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Abstract

We study combinatorial multi-armed bandit with probabilistically triggered arms
and semi-bandit feedback (CMAB-T). We resolve a serious issue in the prior
CMAB-T studies where the regret bounds contain a possibly exponentially large
factor of 1/p∗, where p∗ is the minimum positive probability that an arm is trig-
gered by any action. We address this issue by introducing a triggering probability
modulated (TPM) bounded smoothness condition into the general CMAB-T frame-
work, and show that many applications such as influence maximization bandit and
combinatorial cascading bandit satisfy this TPM condition. As a result, we com-
pletely remove the factor of 1/p∗ from the regret bounds, achieving significantly
better regret bounds for influence maximization and cascading bandits than before.
Finally, we provide lower bound results showing that the factor 1/p∗ is unavoidable
for general CMAB-T problems, suggesting that the TPM condition is crucial in
removing this factor.

1 Introduction

Stochastic multi-armed bandit (MAB) is a classical online learning framework modeled as a game
between a player and the environment with m arms. In each round, the player selects one arm and
the environment generates a reward of the arm from a distribution unknown to the player. The player
observes the reward, and use it as the feedback to the player’s algorithm (or policy) to select arms in
future rounds. The goal of the player is to cumulate as much reward as possible over time. MAB
models the classical dilemma between exploration and exploitation: whether the player should keep
exploring arms in search for a better arm, or should stick to the best arm observed so far to collect
rewards. The standard performance measure of the player’s algorithm is the (expected) regret, which
is the difference in expected cumulative reward between always playing the best arm in expectation
and playing according to the player’s algorithm.

In recent years, stochastic combinatorial multi-armed bandit (CMAB) receives many attention (e.g.
[9, 7, 6, 10, 13, 15, 14, 16, 8]), because it has wide applications in wireless networking, online
advertising and recommendation, viral marketing in social networks, etc. In the typical setting of
CMAB, the player selects a combinatorial action to play in each round, which would trigger the
play of a set of arms, and the outcomes of these triggered arms are observed as the feedback (called
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semi-bandit feedback). Besides the exploration and exploitation tradeoff, CMAB also needs to deal
with the exponential explosion of the possible actions that makes exploring all actions infeasible.

One class of the above CMAB problems involves probabilistically triggered arms [7, 14, 16], in
which actions may trigger arms probabilistically. We denote it as CMAB-T in this paper. Chen et al.
[7] provide such a general model and apply it to the influence maximization bandit, which models
stochastic influence diffusion in social networks and sequentially selecting seed sets to maximize
the cumulative influence spread over time. Kveton et al. [14, 16] study cascading bandits, in which
arms are probabilistically triggered following a sequential order selected by the player as the action.
However, in both studies, the regret bounds contain an undesirable factor of 1/p∗, where p∗ is the
minimum positive probability that any arm can be triggered by any action,2 and this factor could be
exponentially large for both influence maximization and cascading bandits.

In this paper, we adapt the general CMAB framework of [7] in a systematic way to completely remove
the factor of 1/p∗ for a large class of CMAB-T problems including both influence maximization and
combinatorial cascading bandits. The key observation is that for these problems, a harder-to-trigger
arm has less impact to the expected reward and thus we do not need to observe it as often. We turn
this key observation into a triggering probability modulated (TPM) bounded smoothness condition,
adapted from the original bounded smoothness condition in [7]. We eliminates the 1/p∗ factor
in the regret bounds for all CMAB-T problems with the TPM condition, and show that influence
maximization bandit and the conjunctive/disjunctive cascading bandits all satisfy the TPM condition.
Moreover, for general CMAB-T without the TPM condition, we show a lower bound result that 1/p∗

is unavoidable, because the hard-to-trigger arms are crucial in determining the best arm and have to
be observed enough times.

Besides removing the exponential factor, our analysis is also tighter in other regret factors or constants
comparing to the existing influence maximization bandit results [7, 25], combinatorial cascading
bandit [16], and linear bandits without probabilistically triggered arms [15]. Both the regret analysis
based on the TPM condition and the proof that influence maximization bandit satisfies the TPM
condition are technically involved and nontrivial, but due to the space constraint, we have to move
the complete proofs to the supplementary material. Instead we introduce the key techniques used in
the main text.

Related Work. Multi-armed bandit problem is originally formated by Robbins [20], and has been
extensively studied in the literature [cf. 3, 21, 4]. Our study belongs to the stochastic bandit research,
while there is another line of research on adversarial bandits [2], for which we refer to a survey
like [4] for further information. For stochastic MABs, an important approach is Upper Confidence
Bound (UCB) approach [1], on which most CMAB studies are based upon.

As already mentioned in the introduction, stochastic CMAB has received many attention in recent
years. Among the studies, we improve (a) the general framework with probabilistically triggered arms
of [7], (b) the influence maximization bandit results in [7] and [25], (c) the combinatorial cascading
bandit results in [16], and (d) the linear bandit results in [15]. We defer the technical comparison
with these studies to Section 4.3. Other CMAB studies do not deal with probabilistically triggered
arms. Among them, [9] is the first study on linear stochastic bandit, but its regret bound has since
been improved by Chen et al. [7], Kveton et al. [15]. Combes et al. [8] improve the regret bound of
[15] for linear bandits in a special case where arms are mutually independent. Most studies above
are based on the UCB-style CUCB algorithm or its minor variant, and differ on the assumptions and
regret analysis. Gopalan et al. [10] study Thompson sampling for complex actions, which is based on
the Thompson sample approach [22] and can be applied to CMAB, but their regret bound has a large
exponential constant term.

Influence maximization is first formulated as a discrete optimization problem by Kempe et al. [12],
and has been extensively studied since (cf. [5]). Variants of influence maximization bandit have also
been studied [18, 23, 24]. Lei et al. [18] use a different objective of maximizing the expected size of
the union of the influenced nodes over time. Vaswani et al. [23] discuss how to transfer node level
feedback to the edge level feedback, and then apply the result of [7]. Vaswani et al. [24] replace
the original maximization objective of influence spread with a heuristic surrogate function, avoiding
the issue of probabilistically triggered arms. But their regret is defined against a weaker benchmark

2The factor of 1/f∗ used for the combinatorial disjunctive cascading bandits in [16] is essentially 1/p∗.
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relaxed by the approximation ratio of the surrogate function, and thus their theoretical result is weaker
than ours.

2 General Framework

In this section we present the general framework of combinatorial multi-armed bandit with probabilis-
tically triggered arms originally proposed in [7] with a slight adaptation, and denote it as CMAB-T.
We illustrate that the influence maximization bandit [7] and combinatorial cascading bandits [14, 16]
are example instances of CMAB-T.

CMAB-T is described as a learning game between a learning agent (or player) and the environment.
The environment consists of m random variables X1, . . . , Xm called base arms (or arms) following
a joint distribution D over [0, 1]m. Distribution D is picked by the environment from a class of
distributions D before the game starts. The player knows D but not the actual distribution D.

The learning process proceeds in discrete rounds. In round t ≥ 1, the player selects an action St from
an action space S based on the feedback history from the previous rounds, and the environment draws
from the joint distribution D an independent sample X(t) = (X

(t)
1 , . . . , X

(t)
m ). When action St is

played on the environment outcome X(t), a random subset of arms τt ⊆ [m] are triggered, and the
outcomes of X(t)

i for all i ∈ τt are observed as the feedback to the player. The player also obtains a
nonnegative reward R(St, X

(t), τt) fully determined by St, X(t), and τt. A learning algorithm aims
at properly selecting actions St’s over time based on the past feedback to cumulate as much reward
as possible. Different from [7], we allow the action space S to be infinite. In the supplementary
material, we discuss an example of continuous influence maximization [26] that uses continuous and
infinite action space while the number of base arms is still finite.

We now describe the triggered set τt in more detail, which is not explicit in [7]. In general, τt may
have additional randomness beyond the randomness of X(t). Let Dtrig(S,X) denote a distribution
of the triggered subset of [m] for a given action S and an environment outcome X . We assume that τt
is drawn independently from Dtrig(St, X

(t)). We refer Dtrig as the probabilistic triggering function.

To summarize, a CMAB-T problem instance is a tuple ([m],S,D, Dtrig, R), with elements already
described above. These elements are known to the player, and hence establishing the problem input
to the player. In contrast, the environment instance is the actual distribution D ∈ D picked by the
environment, and is unknown to the player. The problem instance and the environment instance
together form the (learning) game instance, in which the learning process would unfold. In this paper,
we fix the environment instance D, unless we need to refer to more than one environment instances.

For each arm i, let µi = EX∼D[Xi]. Let vector µ = (µ1, . . . , µm) denote the expectation vector of
arms. Note that vector µ is determined by D. Same as in [7], we assume that the expected reward
E[R(S,X, τ)], where the expectation is taken over X ∼ D and τ ∼ Dtrig(S,X), is a function of
action S and the expectation vector µ of the arms. Henceforth, we denote rS(µ) , E[R(S,X, τ)].
We remark that Chen et al. [6] relax the above assumption and consider the case where the entire
distribution D, not just the mean of D, is needed to determine the expected reward. However, they
need to assume that arm outcomes are mutually independent, and they do not consider probabilistically
triggered arms. It might be interesting to incorporate probabilistically triggered arms into their setting,
but this is out of the scope of the current paper. To allow algorithm to estimate µi directly from
samples, we assume the outcome of an arm does not depend on whether itself is triggered, i.e.
EX∼D,τ∼Dtrig(S,X)[Xi | i ∈ τ ] = EX∼D[Xi].

The performance of a learning algorithmA is measured by its (expected) regret, which is the difference
in expected cumulative reward between always playing the best action and playing actions selected
by algorithm A. Formally, let optµ = supS∈S rS(µ), where µ = EX∼D[X], and we assume
that optµ is finite. Same as in [7], we assume that the learning algorithm has access to an offline
(α, β)-approximation oracle O, which takes µ = (µ1, . . . , µm) as input and outputs an action SO
such that Pr{rµ(SO) ≥ α · optµ} ≥ β, where α is the approximation ratio and β is the success
probability. Under the (α, β)-approximation oracle, the benchmark cumulative reward should be the
αβ fraction of the optimal reward, and thus we use the following (α, β)-approximation regret:
Definition 1 ((α, β)-approximation Regret). The T -round (α, β)-approximation regret of a learn-
ing algorithm A (using an (α, β)-approximation oracle) for a CMAB-T game instance
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([m],S,D, Dtrig, R,D) with µ = EX∼D[X] is

RegAµ,α,β(T ) = T ·α ·β ·optµ−E

[
T∑
i=1

R(SAt , X
(t), τt)

]
= T ·α ·β ·optµ−E

[
T∑
i=1

rSAt (µ)

]
,

where SAt is the action A selects in round t, and the expectation is taken over the randomness of
the environment outcomes X(1), . . . , X(T ), the triggered sets τ1, . . . , τT , as well as the possible
randomness of algorithm A itself.

We remark that because probabilistically triggered arms may strongly impact the determination of
the best action, but they may be hard to trigger and observe, the regret could be worse and the regret
analysis is in general harder than CMAB without probabilistically triggered arms.

The above framework essentially follows [7], but we decouple actions from subsets of arms, allow
action space to be infinite, and explicitly model triggered set distribution, which makes the framework
more powerful in modeling certain applications (see supplementary material for more discussions).

2.1 Examples of CMAB-T: Influence Maximization and Cascading Bandits

In social influence maximization [12], we are given a weighted directed graph G = (V,E, p), where
V and E are sets of vertices and edges respectively, and each edge (u, v) is associated with a
probability p(u, v). Starting from a seed set S ⊆ V , influence propagates in G as follows: nodes
in S are activated at time 0, and at time t ≥ 1, a node u activated in step t − 1 has one chance to
activate its inactive out-neighbor v with an independent probability p(u, v). The influence spread of
seed set S, σ(S), is the expected number of activated nodes after the propagation ends. The offline
problem of influence maximization is to find at most k seed nodes in G such that the influence spread
is maximized. Kempe et al. [12] provide a greedy algorithm with approximation ratio 1− 1/e− ε
and success probability 1− 1/|V |, for any ε > 0.

For the online influence maximization bandit [7], the edge probabilities p(u, v)’s are unknown and
need to be learned over time through repeated influence maximization tasks: in each round t, k seed
nodes St are selected, the influence propagation from St is observed, the reward is the number of
nodes activated in this round, and one wants to repeat this process to cumulate as much reward as
possible. Putting it into the CMAB-T framework, the set of edges E is the set of arms [m], and their
outcome distribution D is the joint distribution of m independent Bernoulli distributions with means
p(u, v) for all (u, v) ∈ E. Any seed set S ⊆ V with at most k nodes is an action. The triggered
arm set τt is the set of edges (u, v) reached by the propagation, that is, u can be reached from St
by passing through only edges e ∈ E with X(t)

e = 1. In this case, the distribution Dtrig(St, X
(t))

degenerates to a deterministic triggered set. The rewardR(St, X
(t), τt) equals to the number of nodes

in V that is reached from S through only edges e ∈ E with X(t)
e = 1, and the expected reward is

exactly the influence spread σ(St). The offline oracle is a (1−1/e− ε, 1/|V |)-approximation greedy
algorithm. We remark that the general triggered set distributionDtrig(St, X

(t)) (together with infinite
action space) can be used to model extended versions of influence maximization, such as randomly
selected seed sets in general marketing actions [12] and continuous influence maximization [26] (see
supplementary material).

Now let us consider combinatorial cascading bandits [14, 16]. In this case, we have m independent
Bernoulli random variables X1, . . . , Xm as base arms. An action is to select an ordered sequence
from a subset of these arms satisfying certain constraint. Playing this action means that the player
reveals the outcomes of the arms one by one following the sequence order until certain stopping
condition is satisfied. The feedback is the outcomes of revealed arms and the reward is a function
form of these arms. In particular, in the disjunctive form the player stops when the first 1 is revealed
and she gains reward of 1, or she reaches the end and gains reward 0. In the conjunctive form, the
player stops when the first 0 is revealed (and receives reward 0) or she reaches the end with all 1
outcomes (and receives reward 1). Cascading bandits can be used to model online recommendation
and advertising (in the disjunctive form with outcome 1 as a click) or network routing reliability (in
the conjunctive form with outcome 0 as the routing edge being broken). It is straightforward to see
that cascading bandits fit into the CMAB-T framework: m variables are base arms, ordered sequences
are actions, and the triggered set is the prefix set of arms until the stopping condition holds.

4



Algorithm 1 CUCB with computation oracle.

Input: m,Oracle
1: For each arm i, Ti ← 0 {maintain the total number of times arm i is played so far}
2: For each arm i, µ̂i ← 1 {maintain the empirical mean of Xi}
3: for t = 1, 2, 3, . . . do
4: For each arm i ∈ [m], ρi ←

√
3 ln t
2Ti

{the confidence radius, ρi = +∞ if Ti = 0}
5: For each arm i ∈ [m], µ̄i = min {µ̂i + ρi, 1} {the upper confidence bound}
6: S ← Oracle(µ̄1, . . . , µ̄m)

7: Play action S, which triggers a set τ ⊆ [m] of base arms with feedback X(t)
i ’s, i ∈ τ

8: For every i ∈ τ , update Ti and µ̂i: Ti = Ti + 1, µ̂i = µ̂i + (X
(t)
i − µ̂i)/Ti

9: end for

3 Triggering Probability Modulated Condition

Chen et al. [7] use two conditions to guarantee the theoretical regret bounds. The first one is
monotonicity, which we also use in this paper, and is restated below.

Condition 1 (Monotonicity). We say that a CMAB-T problem instance satisfies monotonicity, if for
any action S ∈ S, for any two distributions D,D′ ∈ D with expectation vectors µ = (µ1, . . . , µm)
and µ′ = (µ′1, . . . , µ

′
m), we have rS(µ) ≤ rS(µ′) if µi ≤ µ′i for all i ∈ [m].

