union 2-handle: X x I U h. The 2-handle i has the form
(D% x I, 9D? x I) andisattached along the subspace  D? x I. The effect of attaching
the handle will be to “pinch” off an essential loop w on X and so replace an annular
neighborhood of w by two disksturning X into asimpler surface '. It isan elementary
consequence of the axiomsthat if b = X x I U h then b, isaprojector as follows:. Let
D be a pants decomposition containing w as a dissection curve. There are two cases:

(1) w appearsasthefirst and second boundary components of asingle pant called Pg or
(2) w appears asthefirst boundary component on two distinct pants called P, and P,.

V(D) =

=P (@ Va;u,) & V(Z\ Po, with label con 83P0)>, case (1),
cel ael

or

= P (@ Vabe @ V;,de) (%) V(E\(Pl U Py), appropriatelabels), case (2).

labels \ae L

In case(2), there may bearelation b = ¢ and/or d = ¢ depending on the topology of
D. The map b, is obtained by extending linearly from the projections onto summands:

canonically
@ Vage — Vi = Vi, (casel)
a,cL
or
canonically
@ Vabe ® Vade —> Vi ® Ve = Vi ® Vyg- (case2)

a,b,c,d,eel
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If the orientation on b is reversed the unitarity condition implies that b determines
an injection onto a summand with a formula dual to the above. Thus, any bordism’s
morphism can be systematically calculated.

I'n quantum computation, asshownin[Ki], aprojector correspondsto anintermediate
binary measurement within the quantum phase of the computation, one outcome of which
leads to cessation of the other continuation of the quantum circuits operation. Call such
a probabilistically abortive computation a partial computation on a partial quantum
circuit. Formally, if we write the identity as a sum of two projectors. idy = Il + I1,
and let Ug and Uy be unitary operators on an ancillary space A with Ug(]0)) = |0)
and U1|0) = |1). The unitary operator ITop ® Ug + IT1 ® U3 on V ® A when applied
to [v) ® |0) is [TIgv) ® |0) + |TT1v) ® |1) so continuing the computation only if the
indicator |0) € A isobserved simulates the projection Ip.

It is clear that the proof of the theorem can be modified to simulate 2-handle attach-
ments as well as Dehn twists and braid moves along s.c.c.’s w to yield:

Scholium 3.1. Suppose b is an oriented bordism from Xg to X, where &; is endowed
with a pants decomposition D;. Let complexity (b) be the total number of moves of
four types: F, S, M, and attachment of a 2-handle to a dissection curve of a current
pants decomposition that are necessary to reconstruct » from (Xo, Do) to (21, D1).
Then there is a constant ¢’ (V) depending on the choice of UTQFT and p(V) as before
(for the TQFTs underlining TMF) so that b, : V(Xg) — V(X1) issimulated (up to a
non-topological factor of the form v"2, where iy isthe number of 2-hanles attached) by
a partial quantum circuit over C? of length < ¢’ complexity (b).

Ingeneral, thedifference betweentopol ogical objects(suchasb, or closed 3-manifold
invariants) and quantum mechanical ones (the evolution and probability) is related to
critical points of a Morse function. A similar phenomenon for links in R® has been
mentioned in [FKLW]. Thissubject will be addressed in detail in aforthcoming paper by
S. Bravyi andA. Kitaev, “ Quantuminvariantsof 3-manifoldsand quantum computation”.
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