The second condition is bounded smoothness. One key contribution of our paper is to properly
strengthen the original bounded smoothness condition in [7] so that we can both get rid of the
undesired 1/p∗ term in the regret bound and guarantee that many CMAB problems still satisfy the
conditions. Our important change is to use triggering probabilities to modulate the condition, and
thus we call such conditions triggering probability modulated (TPM) conditions. The key point of
TPM conditions is including the triggering probability in the condition. We use pD,Si to denote the
probability that action S triggers arm i when the environment instance is D. With this definition,
we can also technically define p∗ as p∗ = infi∈[m],S∈S,pD,Si >0 p

D,S
i . In this section, we further use

1-norm based conditions instead of the infinity-norm based condition in [7], since they lead to better
regret bounds for the influence maximization and cascading bandits.

Condition 2 (1-Norm TPM Bounded Smoothness). We say that a CMAB-T problem instance sat-
isfies 1-norm TPM bounded smoothness, if there exists B ∈ R+ (referred as the bounded smoothness
constant) such that, for any two distributions D,D′ ∈ D with expectation vectors µ and µ′, and any
action S, we have |rS(µ)− rS(µ′)| ≤ B

∑
i∈[m] p

D,S
i |µi − µ′i|.

Note that the corresponding non-TPM version of the above condition would remove pD,Si in the
above condition, which is a generalization of the linear condition used in linear bandits [15]. Thus, the
TPM version is clearly stronger than the non-TPM version (when the bounded smoothness constants
are the same). The intuition of incorporating the triggering probability pD,Si to modulate the 1-norm
condition is that, when an arm i is unlikely triggered by action S (small pD,Si ), the importance of
arm i also diminishes in that a large change in µi only causes a small change in the expected reward
rS(µ). This property sounds natural in many applications, and it is important for bandit learning —
although an arm i may be difficult to observe when playing S, it is also not important to the expected
reward of S and thus does not need to be learned as accurately as others more easily triggered by S.

4 CUCB Algorithm and Regret Bound with TPM Bounded Smoothness

We use the same CUCB algorithm as in [7] (Algorithm 1). The algorithm maintains the empirical
estimate µ̂i for the true mean µi, and feed the upper confidence bound µ̄i to the offline oracle to
obtain the next action S to play. The upper confidence bound µ̄i is large if arm i is not triggered often
(Ti is small), providing optimistic estimates for less observed arms. We next provide its regret bound.
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Definition 2 (Gap). Fix a distribution D and its expectation vector µ. For each action S, we define
the gap ∆S = max(0, α · optµ − rS(µ)). For each arm i, we define

∆i
min = inf

S∈S:pD,Si >0,∆S>0
∆S , ∆i

max = sup
S∈S:pD,Si >0,∆S>0

∆S .

As a convention, if there is no action S such that pD,Si > 0 and ∆S > 0, we define ∆i
min = +∞,

∆i
max = 0. We define ∆min = mini∈[m] ∆i

min, and ∆max = maxi∈[m] ∆i
max.

Let S̃ = {i ∈ [m] | pµ,Si > 0} be the set of arms that could be triggered by S. Let K = maxS∈S |S̃|.
For convenience, we use dxe0 to denote max{dxe, 0} for any real number x.
Theorem 1. For the CUCB algorithm on a CMAB-T problem instance that satisfies monotonicity
(Condition 1) and 1-norm TPM bounded smoothness (Condition 2) with bounded smoothness constant
B, (1) if ∆min > 0, we have distribution-dependent bound

Regµ,α,β(T ) ≤
∑
i∈[m]

576B2K lnT

∆i
min

+
∑
i∈[m]

(⌈
log2

2BK

∆i
min

⌉
0

+ 2

)
· π

2

6
·∆max + 4Bm; (1)

(2) we have distribution-independent bound

Regµ,α,β(T ) ≤ 12B
√
mKT lnT +

(⌈
log2

T

18 lnT

⌉
0

+ 2

)
·m · π

2

6
·∆max + 2Bm. (2)

For the above theorem, we remark that the regret bounds are tight (up to a O(
√

log T ) factor in the
case of distribution-independent bound) base on a lower bound result in [15]. More specifically,
Kveton et al. [15] show that for linear bandits (a special class of CMAB-T without probabilis-
tic triggering), the distribution-dependent regret is lower bounded by Ω( (m−K)K

∆ log T ), and the
distribution-independent regret is lower bounded by Ω(

√
mKT ) when T ≥ m/K, for some in-

stance where ∆i
min = ∆ for all i ∈ [m] and ∆i

min < ∞. Comparing with our regret upper
bound in the above theorem, (a) for distribution-dependent bound, we have the regret upper bound
O( (m−K)K

∆ log T ) since for that instance B = 1 and there are K arms with ∆i
min =∞, so tight with

the lower bound in [15]; and (b) for distribution-independent bound, we have the regret upper bound
O(
√
mKT log T ), tight to the lower bound up to a O(

√
log T ) factor, same as the upper bound for

the linear bandits in [15]. This indicates that parameters m and K appeared in the above regret
bounds are all needed. As for parameter B, we can view it simply as a scaling parameter. If we
scale the reward of an instance to B times larger than before, certainly, the regret is B times larger.
Looking at the distribution-dependent regret bound (Eq. (1)), ∆i

min would also be scaled by a factor
of B, canceling one B factor from B2, and ∆max is also scaled by a factor of B, and thus the regret
bound in Eq. (1) is also scaled by a factor of B. In the distribution-independent regret bound (Eq. (2)),
the scaling of B is more direct. Therefore, we can see that all parameters m, K, and B appearing in
the above regret bounds are needed. Finally, we remark that the TPM Condition 2 can be refined such
that B is replaced by arm-dependent Bi that is moved inside the summation, and B in Theorem 1 is
replaced with Bi accordingly. See Appendix B.4 for details.

4.1 Novel Ideas in the Regret Analysis

Due to the space limit, the full proof of Theorem 1 is moved to the supplementary material. Here
we briefly explain the novel aspects of our analysis that allow us to achieve new regret bounds and
differentiate us from previous analyses such as the ones in [7] and [16, 15].

We first give an intuitive explanation on how to incorporate the TPM bounded smoothness condition
to remove the factor 1/p∗ in the regret bound. Consider a simple illustrative example of two actions
S0 and S, where S0 has a fixed reward r0 as a reference action, and S has a stochastic reward
depending on the outcomes of its triggered base arms. Let S̃ be the set of arms that can be triggered
by S. For i ∈ S̃, suppose i can be triggered by action S with probability pSi , and its true mean is µi
and its empirical mean at the end of round t is µ̂i,t. The analysis in [7] would need a property that, if
for all i ∈ S̃ |µ̂i,t − µi| ≤ δi for some properly defined δi, then S no longer generates regrets. The
analysis would conclude that arm i needs to be triggered Θ(log T/δ2

i ) times for the above condition
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to happen. Since arm i is only triggered with probability pSi , it means action S may need to be played
Θ(log T/(pSi δ

2
i )) times. This is the essential reason why the factor 1/p∗ appears in the regret bound.

Now with the TPM bounded smoothness, we know that the impact of |µ̂i,t − µi| ≤ δi to the
difference in the expected reward is only pSi δi, or equivalently, we could relax the requirement to
|µ̂i,t − µi| ≤ δi/pSi to achieve the same effect as in the previous analysis. This translates to the result
that action S would generate regret in at most O(log T/(pSi (δi/p

S
i )2)) = O(pSi log T/δ2

i ) rounds.

We then need to handle the case when we have multiple actions that could trigger arm i. The
simple addition of

∑
S:pSi >0 p

S
i log T/δ2

i is not feasible since we may have exponentially or even
infinitely many such actions. Instead, we introduce the key idea of triggering probability groups,
such that the above actions are divided into groups by putting their triggering probabilities pSi
into geometrically separated bins: (1/2, 1], (1/4, 1/2] . . . , (2−j , 2−j+1], . . . The actions in the same
group would generate regret in at most O(2−j+1 log T/δ2

i ) rounds with a similar argument, and
summing up together, they could generate regret in at most O(

∑
j 2−j+1 log T/δ2

i ) = O(log T/δ2
i )

rounds. Therefore, the factor of 1/pSi or 1/p∗ is completely removed from the regret bound.

Next, we briefly explain our idea to achieve the improved bound over the linear bandit result
in [15]. The key step is to bound regret ∆St generated in round t. By a derivation similar to
[15, 7] together with the 1-norm TPM bounded smoothness condition, we would obtain that ∆St ≤
B
∑
i∈S̃t p

D,St
i (µ̄i,t − µi) with high probability. The analysis in [15] would analyze the errors

|µ̄i,t − µi| by a cascade of infinitely many sub-cases of whether there are xj arms with errors larger
than yj with decreasing yj , but it may still be loose. Instead we directly work on the above summation.
Naive bounding the about error summation would not give a O(log T ) bound because there could
be too many arms with small errors. Our trick is to use a reverse amortization: we cumulate small
errors on many sufficiently sampled arms and treat them as errors of insufficiently sample arms, such
that an arm sampled O(log T ) times would not contribute toward the regret. This trick tightens our
analysis and leads to significantly improved constant factors.

The reverse amortization trick can be seen in Appendix B.2 Eq.(8) and the derivation that follows
for the no triggered arm case, as well as in Appendix B.3, Eq. (11) in the proof of Lemma 5 for the
1-norm case.

4.2 Applications to Influence Maximization and Combinatorial Cascading Bandits

The following two lemmas show that both the cascading bandits and the influence maximization
bandit satisfy the TPM condition.

Lemma 1. For both disjunctive and conjunctive cascading bandit problem instances, 1-norm TPM
bounded smoothness (Condition 2) holds with bounded smoothness constant B = 1.

Lemma 2. For the influence maximization bandit problem instances, 1-norm TPM bounded smooth-
ness (Condition 2) holds with bounded smoothness constant B = C̃, where C̃ is the largest number
of nodes any node can reach in the directed graph G = (V,E).

The proof of Lemma 1 involves a technique called bottom-up modification. Each action in cascading
bandits can be viewed as a chain from top to bottom. When changing the means of arms below, the
triggering probability of arms above is not changed. Thus, if we change µ to µ′ backwards, the
triggering probability of each arm is unaffected before its expectation is changed, and when changing
the mean of an arm i, the expected reward of the action is at most changed by pD,Si |µ′i − µi|.
The proof of Lemma 2 is more complex, since the bottom-up modification does not work directly
on graphs with cycles. To circumvent this problem, we develop an influence tree decomposition
technique as follows. First, we order all influence paths from the seed set S to a target v. Second,
each edge is independently sampled based on its edge probability to form a random live-edge graph.
Third, we divide the reward portion of activating v among all paths from S to v: for each live-edge
graph L in which v is reachable from S, assign the probability of L to the first path from S to v in L
according to the path total order. Finally, we compose all the paths from S to v into a tree with S
as the root and copies of v as the leaves, so that we can do bottom-up modification on this tree and
properly trace the reward changes based on the reward division we made among the paths.
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4.3 Discussions and Comparisons

We now discuss the implications of Theorem 1 together with Lemmas 1 and 2 by comparing them
with several existing results.

Comparison with [7] and CMAB with∞-norm bounded smoothness conditions. Our work is
a direct adaption of the study in [7]. Comparing with [7], we see that the regret bounds in Theorem 1
are not dependent on the inverse of triggering probabilities, which is the main issue in [7]. When
applied to influence maximization bandit, our result is strictly stronger than that of [7] in two aspects:
(a) we remove the factor of 1/p∗ by using the TPM condition; (b) we reduce a factor of |E| and√
|E| in the dominant terms of distribution-dependent and -independent bounds, respectively, due

to our use of 1-norm instead of∞-norm conditions used in Chen et al. [7]. In the supplementary
material, we further provide the corresponding∞-norm TPM bounded smoothness conditions and
the regret bound results, since in general the two sets of results do not imply each other.

Comparison with [25] on influence maximization bandits. Conceptually, our work deals with
the general CMAB-T framework with influence maximization and combinatorial cascading bandits
as applications, while Wen et al. [25] only work on influence maximization bandit. Wen et al. [25]
further study a generalization of linear transformation of edge probabilities, which is orthogonal
to our current study, and could be potentially incorporated into the general CMAB-T framework.
Technically, both studies eliminate the exponential factor 1/p∗ in the regret bound. Comparing the
rest terms in the regret bounds, our regret bound depends on a topology dependent term C̃ (Lemma 2),
while their bound depends on a complicated term C∗, which is related to both topology and edge
probabilities. Although in general it is hard to compare the regret bounds, for the several graph
families for which Wen et al. [25] provide concrete topology-dependent regret bounds, our bounds
are always better by a factor from O(

√
k) to O(|V |), where k is the number of seeds selected in each

round and V is the node set in the graph. This indicates that, in terms of characterizing the topology
effect on the regret bound, our simple complexity term C̃ is more effective than their complicated
term C∗. See Appendix D for the detailed table of comparison.

Comparison with [16] on combinatorial cascading bandits By Lemma 1, we can apply The-
orem 1 to combinatorial conjunctive and disjunctive cascading bandits with bounded smoothness
constant B = 1, achieving O(

∑
1

∆i
min
K log T ) distribution-dependent, and O(

√
mKT log T )

distribution-independent regret. In contrast, besides having exactly these terms, the results in [16] have
an extra factor of 1/f∗, where f∗ =

∏
i∈S∗ p(i) for conjunctive cascades, and f∗ =

∏
i∈S∗(1−p(i))

for disjunctive cascades, with S∗ being the optimal solution and p(i) being the probability of success
for item (arm) i. For conjunctive cascades, f∗ could be reasonably close to 1 in practice as argued in
[16], but for disjunctive cascades, f∗ could be exponentially small since items in optimal solutions
typically have large p(i) values. Therefore, our result completely removes the dependency on 1/f∗

and is better than their result. Moreover, we also have much smaller constant factors owing to the
new reverse amortization method described in Section 4.1.

Comparison with [15] on linear bandits. When there is no probabilistically triggered arms
(i.e. p∗ = 1), Theorem 1 would have tighter bounds since some analysis dealing with probabilistic
triggering is not needed. In particular, in Eq. (1) the leading constant 624 would be reduced to 48, the
dlog2 xe0 term is gone, and 6Bm becomes 2Bm; in Eq. (2) the leading constant 50 is reduced to 14,
and the other changes are the same as above (see the supplementary material). The result itself is also
a new contribution, since it generalizes the linear bandit of [15] to general 1-norm conditions with
matching regret bounds, while significantly reducing the leading constants (their constants are 534
and 47 for distribution-dependent and independent bounds, respectively). This improvement comes
from the new reversed amortization method described in Section 4.1.

5 Lower Bound of the General CMAB-T Model

In this section, we show that there exists some CMAB-T problem instance such that the regret
bound in [7] is tight, i.e. the factor 1/p∗ in the distribution-dependent bound and

√
1/p∗ in the

distribution-independent bound are unavoidable, where p∗ is the minimum positive probability that
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any base arm i is triggered by any action S. It also implies that the TPM bounded smoothness may
not be applied to all CMAB-T instances.

For our purpose, we only need a simplified version of the bounded smoothness condition of [7] as
below: There exists a bounded smoothness constant B such that, for every action S and every pair of
mean outcome vectors µ and µ′, we have |rS(µ)− rS(µ′)| ≤ Bmaxi∈S̃ |µi − µ′i|, where S̃ is the
set of arms that could possibly be triggered by S.

We prove the lower bounds using the following CMAB-T problem instance ([m],S,D, Dtrig, R). For
each base arm i ∈ [m], we define an action Si, with the set of actions S = {S1, . . . , Sm}. The family
of distributions D consists of distributions generated by every µ ∈ [0, 1]m such that the arms are
independent Bernoulli variables. When playing action Si in round t, with a fixed probability p, arm i

is triggered and its outcome X(t)
i is observed, and the reward of playing Si is p−1X

(t)
i ; otherwise

with probability 1− p no arm is triggered, no feedback is observed and the reward is 0. Following the
CMAB-T framework, this means that Dtrig(Si, X), as a distribution on the subsets of [m], is either
{i} with probability p or ∅ with probability 1−p, and the rewardR(Si, X, τ) = p−1Xi ·I{τ = {i}}.
The expected reward rSi(µ) = µi. So this instance satisfies the above bounded smoothness with
constant B = 1. We denote the above instance as FTP(p), standing for fixed triggering probability
instance. This instance is similar with position-based model [17] with only one position, while the
feedback is different. For the FTP(p) instance, we have p∗ = p and rSi(µ) = p · p−1µi = µi.
Then applying the result in [7], we have distributed-dependent upper bound O(

∑
i

1
p∆i

min
log T ) and

distribution-independent upper bound O(
√
p−1mT log T ).

We first provide the distribution-independent lower bound result.

Theorem 2. Let p be a real number with 0 < p < 1. Then for any CMAB-T algorithm A, if
T ≥ 6p−1, there exists a CMAB-T environment instance D with mean µ such that on instance
FTP(p),

RegAµ (T ) ≥ 1

170

√
mT

p
.

The proof of the above and the next theorem are all based on the results for the classical MAB
problems. Comparing to the upper bound O(

√
p−1mT log T ). obtained from [7], Theorem 2 implies

that the regret upper bound of CUCB in [7] is tight up to a O(
√

log T ) factor. This means that the
1/p∗ factor in the regret bound of [7] cannot be avoided in the general class of CMAB-T problems.

Next we give the distribution-dependent lower bound. For a learning algorithm, we say that it is
consistent if, for every µ, every non-optimal arm is played o(T a) times in expectation, for any real
number a > 0. Then we have the following distribution-dependent lower bound.

Theorem 3. For any consistent algorithm A running on instance FTP(p) and µi < 1 for every arm
i, we have

lim inf
T→+∞

RegAµ (T )

lnT
≥

∑
i:µi<µ∗

p−1∆i

kl(µi, µ∗)
,

where µ∗ = maxi µi, ∆i = µ∗ − µi, and kl(·, ·) is the Kullback-Leibler divergence function.

Again we see that the distribution-dependent upper bound obtained from [7] asymptotically match the
lower bound above. Finally, we remark that even if we rescale the reward from [1, 1/p] back to [0, 1],
the corresponding scaling factor B would become p, and thus we would still obtain the conclusion
that the regret bounds in [7] is tight (up to a O(

√
log T ) factor), and thus 1/p∗ is in general needed in

those bounds.

6 Conclusion and Future Work

In this paper, we propose the TPM bounded smoothness condition, which conveys the intuition that
an arm difficult to trigger is also less important in determining the optimal solution. We show that this
condition is essential to guarantee low regret, and prove that important applications, such as influence
maximization bandits and combinatorial cascading bandits all satisfy this condition.
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There are several directions one may further pursue. One is to improve the regret bound for some
specific problems. For example, for the influence maximization bandit, can we give a better algorithm
or analysis to achieve a better regret bound than the one provided by the general TPM condition?
Another direction is to look into other applications with probabilistically triggered arms that may not
satisfy the TPM condition or need other conditions to guarantee low regret. Combining the current
CMAB-T framework with the linear generalization as in [25] to achieve scalable learning result is
also an interesting direction.
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Supplementary Materials

A Model Discussions

A.1 Comparison with the framework of [7]

The CMAB-T framework described above essentially follows the framework of [7], but with the
following noticeable differences. First, we refer to S as an abstract action from an action space
S, while in [7], S is referred to as a super arm, which is a subset of base arms [m]. In the case of
CMAB without probabilistically triggered arms, we can simply let every super arm S be an action,
and τ(S,X) = S, meaning that playing super arm S deterministically triggers all and only base
arms in S ⊆ [m]. Second, we explicitly allows action space to be infinite or even continuous space,
while in [7], the action space is the subsets of base arms and thus is finite. We will see later that the
infinite action space does not make essential difference in the analysis. Third, for probabilistically
triggered arms, we explicitly use τ(S,X) to model them, and allows τ(S,X) to have additional
randomness besides the randomness of X . In [7], probabilistic triggering is explained as further base
arms being triggered based on the outcomes of previously triggered base arms, and to model certain
triggering structure or additional randomness in triggering an arm, dummy base arms need to be
added. However, this may require introducing a large number of dummy base arms. For example,
for the cascading bandits, to specify the order of the cascade sequence, we need to add dummy base
arms corresponding to every possible order of the base arms. Moreover, τ(S,X) cleanly separates
the randomness known to the player from the unknown randomness from the environment outcome.
For example, in the discount-based continuous influence maximization [26], τ(c,X) includes the
randomness of activating the seed set from the discount vector c given by ηi’s, which are known to
the player. In contrast, the distribution of X(u,v), namely probability p(u, v) on edges are unknown
and need to be learned. In this case, if we use dummy base arms to model such additional triggering
behavior from marketing actions to seed sets, these dummy base arms will be mixed together with
edge base arms for which the learning algorithm need to learn, unless further distinction is made.

Therefore, we believe that our current adaptation CMAB-T provides a cleaner framework and is more
easily to be applied to various problem instances. We remark that all the analysis and results in [7]
remain unchanged with our current adaptation.

A.2 Modeling general marketing actions in influence maximization

Note that we can also use randomized τ(S,X) to model some extended versions of influence
maximization. For example, general marketing actions are proposed in [12] and continuous discount
actions are proposed in [26], both allowing activating seed nodes with a probability depending on the
marketing intensity on the node. In particular, an action in the discount-based continuous influence
maximization in [26] is a vector c = (c1, c2, . . . , cn), where ci ∈ [0, 1] is the discount to be given to
node i. Discount ci is translated to probability ηi(ci) that node i is activated as a seed, where ηi(·) is
a monotonically non-decreasing function with ηi(0) = 0 and ηi(1) = 1. In this case, the probabilistic
triggering function τ(c,X) includes the randomness from c to seed activations based on ηi’s, beyond
the randomness of X . That is, even when c and X are fixed, τ(c,X) is still a random set. We further
remark that in this case, the action space of all discount vectors is a continuous and infinite space,
which is allowed in our adapted CMAB-T model.

B Main Regret Analysis (Proofs Related to Theorem 1)

B.1 Basics of CMAB-T problems

We utilize the following well known tail bound in our analysis.

Fact 1 (Hoeffding’s Inequality [11]). Let X1, · · · , Xn be independent and identically distributed
random variables with common support [0, 1] and mean µ. Let Y = X1 + · · ·+Xn. Then for all
δ ≥ 0,

Pr{|Y − nµ| ≥ δ} ≤ 2e−2δ2/n.
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Fact 2 (Multiplicative Chernoff Bound [19]). 3 Let X1, · · · , Xn be Bernoulli random variables
taking values from {0, 1}, and E[Xt|X1, · · · , Xt−1] ≥ µ for every t ≤ n. Let Y = X1 + · · ·+Xn.
Then for all 0 < δ < 1,

Pr{Y ≤ (1− δ)nµ} ≤ e−
δ2nµ

2 .

We introduce the following definition to assist our analysis.
Definition 3 (Event-Filtered Regret). For any series of events {Et}t≥1 indexed by round number t,
we define RegAµ,α(T, {Et}t≥1) as the regret filtered by events {Et}t≥1, that is, regret is only counted
in round t if Et happens in round t. Formally,

RegAµ,α(T, {Et}t≥1) = E

[
T∑
t=1

I(Et)(α · optµ − rµ(SAt ))

]
.

For convenience, A, α, µ and/or T can be omitted when the context is clear, and we simply use
RegAµ,α(T, Et) instead of RegAµ,α(T, {Et}t≥1).

The following definition describes an unlikely event that µ̂i,t−1 is not as accurate as expected.
Definition 4. We say that the sampling is nice at the beginning of round t if for every arm i ∈ [m],

|µ̂i,t−1 − µi| < ρi,t, where ρi,t =
√

3 ln t
2Ti,t−1

in round t. Let N s
t be such event.

Lemma 3. For each round t ≥ 1, Pr{¬N s
t } ≤ 2mt−2.

Proof. For each round t ≥ 1, we have

Pr{¬N s
t } = Pr

{
∃i ∈ [m], |µ̂i,t−1 − µi| ≥

√
3 ln t

2Ti,t−1

}

≤
∑
i∈[m]

Pr

{
|µ̂i,t−1 − µi| ≥

√
3 ln t

2Ti,t−1

}
.

=
∑
i∈[m]

t−1∑
k=1

Pr

{
Ti,t−1 = k, |µ̂i,t−1 − µi| ≥

√
3 ln t

2Ti,t−1

}
. (3)

When Ti,t−1 = k, µ̂i,t−1 is the average of k i.i.d. random variables X [1]
i , . . . , X

[k]
i , where X [j]

i is
the outcome of arm i when it is triggered for the j-th time during the execution. That is, µ̂i,t−1 =∑k
j=1X

[j]
i /k. Then we have

Pr

{
Ti,t−1 = k, |µ̂i,t−1 − µi| ≥

√
3 ln t

2Ti,t−1

}
= Pr

Ti,t−1 = k,

∣∣∣∣∣∣
k∑
j=1

X
[j]
i /k − µi

∣∣∣∣∣∣ ≥
√

3 ln t

2k


≤ Pr


∣∣∣∣∣∣
k∑
j=1

X
[j]
i − kµi

∣∣∣∣∣∣ ≥
√

3k ln t

2

 ≤ 2t−3,

(4)

where the last inequality uses the Hoeffding’s Inequality (Fact 1). Combining Inequalities (3) and (4),
we thus prove the lemma.
Definition 5 (Triggering probability (TP) group). Let i be an arm and j be a positive natural
number, define the triggering probability group (of actions)

SDi,j = {S ∈ S | 2−j < pD,Si ≤ 2−j+1}.

Notice {SDi,j}j≥1 forms a partition of {S ∈ S | pD,Si > 0}.
3The result in the book by [19] (Theorem 4.5 together with Exercise 4.7) only covers the case where random

variables Xi’s are independent. However the result can be easily generalized to our case with an almost
identical proof. The only main change is to replace E

[
et(

∑i−1
j=1 Xj+Xi)

]
= E

[
et

∑i−1
j=1 Xj

]
E
[
etXi

]
with

E
[
et(

∑i−1
j=1 Xj+Xi)

]
= E

[
et

∑i−1
j=1 Xj E

[
etXi | X1, . . . , Xi−1

]]
.
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Definition 6 (Counter). For each TP group Si,j , we define a corresponding counter Ni,j . In a run
of a learning algorithm, the counters are maintained in the following manner. All the counters are
initialized to 0. In each round t, if the action St is chosen, then update Ni,j to Ni,j + 1 for every
(i, j) that St ∈ SDi,j . Denote Ni,j at the end of round t with Ni,j,t. In other words, we can define the
counters with the recursive equation below:

Ni,j,t =


0, if t = 0

Ni,j,t−1 + 1, if t > 0, St ∈ SDi,j
Ni,j,t−1, otherwise.

Definition 7. Given a series of integers {jimax}i∈[m], we say that the triggering is nice at the begin-
ning of round t (with respect to jimax), if for every TP group (Definition 5) identified by arm i and
1 ≤ j ≤ jimax, as long as

√
6 ln t

1
3Ni,j,t−1·2−j

≤ 1, there is Ti,t−1 ≥ 1
3Ni,j,t−1 · 2−j . We denote this

event with N t
t . It implies

ρi,t =

√
3 ln t

2Ti,t−1
≤
√

3 ln t

2 · 1
3Ni,j,t−1 · 2−j

.

Lemma 4. For a series of integers {jimax}i∈[m], Pr{¬N t
t} ≤

∑
i∈[m] j

i
maxt

−2 for every round
t ≥ 1.

Proof. We prove this lemma by showing Pr{Ni,j,t−1 = s, Ti,t−1 ≤ 1
3Ni,j,t−1 · 2−j} ≤ t−3, for

any fixed s with 0 ≤ s ≤ t − 1 and
√

6 ln t
1
3 ·s·2−j

≤ 1. Let tk be the round that Ni,j is increased for

the k-th time, for 1 ≤ k ≤ s. Let Yk = I{i ∈ τtk} be a Bernoulli variable, that is, i is triggered
in round tk. When fixing the action Stk , Yk is independent from Y1, . . . , Yk−1. Since Stk ∈ Si,j ,
E[Yk | Y1, . . . , Yk−1] ≥ 2−j . Let Z = Y1 + · · ·+ Ys. By multiplicative Chernoff bound (Fact 2), we
have

Pr

{
Z ≤ 1

3
s · 2−j

}
≤ exp

(
−
(

2
3

)2
s · 2−j

2

)
≤ exp

(
−
(

2
3

)2
18 ln t

2

)
< exp(−3 ln t) = t−3.

By the definition of Ti,t−1 and the condition Ni,j,t−1 = s, we have Ti,t−1 ≥ Z. Thus

Pr{Ni,j,t−1 = s, Ti,t−1 ≤
1

3
Ni,j,t−1 · 2−j}

≤ Pr{Ni,j,t−1 = s, Z ≤ 1

3
s · 2−j}

≤ Pr{Z ≤ 1

3
s · 2−j}

≤ t−3.

By taking i over [m], j over 1, . . . , jimax, s over 0, . . . , t− 1, the lemma holds.

B.2 The Case of No Probabilistically Triggered Arms

In this section, we state and prove a theorem for the case of no probabilistically triggered arms, i.e.
p∗ = 1, when the CMAB-T instance satisfies the 1-norm (non-TPM) bounded smoothness condition
below.
Condition 3 (1-Norm Bounded Smoothness). We say that a CMAB-T problem instance satisfies
1-norm bounded smoothness, if there exists a bounded smoothness constant B ∈ R+ such that, for
any two distributions D,D′ ∈ D with expectation vectors µ and µ′, and any action S, we have
|rS(µ)− rS(µ′)| ≤ B

∑
i∈S̃ |µi − µ′i|, where S̃ is the set of arms that are triggered by S.

As discussed in the main text, this theorem provides better bounds than Theorem 1 with probabilis-
tically triggered arms. Its proof is also simpler, so the readers could choose to either get oneself
familiar with the analysis with this proof first, or directly jump to the next section for the proof of
Theorem 1.
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Theorem 4. For the CUCB algorithm on a CMAB (without triggering, i.e. p∗ = 1) problem that
satisfies 1-norm bounded smoothness (Condition 3) with bounded smoothness constant B,

1. if ∆min > 0, we have distribution-dependent bound

Regµ,α,β(T ) ≤
∑
i∈[m]

48B2K lnT

∆i
min

+ 2Bm+
π2

3
·m ·∆max; (5)

2. we have distribution-independent bound

Regµ,α,β(T ) ≤ 14B
√
KmT lnT + 2Bm+

π2

3
·m ·∆max; (6)

Proof of Theorem 4. To unify the proofs for distribution-dependent and distribution-independent
bounds, we introduce a positive real number Mi for each arm i. Let Ft be the event {rSt(µ̄) <
α · opt(µ̄)}. In other words, Ft means the oracle fails in round t. By assumption, Pr{Ft} ≤ 1− β.
Define MS = maxi∈S̃Mi for each action S, specifically, MS = 0 if S̃ = ∅. Define

κT (M, s) =


2B, if s = 0,

2B
√

6 lnT
s , if 1 ≤ s ≤ `T (M),

0, if s ≥ `T (M) + 1,

where

`T (M) =

⌊
24B2K2 lnT

M2

⌋
.

We then show that if {∆St ≥MSt}, ¬Ft and N s
t hold, we have

∆St ≤
∑
i∈S̃t

κT (Mi, Ti,t−1). (7)

The right hand side of the inequality is non-negative, so it holds naturally if ∆St = 0. We only need
to consider ∆St > 0. By N s

t and ¬Ft, we have

rSt(µ̄t) ≥ α · opt(µ̄t) ≥ α · opt(µ) = rSt(µ) + ∆St ,

Then by Condition 3,

∆St ≤ rSt(µ̄t)− rSt(µ) ≤ B
∑
i∈S̃t

(µ̄i,t − µi).

We are going to bound ∆St by bounding µ̄i,t − µi. But before doing so, we first perform a
transformation. As we have ∆St ≥MSt , so B

∑
i∈S̃t(µ̄i,t − µi) ≥ ∆St ≥MSt . We have

∆St ≤ B
∑
i∈S̃t

(µ̄i,t − µi)

≤ −MSt + 2B
∑
i∈S̃t

(µ̄i,t − µi)

= 2B
∑
i∈S̃t

(µ̄i,t − µi)−
MSt

2B
∣∣∣S̃t∣∣∣


≤ 2B

∑
i∈S̃t

[
(µ̄i,t − µi)−

MSt

2BK

]

≤ 2B
∑
i∈S̃t

[
(µ̄i,t − µi)−

Mi

2BK

]
. (8)

By N s
t , we have µ̄i,t − µi ≤ min{2ρi,t, 1}. So

(µ̄i,t − µi)−
Mi

2BK
≤ min{2ρi,t, 1} −

Mi

2BK
≤ min

{
2

√
3 lnT

2Ti,t−1
, 1

}
− Mi

2BK
.
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If Ti,t−1 ≤ `T (Mi), we have (µ̄i,t − µi) − Mi

2BK ≤ min
{

2
√

3 lnT
2Ti,t−1

, 1
}
≤ 1

2BκT (Mi, Ti,t−1). If

Ti,t−1 ≥ `T (Mi) + 1, then 2
√

3 lnT
2Ti,t−1

≤ Mi

2BK , so (µ̄i,t − µi)− Mi

2BK ≤ 0 = 1
2BκT (Mi, Ti,t−1). In

conclusion, we continue (8) with

(8) ≤
∑
i∈S̃t

κT (Mi, Ti,t−1).

Then in each run,

T∑
t=1

I({∆St ≥MSt} ∧ ¬Ft ∧N s
t ) ·∆St ≤

T∑
t=1

∑
i∈S̃t

κT (Mi, Ti,t−1)

=
∑
i∈[m]

Ti,T∑
s=0

κT (Mi, s)

≤
∑
i∈[m]

`T (Mi)∑
s=0

κT (Mi, s)

= 2Bm+
∑
i∈[m]

`T (Mi)∑
s=1

2B

√
6 lnT

s

≤ 2Bm+
∑
i∈[m]

∫ `T (Mi)

s=0

2B

√
6 lnT

s
ds

≤ 2Bm+
∑
i∈[m]

4B
√

6 lnT`T (Mi)

≤ 2Bm+
∑
i∈[m]

4B

√
6 lnT · 24B2K2 lnT

M2
i

≤ 2Bm+
∑
i∈[m]

48B2K lnT

Mi
.

So

Reg({∆St ≥MSt} ∧ ¬Ft ∧N s
t ) = E

[
T∑
t=1

I({∆St ≥MSt} ∧ ¬Ft ∧N s
t ) ·∆St

]

≤ 2Bm+
∑
i∈[m]

48B2K lnT

Mi
.

By Lemma 3, Pr{¬N s
t } ≤ 2mt−2. Then, as Reg(Et) ≤

∑T
t=1 Pr{Et}∆max by definition of filtered

regret,

Reg(¬N s
t ) ≤

T∑
t=1

2mt−2 ·∆max ≤
π2

3
m ·∆max,

Reg(Ft) ≤ (1− β)T ·∆max.

The filtered regret with null event

Reg({}) ≤ Reg(¬N s
t ) +Reg(Ft) +Reg(∆St < MSt) +Reg({∆St ≥MSt} ∧ ¬Ft ∧N s

t )

≤ (1− β)T ·∆max +
π2

3
m ·∆max + 2Bm+

∑
i∈[m]

48B2K lnT

Mi
+Reg(∆St < MSt).
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By definition of filtered regret, Regµ,α,β(T ) = Reg(T, {})− (1− β)T ·∆max, so

Regµ,α,β(T ) ≤ π2

3
m ·∆max + 2Bm+

∑
i∈[m]

48B2K lnT

Mi
+Reg(∆St < MSt).

For distribution-dependent bound, take Mi = ∆i
min, then Reg(∆St < MSt) = 0 and we have

Regµ,α,β(T ) ≤
∑
i∈[m]

48B2K lnT

∆i
min

+ 2Bm+
π2

3
·∆max.

For distribution-independent bound, take Mi = M =
√

(48B2mK lnT )/T , then Reg(∆St <
MSt) ≤ TM and we have

Regµ,α,β(T ) ≤
∑
i∈[m]

48B2K lnT

Mi
+ 2Bm+

π2

3
m ·∆max +Reg(∆St < MSt)

≤ 48B2mK lnT

M
+ 2Bm+

π2

3
m ·∆max + TM

= 2
√

48B2mKT lnT +
π2

3
m ·∆max + 2Bm

≤ 14B
√
mKT lnT +

π2

3
m ·∆max + 2Bm.

B.3 Proof of Theorem 1 (1-Norm Case Regret Bound)

We first show the distribution-dependent upper bound (Eq. (1)) and the distribution-independent
upper bound below, which is a weaker version of Eq. (2):

Regµ,α,β(T ) ≤ 48B
√
mKT lnT +

(⌈
log2

√
KT

288m lnT

⌉
0

+ 2

)
·m · π

2

6
·∆max + 4Bm.

(9)

We show full proof of Eq. (2) later in Section B.3.1. The proof of Eq. (9) is based on the distribution-
dependent bound (Eq. (1)) similar to other analysis, and thus could be more familiar to readers and
easier to follow, while Eq. (2) has better constant and requires an independent proof as given in
Section B.3.1.

Let Ft be the event {rSt(µ̄) < α · opt(µ̄)}. In other words, Ft means the oracle fails in round t. By
assumption, Pr{Ft} ≤ 1− β.

To unify the proofs for distribution-dependent and distribution-independent bounds, we introduce a
positive real number Mi for each arm i. Define MS = maxi∈S̃Mi for each action S, specifically,
MS = 0 if S̃ = ∅. To prove the distribution-dependent bound, we will let Mi = ∆i

min. To
prove the distribution-independent bound, we will let Mi = M = Θ̃(T−1/2) to balance bounds
for Reg({∆St ≥ MSt} and Reg({∆St < MSt}). Implement definition of N t

t (Definition 7) with
jimax = jmax(Mi) =

⌈
log2

2BK
Mi

⌉
0
. Define

κj,T (M, s) =


4 · 2−jB, if s = 0,

2B
√

72·2−j lnT
s , if 1 ≤ s ≤ `j,T (M),

0, if s ≥ `j,T (M) + 1,

where

`j,T (M) =

⌊
288 · 2−jB2K2 lnT

M2

⌋
,

and the following lemma explains that κ is the contribution to regret.
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Lemma 5. In every run of the CUCB algorithm on a problem instance that satisfies 1-norm TPM
bounded smoothness (Condition 2), for any vector {Mi}i∈[m] of positive real numbers and 1 ≤ t ≤ T ,
if {∆St ≥MSt},¬Ft,N s

t and N t
t hold, we have

∆St ≤
∑
i∈S̃t

κji,T (Mi, Ni,ji,t−1),

where ji is the index of the TP group with St ∈ Si,ji (See Definition 5).
Proof. The right hand side of the inequality is non-negative, so it holds naturally if ∆St = 0. We
only need to consider ∆St > 0. By N s

t and ¬Ft, we have

rSt(µ̄t) ≥ α · opt(µ̄t) ≥ α · opt(µ) = rSt(µ) + ∆St ,

Then by Condition 2,

∆St ≤ rSt(µ̄t)− rSt(µ) ≤ B
∑
i∈S̃t

pD,Sti (µ̄i,t − µi). (10)

We are going to bound ∆St by bounding pD,Sti (µ̄i,t − µi). But before doing so, we first perform a
transformation. As we have ∆St ≥MSt , so B

∑
i∈S̃t p

D,St
i (µ̄i,t − µi) ≥ ∆St ≥MSt . We have

∆St ≤ B
∑
i∈S̃t

pD,Sti (µ̄i,t − µi)

≤ −MSt + 2B
∑
i∈S̃t

pD,Sti (µ̄i,t − µi)

= 2B
∑
i∈S̃t

pD,Sti (µ̄i,t − µi)−
MSt

2B
∣∣∣S̃t∣∣∣


≤ 2B

∑
i∈S̃t

[
pD,Sti (µ̄i,t − µi)−

MSt

2BK

]

≤ 2B
∑
i∈S̃t

[
pD,Sti (µ̄i,t − µi)−

Mi

2BK

]
. (11)

Then we bound pD,Sti (µ̄i,t − µi). By N s
t ,

µ̄i,t − µi < 2ρi,t = 2

√
3 ln t

2Ti,t−1
.

Both µ̄i,t and µi are in [0, 1], so µ̄i,t − µi ≤ 1. We then bound pD,Sti (µ̄i,t − µi) in different cases.

• Case I: 1 ≤ ji ≤ jimax. Then we have pD,Sti ≤ 2 · 2−ji . If
√

6 ln t
1
3Ni,ji,t−1·2−ji

≤ 1, by N t
t ,

µ̄i,t − µi ≤ 2

√
3 ln t

2Ti,t−1
≤
√

6 ln t
1
3Ni,ji,t−1 · 2−ji

,

so

µ̄i,t − µi ≤ min

{√
6 ln t

1
3Ni,ji,t−1 · 2−ji

, 1

}
,

and

pD,Sti (µ̄i,t − µi)

≤ 2 · 2−ji ·min

{√
6 ln t

1
3Ni,ji,t−1 · 2−ji

, 1

}

= min

{√
72 · 2−ji lnT

Ni,ji,t−1
, 2 · 2−ji

}
.
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If Ni,ji,t−1 ≥ `ji,T (Mi) + 1, then
√

72·2−ji lnT
Ni,ji,t−1

≤ Mi

2BK and pD,Sti (µ̄i,t−µi)− Mi

2BK ≤ 0.

If Ni,ji,t−1 = 0, we use the bound pD,Sti (µ̄i,t − µi) ≤ 2 · 2−ji . Otherwise, i.e. 1 ≤
Ni,ji,t−1 ≤ `ji,T (Mi), we use pD,Sti (µ̄i,t − µi) ≤

√
72·2−ji lnT
Ni,ji,t−1

. Recall the definition of

κj,T (M, s), then, for 1 ≤ ji ≤ jimax, we have

pD,Sti (µ̄i,t − µi)−
Mi

2BK
≤ 1

2B
κji,T (Mi, Ni,ji,t−1). (12)

• Case II: ji ≥ jimax + 1 =
⌈
log2

2BK
Mi

⌉
0

+ 1. Then we have

pD,Sti (µ̄i,t − µi) ≤ pD,Sti ≤ 2 · 2−ji

≤ 2 · 2− log2
2BK
Mi
−1

=
Mi

2BK
.

So
pD,Sti (µ̄i,t − µi)−

Mi

2BK
≤ 0 ≤ 1

2B
κji,T (Mi, Ni,ji,t−1). (13)

Combining Eq. (11), (12) and (13), we conclude the proof with

∆St ≤ 2B
∑
i∈S̃t

[
pD,Sti (µ̄i,t − µi)−

Mi

2BK

]
≤
∑
i∈S̃t κji,T (Mi, Ni,ji,t−1).

We remark that the proof of Lemma 5, in particular the derivation leading to Eq. (11) together with
the argument in the paragraph before Eq.(12), contains the reverse amortization trick we mentioned
in the main text. In particular, by the derivation of Eq. (11), the contribution of every arm i to regret
∆St is accounted as 2B

[
pD,Sti (µ̄i,t − µi)− Mi

2BK

]
. Then by the argument in the paragraph before

Eq.(12), if Ni,ji,t−1 ≥ `ji,T (Mi) + 1, meaning that i has been triggered by actions in group ji for at
least `ji,T (Mi) + 1, its error |µ̄i,t−µi| would be small enough such that its contribution to the regret
∆St is not positive. This trick eliminates the need of summing up small errors from many sufficiently
sampled arms, leading to a tighter regret bound. The same trick can be seen in Appendix B.2, Eq.(8)
and the derivation that follows for the no triggered arm case.
Lemma 6. For the CUCB algorithm on a problem instance that satisfies TPM bounded smoothness
with 1-norm (Condition 2),

Reg({∆St ≥MSt} ∧ ¬Ft ∧N s
t ∧N t

t) ≤
∑
i∈[m]

576B2K lnT

Mi
+ 4Bm.

Proof. We bound Reg({∆St ≥MSt} ∧ ¬Ft ∧N s
t ∧N t

t) with Lemma 5. In every run,
T∑
t=1

I({∆St ≥MSt} ∧ ¬Ft ∧N s
t ∧N t

t)∆St ≤
T∑
t=1

∑
i∈S̃t

κji,T (Mi, Ni,ji,t−1)

=
∑
i∈[m]

+∞∑
j=1

Ni,j,T−1∑
s=0

κj,T (Mi, s), (14)

where (14) is due to Ni,ji is increased if and only if i ∈ S̃t. For every arm i and j ≥ 1,
Ni,j,T−1∑
s=0

κj,T (Mi, s) ≤
`j,T (Mi)∑
s=0

κj,T (Mi, s) (15)

= κj,T (Mi, 0) +

`j,T (Mi)∑
s=1

κj,T (Mi, s)

= κj,T (Mi, 0) +

`j,T (Mi)∑
s=1

2B

√
72 · 2−ji lnT

s

≤ κj,T (Mi, 0) + 4B
√

72 · 2−ji lnT
√
`j,T (Mi), (16)
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where(15) is due to κj,T (s) = 0 when s ≥ `j,T (M) + 1, and (16) is due to the fact that, for every
natural number integer n,

n∑
s=1

√
1

s
≤
∫ n

s=0

√
1

s
ds = 2

√
n.

By definition, `j,T (Mi) ≤ 288·2−jiB2K2 lnT
M2
i

, so

(16) ≤ κj,T (M, 0) + 4B
√

72 · 2−ji lnT

√
288 · 2−jiB2K2 lnT

M2
i

= 4 · 2−jB +
576 · 2−jiB2K lnT

Mi
.

Then we continue (14) with

(14) ≤
∑
i∈[m]

+∞∑
j=1

(
4 · 2−jB +

576 · 2−jiB2K lnT

Mi

)

=
∑
i∈[m]

(4B +
576B2K lnT

Mi

)
·

+∞∑
j=1

2−j


=
∑
i∈[m]

(
4B +

576B2K lnT

Mi

)

=
∑
i∈[m]

576B2K lnT

Mi
+ 4Bm.

By taking expectation over all possible runs,

Reg({∆St ≥MSt} ∧ ¬Ft ∧N s
t ∧N t

t) = E[I({∆St ≥M} ∧ ¬Ft ∧N s
t ∧N t

t)∆St ]

≤
∑
i∈[m]

576B2K lnT

Mi
+ 4Bm.

Proof of Theorem 1. Recall Definition 3, the definition of event-filtered regret:

RegAµ (T, {Et}t≥1) = E

[
T∑
t=1

I(Et)(α · optµ − rSAt (µ))

]
= T ·α ·optµ−E

[
T∑
t=1

I(Et)(rSAt (µ))

]
.

Then for filtered regret with null event (the event that is always true), we have Reg({}) = Regµ,α,β +
(1− β)T · α · optµ. We divide this filtered regret into parts as

Reg({}) ≤ Reg({∆St < MSt}) +Reg(Ft) +Reg(¬N s
t ) +Reg(¬N t

t)

+Reg({∆St ≥MSt} ∧ ¬Ft ∧N s
t ∧N t

t). (17)

By definition of filtered regret, Reg(Et) ≤
∑T
t=1 I{Et}∆St ≤

∑T
t=1 Pr{Et} ·∆max, then

Reg(Ft) ≤
T∑
t=1

Pr{Ft}∆max = (1− β)T ·∆max, (18)

Reg(¬N s
t ) ≤

T∑
t=1

Pr{¬N s
t }∆max ≤

π2

3
·m ·∆max, (19)

Reg(¬N t
t) ≤

T∑
t=1

Pr{¬N t
t}∆max ≤

π2

6
·
∑
i∈[m]

jimax ·∆max. (20)
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By Lemma 6,

Reg({∆St ≥MSt} ∧ ¬Ft ∧N s
t ∧N t

t) ≤
∑
i∈[m]

576B2K lnT

Mi
+ 4Bm.

Take Mi = ∆i
min. If ∆St < MSt , then ∆St = 0, since we have either S̃t = ∅ or ∆St < MSt ≤Mi

for some i ∈ S̃t. So Reg({∆St < MSt}) = 0. Then we have

Reg({}) ≤ (1−β)T ·∆max +
∑
i∈[m]

576B2K lnT

∆i
min

+ 4Bm+
π2

6
·
∑
i∈[m]

(
jmax(∆i

min) + 2
)
·∆max,

(21)
where we abuse the notation of jmax(M) =

⌈
log2

2BK
Mi

⌉
0
.

On the other hand, take Mi = M =
√

(576B2mK lnT )/T , then ∆St is also M for every action St
that S̃t is non-empty. We bound Reg({∆St < M}) with

Reg({∆St < MSt}) =

T∑
t=1

I{∆St < MSt}∆St ≤
T∑
t=1

I{∆St < MSt}M ≤ TM.

So the filtered regret with null event is bounded by

Reg({}) ≤ (1− β)T ·∆max +
576B2mK lnT

M
+ 4Bm+ TM +

π2

6
· (jmax(M) + 2) ·m ·∆max

= (1− β)T ·∆max +
576B2mK lnT√

(576B2mK lnT )/T
+ 4Bm+ T

√
(576B2mK lnT )/T

+
π2

6
· (jmax(M) + 2) ·m ·∆max

≤ (1− β)T ·∆max + 48B
√
mKT lnT + 4Bm+

π2

6
· (jmax(M) + 2) ·m ·∆max.

(22)

Since Regµ,α,β = Reg({})− (1− β)T · α · optµ ≤ Reg({})− (1− β)T ·∆max, (21) implies (1)
and (22) implies (9).

B.3.1 Further improvement on distribution-independent upper bound

We now prove the tighter distribution-independent bound (Eq. (2)) without going through distribution-
dependent bound. We start with

∆St ≤ B
∑
i∈S̃t

pD,Sti (µ̄i,t − µi) ≤ B
∑
i∈S̃t

pD,Sti min

{
1, 2

√
3 lnT

2Ti,t−1

}
, (10)

when events ¬Ft and N s
t are true. Use jmax =

⌈
log2

T
18 lnT

⌉
0

to define N t
t . When N t

t ,√
3 lnT

2Ti,t−1
≤
√

18·2−ji lnT
Ni,ji,t−1

if ji ≤ jmax by definition of N t
t , then pD,Sti min

{
1, 2
√

3 lnT
2Ti,t−1

}
≤

min
{

2−ji+1,
√

72·2−ji lnT
Ni,ji,t−1

}
as pD,Sti ≤ 2−ji+1. If ji > jmax, we still have pD,Sti ≤ 2−ji+1.

Because Ni,ji,t−1 < T , we have 2ji+1 ≥
√

72·2−ji lnT
Ni,ji,t−1

. The conclusion is

pD,Sti min

{
1, 2

√
3 lnT

2Ti,t−1

}
≤ min

{
2−ji+1,

√
72 · 2−ji lnT

Ni,ji,t−1

}
(23)

always holds, regardless j ≤ jmax or j > jmax. So we define κ as following in this proof:

κj,T (s) = min

{
2B · 2−j , B

√
72 · 2−j lnT

s

}
.
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According to (10) and (23),

Reg(¬Ft ∧N s
t ∧N t

t) ≤
T∑
t=1

I(¬Ft ∧N s
t ∧N t

t)∆St

≤
T∑
t=1

∑
i∈S̃t

κji,T (Ni,ji,t−1)

=
∑
i∈[m]

+∞∑
j=1

Ni,j,T−1∑
s=0

κj,T (s). (24)

In each round, there are at most K of the counters {Ni,j}i∈[m],j∈N+ are increased by 1, so∑
i∈[m]

∑+∞
j=1 Ni,j,T ≤ KT . To maximize the right hand side of (24) is to choose KT largest

elements from the multiset {κj,T (s)}i∈[m],j∈N+,s∈N, consider the continuous version below which is
more tractable than finding KT largest elements:

∑
i∈[m]

+∞∑
j=1

Ni,j,T−1∑
s=0

κj,T (s) ≤
∑
i∈[m]

+∞∑
j=1

κj,T (0) +

max{0,Ni,j,T−1}∑
s=1

κj,T (s)


≤ 2Bm+

∑
i∈[m]

+∞∑
j=1

∫ Ni,j,T

s=0

κj,T (s)ds

≤ 2Bm+ max∑
i,j xi,j≤KT

∑
i∈[m]

+∞∑
j=1

∫ xi,j

s=0

B

√
72 · 2−j lnT

s
ds

 . (25)

To maximize the above sum of integral, we must have B
√

72·2−j lnT
xi,j

= B
√

72·2−j′ lnT
xi′,j′

for every

i, i′ ∈ m, j, j′ ∈ N+. The solution is xi,j = 2−jKT/m. By taking the solution into (25), we have

(25) = 2Bm+
∑
i∈[m]

+∞∑
j=1

∫ 2−jKT/m

s=0

B

√
72 · 2−j lnT

s
ds

= 2Bm+
∑
i∈[m]

+∞∑
j=1

B
√

144 · 2−j · 2−jKT lnT/m

= 2Bm+ 12B
√
mKT lnT . (26)

Combining with Lemmas 3 & 4, we have

Reg({}) ≤ (1−β)T ·∆max +12B
√
mKT lnT +

(⌈
log2

T

18 lnT

⌉
0

+ 2

)
·m · π

2

6
·∆max +2Bm,

implying (2).

B.4 Refining Parameter B

We can refine 1-norm bounded smoothness (Condition 3) by replacing the parameter B with a
separate parameter Bi for each arm i.
Condition 4 (Refined 1-Norm TPM Bounded Smoothness). We say that a CMAB-T problem in-
stance satisfies refined 1-norm TPM bounded smoothness, if there exists Bi ∈ R+ for every arm i
(referred as the bounded smoothness constant) such that, for any two distributionsD,D′ ∈ D with ex-
pectation vectors µ and µ′, and any action S, we have |rS(µ)− rS(µ′)| ≤

∑
i∈[m]Bip

D,S
i |µi−µ′i|.

Then in Theorem 1, we may replace B with Bi in distribution-dependent bound and replace B
√
m

with
√∑

i∈[m]B
2
i in distribution-independent bound, except that for the last constant term we replace
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Bm with
∑
i∈[m]Bi. More specifically, we have (1) if ∆min > 0, we have distribution-dependent

bound

Regµ,α,β(T ) ≤
∑
i∈[m]

576B2
iK lnT

∆i
min

+
∑
i∈[m]

(⌈
log2

2BiK

∆i
min

⌉
0

+ 2

)
· π

2

6
·∆max + 4

∑
i∈[m]

Bi;

(27)

(2) we have distribution-independent bound

Regµ,α,β(T ) ≤ 12

√∑
i∈[m]

B2
iKT lnT +

(⌈
log2

T

18 lnT

⌉
0

+ 2

)
·m · π

2

6
·∆max + 2

∑
i∈[m]

Bi.

(28)

The proof of this refinement is almost straightforward replacement of B with Bi, except a few points
that we want to highlight. The definition of κ and ` will be

κi,j,T (M, s) =


4 · 2−jBi, if s = 0,

2Bi

√
72·2−j lnT

s , if 1 ≤ s ≤ `i,j,T (M),

0, if s ≥ `i,j,T (M) + 1,

where

`i,j,T (M) =

⌊
288 · 2−jB2

iK
2 lnT

M2

⌋
.

To maximize the sum of integral in (25) (with B replaced by Bi), we need Bi
√

72·2−j lnT
xi,j

=

Bi′
√

72·2−j′ lnT
xi′,j′

for every i, i′ ∈ [m] and j, j′ ∈ N+. So xi,j ∝ 2−jB2
i , and then xi,j =

2−jB2
iKT/

∑
i∈[m]B

2
i .

C Proofs for Applications of CMAB-T (Lemmas 1 and 2 in Section 4.2)

C.1 Proof of Lemma 1

Proof. Let S be an action. We regard S as a permutation of k of the arms. Without loss of generality,
we may assume S = (1, . . . , k) for some k ≤ K. For convenience, we use pµ,Si instead of pD,Si , as
arms are independent Bernoulli variables so that D can be determined by µ. For an arm i > k, i will
not be triggered by action S, and thus pµ,Si = 0. The reward also does not depend on those arms. So
we may only consider the arms 1, . . . , k. For convenience, we only list the expectations of arms in S,
so that µ = (µ1, . . . , µk) and µ′ = (µ′1, . . . , µ

′
k).

Informally speaking, we can change the expectation of the arms from µi to µ′i, in the reverse order
from k to 1. Changing the expectation of an arm j does not affect the triggering probability of an arm
i ordered in front of j, i.e. i < j. And when changing an arm from µi to µ′i, the reward changes by at
most pµ,Si |µi − µ′i|. Therefore the total difference of reward is at most

∑k
i=1 p

µ,S
i |µi − µ′i|.

Formally, for the conjunctive cascading bandit, rS(µ) =
∏k
j=1 µj , and pµ,Si =

∏i−1
j=1 µj for

i = 1, . . . , k. For every j = 0, 1, . . . , k, let

µ(j) = (µ1, . . . , µj , µ
′
j+1, . . . , µ

′
k),
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specifically, µ(k) = µ, µ(0) = µ′. Then,

∣∣∣rS(µ(j))− rS(µ(j−1))
∣∣∣ =

∣∣∣∣∣
k∏
i=1

µ
(j)
i −

k∏
i=1

µ
(j−1)
i

∣∣∣∣∣
=
∏
i,i 6=j

µ
(j)
i

∣∣∣µ(j)
j − µ

(j−1)
j

∣∣∣
≤
j−1∏
i=1

µ
(j)
i

∣∣∣µ(j)
j − µ

(j−1)
j

∣∣∣
=

j−1∏
i=1

µi
∣∣µj − µ′j∣∣

= pµ,Sj

∣∣µj − µ′j∣∣ ,
|rS(µ)− rS(µ′)| =

∣∣∣rS(µ(k))− rS(µ(0))
∣∣∣

≤
k∑
j=1

∣∣∣rS(µ(j))− rS(µ(j−1))
∣∣∣

≤
k∑
j=1

pµ,Sj

∣∣µj − µ′j∣∣ .
For the disjunctive case, let λi = 1 − µi for i ∈ [m]. Then we have rS(µ) = 1 −

∏k
j=1 λi, and

pµ,Si =
∏i−1
j=1 λj . The rest analysis follows the same pattern as the conjunctive case.

C.2 Proof of Lemma 2

C.2.1 Sufficient Condition

In influence maximization, there is a directed graph G = (V,E). For convenience, we use an edge e
as the index, e.g. µe. In this application, action S is a set of at most k nodes, so we also interpret S
as a set of nodes.

Recall TPM bounded smoothness (Condition 2). The formula that we need to satisfy is

|rS(µ)− rS(µ′)| ≤ B
∑
e∈E

pµ,Se |µe − µ′e|, (29)

where B = maxu∈V |{v ∈ V | v can be reached from u}| for influence maximization bandit, and
pµ,Se stands for pD,Se as D can be uniquely determined by µ.

Let rvS(µ) be the probability that v is activated. We claim that if for every node v and every µ and µ′
vectors, we have

|rvS(µ)− rvS(µ′)| ≤
∑
e∈E

pµ,Se |µe − µ′e|, (30)

Then we have Inequality (29). The reason is as follows. First, we show that Inequality (30) holds for
all µ and µ′ is equivalent to |rvS(µ)− rvS(µ′)| ≤

∑
e∈E,e can reach v p

µ,S
e |µe−µ′e| for all µ and µ′. In

fact, the direction from the above inequality to Inequality (30) is trivial. For the reverse direction, let
µ′′ be an expectation vector such that for every edge e that can reach v, µ′′e = µ′e, and for every edge
e that cannot reach v, µ′′e = µe. Since the rvS(µ′) is only affected by edges that can reach v, we have
rvS(µ′) = rvS(µ′′). Then, we have |rvS(µ)−rvS(µ′)| = |rvS(µ)−rvS(µ′′)| ≤

∑
e∈E p

µ,S
e |µe−µ′′e | =∑

e∈E,e can reach v p
µ,S
e |µe−µ′e|. Next, assuming |rvS(µ)−rvS(µ′)| ≤

∑
e∈E,e can reach v p

µ,S
e |µe−µ′e|
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holds for all v ∈ V , we have

|rS(µ)− rS(µ′)| = |
∑
v∈V

rvS(µ)−
∑

v∈Γ(S)

rvS(µ′)|

≤
∑
v∈V
|rvS(µ)− rvS(µ′)|

≤
∑
v∈V

∑
e∈E,e can reach v

pµ,Se |µe − µ′e|

=
∑
e∈E

∑
v∈V,v can be reached from e

pµ,Se |µe − µ′e|

≤ B
∑
e∈E

pµ,Se |µe − µ′e|.

Thus, Inequality (29) holds.

Furthermore, we argue that it is sufficient to show that Inequality (30) holds when (1) µ ≤ µ′, i.e.
for every edge e, µe ≤ µ′e,; and (2) |S| = 1. The first condition is a straightforward conclusion from
the Monotonicity condition (Condition 1). For the second condition, we may assume the seed set S
consists of only one node without loss of generality. Otherwise, we may add a super seed node s◦
and add edges from s◦ to s and let µ(s◦,s) = µ′(s◦,s) = 1 for every node s in S.

Therefore, in the rest of the proof of Lemma 2, we prove that the influence maximization bandit
satisfies Inequality (30) for µ ≤ µ′ and |S| = 1. Let s be the single seed node, and S = {s}.

C.2.2 Paths

In this subsection, we define an order of paths and assign the influence to the smallest path. Consider
all the paths from s to v. A path L from s to v is a sequence of edges (e1 = (s, u1), e2 =
(u1, u2), . . . , e|L| = (u|L|−1, v)). A simple path is a path that s, v, u1, . . . , u|L|−1 are distinct.

We call each possible value of random vector X an outcome and denote it with vector x ∈ {0, 1}m.
We say an edge e is live (with respect to x) if the corresponding component of x is 1, i.e. influence
can propagate through e with the propagation under x. Thus, connecting with the terminology in
the influence maximization literature [12, 5], x corresponds to a live-edge graph in G, while X
corresponds to a random live-edge graph. We say a path L is live (with respect to x) if every edge
of L is live. Then we have rvS(µ) = Prx∼X{there is a live path from s to v in x}. For each x that
contains a live path from s to v, we designate a path to x as follows. We first list all the edges in an
arbitrary order, and for every different edges e1 and e2, define e1 < e2 if e1 appears before e2. To
compare two paths L and L′, we first order the edges in L and L′ in the descending order, respectively,
and then compare them in the lexicographical order. In other words, to compare two paths, first
compare their largest edges, if there is a tie, compare their second largest edges, and so on. If two paths
continue to tie on edges and then one path ends with no more edges, then the shorter path is smaller.
For every outcome x such that there is a live path from s to v, we designate the smallest live path L
from s to v in x to x. Then each path from s to v in the original graph G has a subset of outcome x’s
that are designated to L, which means all paths from s to v partition all outcomes x by which path x
is designated to. Thus, let rµ,Sv|L =

∑
x is designated to L Pr[X = x], namely the contribution of path L

through the outcome x designated to L, and we have rvS(µ) =
∑
L is a path from s to v r

µ,S
v|L . That is, we

decompose rvS(µ) by rµ,Sv|L ’s according to paths L from s to v.

Before going further, we first figure out some basic properties of the smallest live path. The smallest
live path must be simple, otherwise we can remove loops to get a smaller live path. Moreover, each
substring of the smallest live path in x must also be the smallest in x for its respective starting and
ending nodes. For a path L = (e1 = (u0, u1), e2 = (u1, u2), . . . , e|L| = (u|L|−1, u|L|)), a substring
is a consecutive subsequence L1 = (ei, ei+1, . . . , ej). If L is the smallest live path from s to v in x,
any substring L1 must also be the smallest live path from u to w in x, where u and w are the start
and the end of L1, respectively. Otherwise, if L2 is a live path from u to w that smaller than L1, then
we can replace L1 with L2 in L to get a smaller live path.
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Figure 1: A sample network and its search tree

C.2.3 Bypass

In this subsection, we define bypass, which is a tool for calculating the probability that a path is not
the smallest. For a path L = (e1 = (u0, u1), e2 = (u1, u2), . . . , e|L| = (u|L|−1, u|L|)), a bypass is a
path from ui to uj that

(1) shares no edges with L;
(2) is smaller than the substring of L between ui and uj .

A bypass is live (with respect to x) is defined in the same way as a path being live. For a live path
L in x from some node u0 to some other node u|L|, if there is a live bypass of L, then L cannot be
the smallest live path from u0 to u|L|. The reverse also holds: if a live path L has no live bypasses,
then L is the smallest live path from u0 to u|L|. To prove the reverse direction, assume that there
is a live path L′ from u0 to u|L| smaller than L. Let ei be the largest edge in L that is not in L′.
Because L′ < L, such ei must exist, and moreover ei must be larger than all edges in L′ but not L.
By breaking L at ei, we divide the nodes covered by L into two parts, the start part and the end part.
Let w be the first node in L′ that is in the end part of L. Such node w must exist because the end node
u|L| is in the end part of L. Let u be the last node in L′ that appears before w in L′ and is in the start
part of L. Such node u must exist because the starting node u0 is in the start part. Then the substring
of L′ between u and w must share no edges with L. Otherwise, if the substring of L′ between u and
w shares one edge (uj , uj+1) with L, (uj , uj+1) cannot be ei, so u cannot be uj and w cannot be
uj+1. Then, (a) if uj+1 is in the end part of L, then uj+1 appearing before w in L′ contradicts to
w’s definition; and (b) if uj+1 is in the start part of L, uj+1 appearing after u and before w in L′
contradicts to the definition of u. Therefore, the substring of L′ between u and w shares no edges
with L. Then since ei is larger than any edge in L′ and not in L, the substring of L′ between u and w
is indeed a bypass of L.

For a path L = (e1 = (u0, u1), e2 = (u1, u2), . . . , e|L| = (u|L|−1, u|L|)), let pµ,SL be the probability
that L is the smallest live path from its start to its end. Note that if L is a path from s to v, then we
have pµ,SL = rµ,Sv|L . With bypass, we have pµ,SL = pµ,S1,L p

µ,S
2,L , where pµ,S1,L is the probability that L is

live and pµ,S2,L is the probability that there is no live bypasses of L. It is clear that pµ,S1,L =
∏|L|
i=1 µei ,

and pµ,S2,L is the probability that some subset of edges in E \ L forming a live bypass of L does not
occur. These two events are independent, since they are about two disjoint subsets of E.

C.2.4 Bottom-up modification

We now describe the search tree formed from all simple paths from s to v. We use y, z to denote
nodes in this tree. Each node y is corresponding to a prefix of a path from s to v, which is also a
path denoted by Path(y). Denote the end node of Path(y) with Node(y). Denote the last edge
of Path(y) with Edge(y). Denote the root of the tree with root. Path(root) is the empty path ∅.
Specifically, Node(root) = s, as s is the start node of every path in our consideration. Edge(root)
is undefined. For every non-root node y in the tree, its parent is the node z such that Path(z) is the
(|Path(y)| − 1)-prefix of Path(y). Figure 1 shows a sample of this tree structure.
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For a node y in the tree, we simplify the notation pµ,SPath(y) to pµ,Sy . Similarly, for a leaf node y

in the tree, we simplify the notation rµ,Sv|Path(y) to rµ,Sv|y . Then we have rvS(µ) =
∑
y is leaf r

µ,S
v|y =∑

y is a leaf p
µ,S
y .

We want to show that for all µ ≤ µ′, we have

rvS(µ′)− rvS(µ) =
∑

y is a leaf

(
pµ
′,S

y − pµ,Sy

)
≤ pµ,Se

∑
e∈E

(µ′e − µe), (31)

which is the same as Inequality (30) that we want to show.

Let µ(y) be the vector that

µ(y)
e =

{
µe, if e ∈ Path(y),

µ′e, if e 6∈ Path(y).

Thus we have pµ
(y),S

y = pµ,S1,y p
µ′,S
2,y . Since for all edges e 6∈ Path(y), µe ≤ µ′e, the probability that

there is no live bypasses of Path(y) is higher under µ than under µ′, that is, pµ
′,S

2,y ≤ p
µ,S
2,y . Therefore,

pµ
(y),S

y ≤ pµ,Sy , which means that, to prove Inequality (31), it is enough to prove∑
y is a leaf

(
pµ
′,S

y − pµ
(y),S

y

)
≤ pµ,Se

∑
e∈E

(µ′e − µe). (32)

We now consider the bottom-up modification of the expectations in Path(y).

pµ
′,S

y − pµ
(y),S

y =

|Path(y)|∑
i=1

(
pµ

(zi−1),S
y − pµ

(zi),S
y

)
, (33)

where zi is the ancestor of y at depth i. (Root has depth 0.) By switching summations and regrouping
the summands

(
pµ

(zi−1),S
y − pµ(zi),S

y

)
under zi, we have∑

y is a leaf

(
pµ
′,S

y − pµ
(y),S

y

)
=

∑
y is a non-root node

∑
z is a leaf under y

(
pµ

(Parent(y)),S
z − pµ

(y),S
z

)
. (34)

We generalize the definition of rµ,Sv|y to non-leaf nodes y by

rµ,Sv|y =
∑

z is a leaf under y

pµ,Sz .

It is clear that this definition coincides the old one when y is a leaf. Now

(34) =
∑

y is a non-root node

(
rµ

(Parent(y)),S
v|y − rµ

(y),S
v|y

)
. (35)

rµ,Sv|y =
∑

z is a leaf under y

pµ,Sz =
∑

z is a leaf under y

pµ,S1,z p
µ,S
2,z = pµ,S1,y

∑
z is a leaf under y

pµ,S1,z

pµ,S1,y

pµ,S2,z .

pµ,S1,z

pµ,S1,y

pµ,S2,z does not depend on µe for every e ∈ Path(y). So

rµ
(Parent(y)),S

v|y − rµ
(y),S

v|y =
(
pµ

(Parent(y)),S
1,y − pµ

(y),S
1,y

) ∑
z is a leaf under y

pµ
′,S

1,z

pµ
′,S

1,y

pµ
′,S

2,z

=
(
µ′Edge(y) − µEdge(y)

)
pµ,S1,Parent(y)

∑
z is a leaf under y

pµ
′,S

1,z

pµ
′,S

1,y

pµ
′,S

2,z . (36)
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Topology Bound in [25] Our bound

bar graphs Õ
(
|V |
√
kT
)

Õ
(√

k|V |T
)

star graphs Õ
(
|V |2
√
kT
)

Õ
(
|V |2
√
T
)

ray graphs Õ
(
|V | 94
√
kT
)

Õ
(
|V |2
√
T
)

tree graphs Õ
(
|V | 52
√
T
)

Õ
(
|V |2
√
T
)

grid graphs Õ
(
|V | 52
√
T
)

Õ
(
|V |2
√
T
)

complete graphs Õ
(
|V |4
√
T
)

Õ
(
|V |3
√
T
)

Table 1: Regret bound comparison with [25].

For each leaf z under y, the event that Path(z) is the smallest live path from s to v is exclusive from
each other. And that event is included in that Path(y) is the smallest live path from s to Node(y). So∑

z is a leaf under y

pµ
′,S

1,z pµ
′,S

2,z ≤ p
µ′,S
1,y pµ

′,S
2,y ,

and thus ∑
z is a leaf under y

pµ
′,S

1,z

pµ
′,S

1,y

pµ
′,S

2,z ≤ p
µ′,S
2,y ≤ p

µ,S
2,y .

So
(36) ≤

(
µ′Edge(y) − µEdge(y)

)
pµ,S1,Parent(y)p

µ,S
2,y .

Then

(35) ≤
∑

y is a non-root node

(
µ′Edge(y) − µEdge(y)

)
pµ,S1,Parent(y)p

µ,S
2,y =

∑
e∈E

(µ′e−µe)
∑

Edge(y)=e

pµ,S1,Parent(y)p
µ,S
2,y .

(37)

We then show ∑
Edge(y)=e

pµ,S1,Parent(y)p
µ,S
2,y ≤ pµ,Se , (38)

for every edge e. If e is a directed edge from u to w , pµ,Se ≥
∑

Edge(y)=e p
µ,S
Parent(y), since

pµ,SParent(y) is the probability that the path Path(Parent(y)) is the smallest live path from s to
Node(Parent(y)) = u, and thus such events are mutually exclusive for different y with Edge(y) = e.
Then pµ,Se ≥

∑
Edge(y)=e p

µ,S
1,Parent(y)p

µ,S
2,y as pµ,S2,Parent(y) ≥ p

µ,S
2,y . Thus we have (38).

Combining Inequalities (37) and (38), we prove the key Inequality (32), which in turn shows that
the influence maximization bandit satisfies the TPM bounded smoothness condition with B =
maxu∈V |{v ∈ V | v can be reached from u}|.

D Detailed Comparison with [25] on the Regret Bounds for Influence
Maximization Bandits

Let G = (V,E) be the social graph we consider. By Lemma 2, our Theorem 1 can be applied to
the influence maximization bandit with B = C̃ ≤ |V |, which gives concrete O(log T ) distribution-
dependent and O(

√
T log T ) distribution-independent bounds for the influence maximization bandit.

Wen et al. [25] also study the influence maximization bandit and eliminate the exponential factor
1/p∗. They use a complexity term C∗ to characterize their regret bound, where C∗ has complicated
relationship with network topology and edge probabilities. Wen et al. [25] list several families of
graphs with concrete regret bounds, ignoring the effect of edge probabilities on their complexity
term C∗. Our regret bounds with complexity term C̃ can also be applied to these graph families,
and Table 1 list the comparison results between our regret bounds and their regret bounds. The
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CMAB-T Instance

MAB Instance

Algorithm 2

CMAB-T Algorithm

MAB Algorithm

Figure 2: Reduction Structure

comparison shows that our regret bounds are always better than their bounds, with an improvement
factor from O(

√
k) to O(|V |), where V is the set of nodes in the graph, and k is the number of seeds

to be selected in each round. This indicates that, in terms of characterizing the topology effect on the
regret bound, our simple complexity term C̃ is more effective than their complicated term C∗.

E Lower Bound Proofs (for Section 5)

E.1 Proof of Theorem 2

Algorithm 2 Reduce MAB to CMAB-T
Input: m,TCMAB, p {m is the number of arms, TCMAB is the number of rounds in CMAB, and p is

triggering probability.}
1: for t = 1, . . . , TCMAB do
2: sample γt i.i.d. from Bernoulli distribution Bp
3: end for
4: H ← ∅; tMAB ← 0
5: for t = 1, . . . , TCMAB do
6: Sit ← CMAB-Oracle(H) {Oracle decides the CMAB-T action based on the execution

history}
7: if γt = 1 then
8: tMAB ← tMAB + 1

9: In MAB, play arm it in round tMAB, obtain feedback X̃(tMAB)
it

10: In CMAB-T, it is triggered with feedback X(t)
it

= X̃
(tMAB)
it

, and set reward as p−1X
(t)
it

11: H ← Append(H, (Sit , {it}, X
(t)
it

) {{it} is the set of triggered arms}
12: else
13: {γt = 0, and MAB is not played in this case}
14: In CMAB-T, no arm is triggered, and the reward is 0
15: H ← Append(H, (Sit ,∅,−)) {triggering set is empty, so no feedback}
16: end if
17: end for{In the end, TMAB = tMAB}

We prove the theorem by reducing classical MAB to this CMAB-T game instance by Algorithm 2.
For convenience, we define Bernoulli random variable γt = I{τt(Sit , X(t)) = {it}}, where Sit is
the action played in round t, and thus γt is an indicator representing whether a base arm is triggered

29



in round t. Moreover, to distinguish the environment outcome in MAB and CMAB-T in the reduction,
we use X̃(tMAB) to denote the environment outcome in round tMAB of MAB, and X(t) to denote the
environment outcome in round t of CMAB-T.

Figure 2 shows the structure of reduction. Algorithm 2 adapts the CMAB-T algorithm to an MAB
algorithm. Conversely, it also adapts the MAB instance to the corresponding CMAB-T instance.
Thus when Algorithm 2 runs, we have one MAB instance and one CMAB-T instance running
simultaneously. Let TCMAB be the total number of rounds in the CMAB-T instance and TMAB be
the total number of rounds in the MAB instance. For convenience, we use t to refer to the index of
rounds in CMAB-T, while tMAB is the index of rounds in MAB. In Algorithm 2, we fix TCMAB and
thus TMAB is a random variable. We have TMAB =

∑TCMAB

t=1 γt. So E[TMAB] = pTCMAB and we
have following lemma about the distribution of TMAB.
Lemma 7. If pTCMAB ≥ 6, then Pr

[
TMAB ≥ 1

2pTCMAB

]
≥ 1

2 .

Proof. TMAB =
∑TCMAB

t=1 γt. By multiplicative Chernoff bound (Fact 2),

Pr[TMAB ≥
1

2
pTCMAB] ≥ 1−

 e−
1
2(

1
2

) 1
2

pTCMAB

≥ 1

2
,

when pTCMAB ≥ 6.

Pr[TMAB ≥
1

2
pTCMAB] ≥ 1−

(
e−

1
8pTCMAB

)
≥ 1

2
,

when pTCMAB ≥ 6.

In the following, we overload the notation D to also represent a probabilistic distribution of the
environment instance (a.k.a. outcome distribution) D, and use D ∼ D to represent a random
environment instance D drawn from the distribution D.
Lemma 8. Consider a random MAB environment instance D drawn from a distribution D. Assume
we have a lower bound L(TMAB) of expected regret, i.e. for every natural number TMAB, any MAB
algorithm A has expected regret

E
D∼D

[RegAMAB,D(TMAB)] ≥ L(TMAB).

Then consider the corresponding CMAB-T environment instance D. For every natural number
TCMAB ≥ 5p−1, any CMAB-T algorithm A has expected regret

E
D∼D

[RegACMAB,D(TCMAB)] ≥ 1

2
p−1L(

1

2
pTCMAB). (39)

Proof. Without loss of generality, we may assume L(T ) is non-decreasing, as regret of any strategy
increases as T increases.

We prove the lemma using the reduction described above. We run Algorithm 2 withA be the CMAB-T
oracle and D be the environment instance. Let γ be the vector (γ1, γ2, . . . , γTCMAB

). Every possible
value of γ parameterizes Algorithm 2 into an algorithm plays MAB problem for TMAB =

∑TCMAB

t=1 γt

rounds. We denote this MAB algorithm with Aγ . By our assumption, ED∼D[Reg
Aγ
MAB,D(TMAB)] ≥

L(TMAB).

Then we compare the regret in both cases. For a given distribution D, let µi,D = EX∼D[Xi] and
µ∗D = maxi µi,D. For MAB problem and every γ,

E
D∼D

[Reg
Aγ
MAB,D(TMAB)] = E

D∼D

[
TMAB · µ∗D − E

[
TCMAB∑
t=1

γtXit

]]

= E
D∼D

[
E

[
TCMAB∑
t=1

γt(µ
∗
D −Xit)

]]

= E
D∼D

[
E

[
TCMAB∑
t=1

γt(µ
∗
D − µit,D)

]]
,
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where the inner expectation is taken over the rest randomness, including the randomness of it, which
is based on the random feedback history and the possible randomness of algorithm Aγ . For CMAB-T,
we have

E
D∼D

[RegACMAB,D(TCMAB)]

= E
D∼D

[
TCMAB · µ∗D − E

γ∼BTCMAB
p

[
E

[
TCMAB∑
t=1

γtp
−1Xit

]]]

= E
D∼D

[
TCMAB · µ∗D − E

γ∼BTCMAB
p

[
E

[
TCMAB∑
t=1

γtp
−1µit,D

]]]

= E
D∼D

[
pTCMAB · p−1µ∗D − E

γ∼BTCMAB
p

[
E

[
TCMAB∑
t=1

γtp
−1µit,D

]]]

= E
D∼D

[
E

γ∼BTCMAB
p

[
TCMAB∑
t=1

γtp
−1µ∗D

]
− E
γ∼BTCMAB

p

[
E

[
TCMAB∑
t=1

γtp
−1µit,D

]]]

= p−1 E
D∼D,γ∼BTCMAB

p

[
E

[
TCMAB∑
t=1

γt(µ
∗ − µit,D)

]]
,

where the innermost expectation is taken over the rest randomness such as the randomness of it.
Therefore

E
D∼D

[RegACMAB,D(TCMAB)] = p−1 E
D∼D,γ∼BTCMAB

p

[Reg
Aγ
MAB,D(TMAB)].

Calculation above also shows ED∼D[Reg
Aγ
MAB,D(TMAB)] ≥ 0. And by monotonicity of L(T ),

E
D

[RegACMAB,D(TCMAB)] = p−1 E
D,γ

[Reg
Aγ
MAB,D(TMAB)]

≥ p−1 E
D,γ

[I{TMAB ≥
1

2
pTCMAB}Reg

Aγ
MAB,D(TMAB)]

≥ p−1 E
D,γ

[I{TMAB ≥
1

2
pTCMAB}L(

1

2
pTCMAB)]

= p−1 Pr
D,γ
{TMAB ≥

1

2
pTCMAB}L(

1

2
pTCMAB)

≥ 1

2
p−1L(

1

2
pTCMAB).

Lemma 9. Let m be the number of arms and T be the number of rounds. Let ε = 1
10

√
m/T . Then

define the family of MAB outcome distributions D = {D1, . . . , Dm} with

Pr
Dj
{Xi = 1} =

{
1
2 if i 6= j
1
2 + ε if i = j

.

Let D be a random environment instance uniformly drawn from D, then for any MAB algorithm A,

E
D∼D

[
RegAMAB,D(T )

]
≥ εT

6
=

1

60

√
mT.

Proof of Theorem 2. Let D be the family of outcome distributions defined in Lemma 9, and D is
uniformly drawn from D. Applying the result of Lemma 9 to Lemma 8, with L(T ) = 1

60

√
mT in

Lemma 8, we have

E
D∼D

[
RegACMAB,D(T )

]
≥ 1

2
p−1L(

1

2
pT )

=
1

2
p−1 · 1

60

√
1

2
mpT

>
1

170

√
mT

p
.
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Since D is uniformly drawn from D, then there must exists a D ∈ D such that

RegACMAB,D(T ) ≥ 1

170

√
mT

p
.

It is easy to show corresponding CMAB-T problem satisfies original bounded smoothness (Condi-
tion 5) with f(x) = x. So the theorem above gives an example that the upper bound in [7] is tight up
to a O(

√
log T ) factor.

E.2 Proof of Theorem 3

Proof of Theorem 3. We regard this kind of CMAB-T problem instances as a variant of classical
MAB, that each arm gives three possible outcomes, 0, 1, and ⊥. Denote these arms with random
variables X ′1, . . . , X

′
n. The reward is p−1 times of the outcome if the outcome is 0 or 1, while the

reward is 0 if the outcome is ⊥. This variant is equivalent to the CMAB-T instances: Outcome
X ′i =⊥ corresponds to Bernoulli base arm Xi in CMAB-T not being triggered, outcome X ′i = 1
or 0 corresponds to Bernoulli base arm Xi being triggered and Xi = 1 or 0, respectively. Thus
Pr[X ′i =⊥] = 1 − p, Pr[X ′i = 0] = p(1 − µi), and Pr[X ′i = 1] = pµi, where p is the triggering
probability and µi is the expectation of Xi.

LetX and Y be random variables whose values are in the same finite set V . Define the KL-divergence

kl(X,Y ) =
∑
x∈V

Pr{X = x} ln
Pr{X = x}
Pr{Y = x}

.

For example the KL-divergence between X ′1 and X ′2 is

kl(X ′1, X
′
2) = Pr{X ′1 =⊥} ln

Pr{X ′1 =⊥}
Pr{X ′2 =⊥}

+ Pr{X ′1 = 0} ln
Pr{X ′1 = 0}
Pr{X ′2 = 0}

+ Pr{X ′1 = 1} ln
Pr{X ′1 = 1}
Pr{X ′2 = 1}

= (1− p) ln
1− p
1− p

+ p(1− µ1) ln
p(1− µ1)

p(1− µ2)
+ pµ1 ln

pµ1

pµ2

= 0 + p(1− µ1) ln
1− µ1

1− µ2
+ pµ1 ln

µ1

µ2

= p ·
[
(1− µ1) ln

1− µ1

1− µ2
+ µ1 ln

µ1

µ2

]
= p · kl(X1, X2).

Thus, intuitively it takes p−1 times more rounds to differentiate X ′1 and X ′2 than X1 and X2, which
is stated formally in theorem below.

Proof. The analysis is generalized from the case that the arms are Bernoulli random variables. For
an arm i, we use Ni(T ) to denote the number of times the arm i is played in T rounds. For each
non-optimal arm i, i.e. µi < µ∗ < 1, we show

lim inf
T→+∞

E[Ni(T )]

lnT
≥ p−1

kl(Xi, Xi∗)
=

1

kl(X ′i, X
′
i∗)
. (40)

Then by formula
RegAµ (T ) =

∑
i:µi<µ∗

E[Ni(T )]∆i,

the theorem holds.

Without loss of generality, we may assume arm 1 is an optimal arm and arm 2 is non-optimal. We
prove Eq. (40) for arm 2 and then the inequality holds for every arm. Consider that if we replace
arm 2 with a fictional arm 2′, which has an expectation µ2′ slightly greater than µ1, then arm 1 will
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become non-optimal and strategy A will play arm 1 for o(na) times for any a > 0. So strategy A
must play arm 2 for enough times, to differentiate from arm 2′.

Formally, let ε > 0 be any positive real number. Let µ2′ be a real number such that µ2′ > µ1 and

kl(X2, X2′) = (1− µ2) ln
1− µ2

1− µ2′
+ µ2 ln

µ2

µ2′
< (1 + ε)kl(X2, X1). (41)

There exists such µ2′ , because the left hand side of (41) is continuous as a function of µ2′ . We use E′
and Pr′ to denote expectation and probability in the circumstance that arm X2 is replaced by arm
X2′ .

We define the empirical KL-divergence after the first s samples of the arm 2/2′,

k̂ls =

s∑
t=1

Yt,

where

Yt =


ln 1−µ2

1−µ2′
, if X ′2,t = 0,

ln µ2

µ2′
, if X ′2,t = 1,

0, if X ′2,t =⊥ .
and X ′2,t is result of the t-th sample of arm 2/2′. Note that (Yt) are independent and E[Yt] =
kl(X ′2, X

′
2′).

First we prove

Pr

{
N2(T ) <

1− ε
kl(X ′2, X

′
2′)

lnT ∧ k̂lN2(T ) ≤
(

1− ε

2

)
lnT

}
= o(1). (42)

We use the shorthands

CT =

{
N2(T ) <

1− ε
kl(X ′2, X

′
2′)

lnT ∧ k̂lN2(T ) ≤
(

1− ε

2

)
lnT

}
, (43)

and
fT =

1− ε
kl(X ′2, X

′
2′)

lnT.

If arm 2 is replaced by arm 2′, we have

Pr′{CT } ≤ Pr′{N2(T ) < fT } ≤
E′[T −N2(T )]

T − fT
,

where the second inequality is due to Markov’s inequality. Recall the definition of consistent
strategy, as 2′ is the only optimal arm, we have E′[T −N2(T )] = o(T

ε
2 ). And by T − fT = Ω(T ),

Pr′{CT } = o(T
ε
2−1). Then we use the property of KL-divergence

Pr{CT } = E′
[
I{CT } · exp

(
k̂lN2(T )

)]
,

then

Pr{CT } = E′
[
I{Cn} · exp

(
k̂lN2(T )

)]
≤ Pr′{CT }·exp

[(
1− ε

2

)
lnT

]
= Pr′{CT }·T 1− ε2 = o(1).

Second, we prove

Pr
{
N2(T ) < fT ∧ k̂lT2(T ) >

(
1− ε

2

)
lnT

}
= o(1). (44)

We have

Pr
{
N2(T ) < fT ∧ k̂lN2(T ) >

(
1− ε

2

)
lnT

}
≤ Pr

{
N2(T ) < fT ∧ max

s≤fT
k̂ls >

(
1− ε

2

)
lnT

}
≤ Pr

{
max
s≤fT

k̂ls >
(

1− ε

2

)
lnT

}
.
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Recall the definition of k̂ls, which is a summation of independent random variables with the same
distribution over a finite support, whose expectation is kl(X ′2, X

′
2′). So we apply the maximal version

of the strong law of large numbers, and then (44) holds, as fT · kl(X ′2, X
′
2′) = (1− ε) lnT .

In conclusion, combining Eq. (42) and (44), we have Pr{N2(T ) < fT } = o(1), implying

E [N2(T )] ≥ (1− o(1)) · fT

= (1− o(1)) · 1− ε
kl(X ′2, X

′
2′)

lnT

≥ (1− o(1)) · 1− ε
1 + ε

lnT

kl(X ′2, X
′
1)
.

Then (40) holds, as ε can be any positive real number, and thus the theorem holds.

F Results with∞-norm TPM Conditions

F.1 TPM Conditions with the∞-norm

We first restate the original bounded smoothness condition in [7] below, which is an∞-norm based
condition.

Condition 5 (Bounded Smoothness). We say that a CMAB-T problem instance satisfies bounded
smoothness, if there exists a continuous, strictly increasing (and thus invertible) function f(·) with
f(0) = 0, such that for any two distributions D,D′ ∈ D with expectation vectors µ = (µ1, . . . , µm)
andµ′ = (µ′1, . . . , µ

′
m), and for any Λ > 0, we have |rµ(S)−rµ′(S)| ≤ f(Λ) if maxi∈S̃ |µi−µ′i| ≤

Λ, for all S ∈ S, where S̃ = {i ∈ [m] | PrX∼D,τ{i ∈ τ(S,X)} > 0} is the set of arms that could
be triggered by action S.

Note that f(·) may depend on problem instance parameters such as m, but not on action S or mean
vectors µ, µ′.

Similar to the 1-norm case, we use triggering probabilities to modulate the bounded smoothness
condition to obtain the following TPM version:

Condition 6. (∞-Norm TPM Bounded Smoothness) We say a CMAB-T problem instance satisfies
the triggering-probability-modulated (TPM) bounded smoothness with bounded smoothness function
f(x), if for any two distributions D,D′ ∈ D with expectation vectors µ and µ′, any action S and
any Λ > 0, we have |rS(µ)− rS(µ′)| ≤ f(Λ) if maxi∈[m] p

D,S
i |µi − µ′i| ≤ Λ.

Note that Condition 6 is stronger than Condition 5 under the same bounded smoothness function
f . This is because if we have maxi∈[m] |µi − µ′i| ≤ Λ, then we have maxi∈[m] p

D,S
i |µi − µ′i| ≤ Λ.

Then if Condition 6 holds, we have |rS(µ)− rS(µ′)| ≤ f(Λ). This means that if Condition 6 holds,
we have |rS(µ)− rS(µ′)| ≤ f(Λ) if maxi∈[m] |µi − µ′i| ≤ Λ, which is exactly Condition 5.

F.2 Theorem and Proofs with∞-norm TPM Conditions

Theorem 5. Suppose a CMAB-T problem instance ([m],S,D, Dtrig, R) satisfies monotonicity (Con-
dition 1). For a fixed environment instance D ∈ D with expectation vector µ, the T -round (α, β)-
approximation regret bound using an (α, β)-approximation oracle in various cases are given below.

(1) For the CUCB algorithm on a problem instance that satisfies TPM bounded smoothness
(Condition 6) with bounded smoothness function f(x), together with ∆min > 0, the regret
is at most ∑

i∈[m]

78 lnT

(
∆i

min

f−1(∆i
min)2

+

∫ ∆i
max

∆i
min

1

f−1(x)2
dx

)

+m ·
[(

π2

6
+ 1

)
d− log2 f

−1(∆min)e0 +
π2

3
+ 1

]
·∆max;
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(2) For the CUCB algorithm on a problem instance that satisfies TPM bounded smoothness
(Condition 6) with bounded smoothness function f(x) = ax, the regret is at most

25a
√
mT lnT +m ·

[(
π2

6
+ 1

)⌈
− log2(

√
156m lnT/T )

⌉
0

+
π2

3
+ 1

]
·∆max;

We have several remarks on Theorem 5. First, the condition ∆min > 0 automatically holds if the
action space S is finite. Thus it is not an extra condition comparing to the result in [7] when actions
are set of base arms. If ∆min is zero due to infinite S, then we do not have regret bound as in (1),
but we still have regret bound as in (2). Second, the regret bound in (1) is distribution-dependent
bound, since it depends on ∆i

min, which is determined by the distribution D; regret bounds in (2)
is distribution-independent bound, since ∆max can be easily replaced by a quantity only depending
on the problem instance, such as the maximum possible reward value. Third, when ∆i

min = +∞,
∆i

min

f−1(∆i
min)2

= 0.

F.2.1 Proof of Theorem 5

In this subsection, we focus on giving a roadmap to prove Theorem 5 and showing the new techniques
we invented to improve the regret bound. The remaining part of the proof is roughly the new
calculation based on the old techniques (c.f. [7]).

In this subsection, we omit (α, β)-approximation for clarity, in other words, we assume α = β = 1.
Generalization to accommodate (α, β) approximation can be found in the discussion section.

To exploit the advantage of TPM bounded smoothness condition (Conditions 6), for each arm i, we
divide actions into groups according to pD,Si .

For convenience, we also allow to index the counters with qD,Sti > 0, such that N
i,q
D,St
i

indicates

the same counter as Ni,j with qD,Sti = 2−j .

We use a shorthand as follows. For every arm i and action S, define

qD,Si =

{
2−j , if S ∈ SDi,j ,
0, if pD,Si = 0.

Definition 8.

`t(∆, q) =


0, if q ≤ 1

2f
−1(∆),

b 6 ln t
f−1(∆)2 c+ 1, if q = 1,

b 72q ln t
f−1(∆)2 c+ 1, otherwise.

To unify the proofs for distribution-dependent and distribution-independent bounds, we introduce
a positive real number M . To prove the distribution-dependent bound, we will let M = ∆min

or M = ∆i
min in some circumstances. To prove the distribution-independent bound, we will

let M = Θ̃(T−1/2) to balance bounds for Reg({∆St ≥ M} and Reg({∆St < M}). And we
implement N t

t (Definition 7) with jimax = jmax(M) = d− log2 f
−1(M)e0 The following are three

technical claims used in the main proof, and we define the proofs of these claims to Section F.2.2.

Claim 1 (Bound of insufficiently sampled regret). For any CMAB-T problem instance, any
bounded smoothness function f(x), any algorithm, any arm i, any natural number j and any
positive real number M ,

Reg({∆St ≥M,St ∈ Si,j , Ni,j,t−1 < `T (∆St , 2
−j)}) ≤ `T (M, 2−j)M +

∫ max{∆i
max,M}

M

`T (x, 2−j) dx.

Claim 2 (Bound of sufficiently sampled regret for CUCB). For the CUCB algorithm on a prob-
lem instance that satisfies TPM bounded smoothness (Condition 6) with bounded smoothness function
f(x),

Reg({∆St ≥M,∀i,N
i,q
St
i ,t−1

≥ `T (∆St , q
St
i )}) ≤ m · (d− log2 f

−1(M)e0 + 2) · π
2

6
·∆max.

35



We continue the proof of Theorem 5. Fix a value M > 0, we have

Reg({}) = Reg({∆St < M}) +Reg({∆St ≥M})
= Reg({∆St < M}) +Reg({∆St ≥M, ∀i,N

i,q
St
i ,t−1

≥ `T (∆St , q
St
i )})

+Reg({∆St ≥M,∃i,N
i,q
St
i ,t−1

< `T (∆St , q
St
i )})

≤ Reg({∆St < M}) +Reg({∆St ≥M, ∀i,N
i,q
St
i ,t−1

≥ `T (∆St , q
St
i )})

+
∑
i∈[m]

Reg({∆St ≥M,N
i,q
St
i ,t−1

< `T (∆St , q
St
i )})

≤ Reg({∆St < M}) +Reg({∆St ≥M, ∀i,N
i,q
St
i ,t−1

≥ `T (∆St , q
St
i )})

+
∑
i∈[m]

∑
j≥0

Reg({∆St ≥M,St ∈ Si,j , Ni,qSti ,t−1
< `T (∆St , q

St
i )})

= Reg({∆St < M}) +Reg({∆St ≥M, ∀i,N
i,q
St
i ,t−1

≥ `T (∆St , q
St
i )})

+
∑
i∈[m]

∑
j≥0

Reg({∆St ≥M,St ∈ Si,j , Ni,j,t−1 < `T (∆St , 2
−j)}). (45)

For the last part, if j ≥ d− log2 f
−1(M)e0 + 1, then 2−j ≤ 1

2f
−1(M) and

1

2
f−1(∆St) ≥

1

2
f−1(M) ≥ 2−j .

By Definition 8, `T (∆St , 2
−j) = 0. Then Ni,j,t−1 < `T (∆St , 2

−j) is impossible, so∑
j≥d− log2 f

−1(M)e0+1

Reg({∆St ≥M,St ∈ Si,j , Ni,j,t−1 < `T (∆St , 2
−j)}) = 0.

Lemma 10. For every arm i, the event-filtered regret∑
j≥0

Reg({∆St ≥M,St ∈ Si,j , Ni,j,t−1 < `T (∆St , 2
−j)}) (46)

≤ 78 lnT

(
M

f−1(M)2
+

∫ max{∆i
max,M}

M

1

f−1(x)2
dx

)
+ (jmax(M) + 1) ·∆i

max.

Proof. If M > ∆i
max, it is impossible to have ∆St ≥ M and St ∈ Si,j at the same time and then

(46) = 0. Then the lemma holds trivially. So we may assume that M ≤ ∆i
max. By Claim 1,

(46) =

jmax(M)∑
j=0

Reg({∆St ≥M,St ∈ Si,j , Ni,j,t−1 < `T (∆St , 2
−j)})

≤
jmax(M)∑
j=0

(
`T (M, 2−j)M +

∫ max{∆i
max,M}

M

`T (x, 2−j) dx

)

=

jmax(M)∑
j=0

(
`T (M, 2−j)M +

∫ ∆i
max

M

`T (x, 2−j) dx

)

=

jmax(M)∑
j=0

`T (M, 2−j)M +

∫ ∆i
max

M

jmax(M)∑
j=0

`T (x, 2−j) dx. (47)

We then expand the notation `T (∆, q) (c.f. Definition 8) with

`T (∆, q) ≤

{
6 lnT

f−1(∆)2 + 1, if q = 1,
72q lnT
f−1(∆)2 + 1, otherwise.
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So for any x ∈ [M,∆i
max],

jmax(M)∑
j=0

`T (x, 2−j) = `T (x, 1) +

jmax(M)∑
j=1

`T (x, 2−j)

≤
(

6 lnT

f−1(x)2
+ 1

)
+

jmax(M)∑
j=1

(
72 · 2−j lnT

f−1(x)2
+ 1

)

=
6 lnT

f−1(x)2
+

jmax(M)∑
j=1

72 · 2−j lnT

f−1(x)2
+ jmax(M) + 1

≤ 6 lnT

f−1(x)2
+

72 lnT

f−1(x)2
+ jmax(M) + 1

=
78 lnT

f−1(x)2
+ jmax(M) + 1.

Then we continue (47) with

(47) ≤
(

78 lnT

f−1(M)2
+ jmax(M) + 1

)
·M +

∫ ∆i
max

M

(
78 lnT

f−1(x)2
+ jmax(M) + 1

)
dx

=
78 lnT

f−1(M)2
·M +

∫ ∆i
max

M

78 lnT

f−1(x)2
dx+ (jmax(M) + 1) ·∆i

max

= 78 lnT

(
M

f−1(M)2
+

∫ ∆i
max

M

1

f−1(x)2
dx

)
+ (jmax(M) + 1) ·∆i

max.

Hence the lemma holds.

Lemma 11. For event-filtered regret

Reg({∆St < M}) +
∑
i∈[m]

∑
j≥0

Reg({∆St ≥M,St ∈ Si,j , Ni,j,t−1 < `T (∆St , 2
−j)}), (48)

(1) take M = ∆min when ∆min > 0,

(48) ≤
∑
i∈[m]

78 lnT

(
∆i

min

f−1(∆i
min)2

+

∫ ∆i
max

∆i
min

1

f−1(x)2
dx

)
+m·(jmax(∆min)+1)·∆max;

(2) if f(x) = ax, then take M = a
√

156m lnT/T ,

(48) < 25a
√
mT lnT +m · (jmax(a

√
156m lnT/T ) + 1) ·∆max.

Proof. (1) If ∆St < M = ∆min, then ∆St = 0. SoReg({∆St < M}) ≤ 0. For every i ∈ [m]
and every integer j, we may replace M with ∆i

min as below.

Reg({∆St ≥M,St ∈ Si,j , Ni,j,t−1 < `T (∆St , 2
−j)}) (49)

= Reg({∆St ≥ ∆min, St ∈ Si,j , Ni,j,t−1 < `T (∆St , 2
−j)})

= Reg({∆St ≥ ∆i
min, St ∈ Si,j , Ni,j,t−1 < `T (∆St , 2

−j)}).

Then apply Lemma 10 with M = ∆i
min, we have

(48) =
∑
i∈[m]

∑
j≥0

Reg({∆St ≥M,St ∈ Si,j , Ni,j,t−1 < `T (∆St , 2
−j)})

≤
∑
i∈[m]

[
78 lnT

(
∆i

min

f−1(∆i
min)2

+

∫ ∆i
max

∆i
min

1

f−1(x)2
dx

)
+ (jmax(∆i

min) + 1) ·∆i
max

]

≤
∑
i∈[m]

78 lnT

(
∆i

min

f−1(∆i
min)2

+

∫ ∆i
max

∆i
min

1

f−1(x)2
dx

)
+m · (jmax(∆min) + 1) ·∆max.
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(2) By Lemma 10, for every arm i,∑
j≥0

Reg({∆St ≥M,St ∈ Si,j , Ni,j,t−1 < `T (∆St , 2
−j)})

≤ 78 lnT

(
M

f−1(M)2
+

∫ ∆i
max

M

1

f−1(x)2
dx

)
+ (jmax(M) + 1) ·∆i

max

= 78 lnT

(
M

(a−1M)2
+

∫ ∆i
max

M

1

(a−1x)2
dx

)
+ (jmax(M) + 1) ·∆i

max

= 78 lnT

(
1

a−2M
+

∫ ∆i
max

M

1

a−2x2
dx

)
+ (jmax(M) + 1) ·∆i

max

≤ 78 lnT

(
1

a−2M
+

1

a−2M

)
+ (jmax(M) + 1) ·∆i

max

=
156 lnT

a−2M
+ (jmax(M) + 1) ·∆max. (50)

Reg({∆St < M}) < TM as the regret in each round is less than M . So by (50) and take
M = a

√
156m lnT/T ,

(48) < TM +
156m lnT

a−2M
+m · (jmax(M) + 1) ·∆max

= a
√

156mT lnT + a
√

156mT lnT +m · (jmax(M) + 1) ·∆max

< 25a
√
mT lnT +m · (jmax(a

√
156m lnT/T ) + 1) ·∆max.

Proof of Theorem 5. (1) Since ∆min > 0, we can take M = ∆min. By Lemma 11(1) and
Claim 2, we continue Inequality (45) as below.

(45) ≤
∑
i∈[m]

78 lnT

(
∆i

min

f−1(∆i
min)2

+

∫ ∆i
max

∆i
min

1

f−1(x)2
dx

)
+m · (jmax(∆min) + 1) ·∆max

+m · (jmax(∆min) + 2) · π
2

6
·∆max

=
∑
i∈[m]

78 lnT

(
∆i

min

f−1(∆i
min)2

+

∫ ∆i
max

∆i
min

1

f−1(x)2
dx

)

+m ·
[(

π2

6
+ 1

)
d− log2 f

−1(∆min)e0 +
π2

3
+ 1

]
·∆max.

(2) Take M = a
√

156m lnT/T , by Lemma 11(2) and Claim 2, we continue Inequality (45) as
below.

(45) ≤ 25a
√
mT lnT +m · (jmax(a

√
156m lnT/T ) + 1) ·∆max

+m · (jmax(a
√

156m lnT/T ) + 2) · π
2

6
·∆max

= 25a
√
mT lnT +m ·

[(
π2

6
+ 1

)⌈
− log2(

√
156m lnT/T )

⌉
0

+
π2

3
+ 1

]
·∆max.

F.2.2 Proof details

In this subsection, we finish the remaining part of the proof, i.e. the proofs of the claims. We first
prove the bound of sufficiently sampled part, namely Claims 2. To do so, we define two kinds of
niceness, that the difference between µi and µ̂i is small enough and that Ti is large enough comparing
with Ni,j , and then show that both kinds of niceness are satisfied with high probability and if so, it is
impossible to play a bad action. We then prove Claim 1. In this subsection we assume M is already
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defined as a positive real number as in the proof of Theorem 5. Notations µ̂t, µ̂i,t, µ̄t, µ̄i,t denote the
values of µ̂, µ̂i, µ̄, µ̄i at the end of round t, respectively.

We now prove the claims.

Proof of Claim 2. Explicitly,

Reg({∆St ≥M, ∀i,N
i,q
St
i ,t−1

≥ `T (∆St , q
St
i )})

=

T∑
t=1

E[∆St · I{∆St ≥M,∀i,N
i,q
St
i ,t−1

≥ `T (∆St , q
St
i )}]

≤
T∑
t=1

Pr{∆St ≥M,∀i,N
i,q
St
i ,t−1

≥ `T (∆St , q
St
i )} ·∆max. (51)

We only need to bound Pr{∆St ≥ M,∀i,N
i,q
St
i ,t−1

≥ `T (∆St , q
St
i )}, i.e. the probability that for

every i, there is N
i,q
St
i ,t−1

≥ `T (∆St , q
St
i ), but an action St with ∆St ≥ M is still played. Let

event Et = {∆St ≥M,∀i,N
i,q
St
i ,t−1

≥ `T (∆St , q
St
i )}. We now prove the claim that event Et is not

empty only when ¬(N s
t ∧ N t

t), or equivalently if both the sampling and triggering are nice at the
beginning of round t, then event Et is empty. If the sampling is nice at the beginning of round t, then

µ̄i,t−1 = min{µ̂i,t−1 + ρi,t, 1} ≥ µi.

By monotonicity, rS(µ̄t−1) ≥ rS(µ) for every action S, so optµ̄t−1
≥ optµ. As action St is

chosen by Oracle with input µ̄t−1, it must be that rSt(µ̄t−1) = optµ̄t−1
≥ optµ, so rSt(µ̄t−1)−

rSt(µ) ≥ optµ − rSt(µ) = ∆St . We are going to show the claim by assuming N s
t ∧ N t

t and
showing ∀i, pSti |µ̄i,t−1−µi| < f−1(∆St), then by∞-norm TPM bounded smoothness (Condition 6),
rSt(µ̄t−1)− rSt(µ) < ∆St , which is a contradiction. Note that here we do need strict inequality “<”
instead of “≤” when applying Condition 6. This can be done because i has at most m choices and the
bounded smoothness function f is continuous and strictly increasing, so we can use a small enough
ε > 0 such that ∀i, pSti |µ̄i,t−1−µi| ≤ f−1(∆St−ε), and thus rSt(µ̄t−1)−rSt(µ) ≤ ∆St−ε < ∆St .

Below we omit St from ∆St , p
St
i and qSti . If f−1(∆) > pi, then pi|µ̄i,t−1−µi| ≤ pi|1−0| < f−1(∆)

without any dependency on sampling. If f−1(∆) ≤ pi, then qi ≤ 2d− log2 f
−1(∆)e ≤ 2jmax(M).

When the sampling is nice (Definition 4), µ̄i,t−1 ≤ µ̂i,t−1 + ρi,t < µi + 2ρi,t. On the other hand,
|µ̄i,t−1 − µi| ≤ |1− 0| = 1. When the triggering is nice (Definition 7), if

√
6 ln t

1
3Ni,qi,t−1·qi

≤ 1, then

2ρi,t ≤
√

6 ln t
1
3Ni,qi,t−1·qi

. So regardless whether
√

6 ln t
1
3Ni,qi,t−1·qi

≤ 1, |µ̄i,t−1 − µi| ≤
√

6 ln t
1
3Ni,qi,t−1·qi

.

Event Et implies that Ni,qi,t−1 ≥ `T (∆, qi) ≥ `t(∆, qi) (since t ≤ T ). So

pi|µ̄i,t−1 − µi| ≤ pi

√
6 ln t

1
3Ni,qi,t−1 · qi

≤ pi

√
6 ln t

1
3`t(∆, qi) · qi

< pi

√
6 ln t

1
3

72qi ln t
f−1(∆)2 · qi

= pi

√
f−1(∆)2

4q2
i

≤ pi

√
f−1(∆)2

p2
i

= f−1(∆).

Hence, the claim holds.

The claim implies that Pr{Et} ≤ Pr{¬(N s
t ∧N t

t)} ≤ Pr{¬N s
t }+ Pr{¬N t

t}. By Lemmas 3 and 4,
we have Pr{E} ≤ (2 + jmax(M))mt−2. Plugging it into Inequality (51), we have

Reg({∆St ≥M,∀i,N
i,q
St
i ,t−1

≥ `T (∆St , q
St
i )}) ≤

T∑
t=1

(2 + jmax(M))mt−2 ·∆max

≤ m · (d− log2 f
−1(M)e0 + 2) · π

2

6
·∆max.
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Proof of Claim 1. Let x be any real number that x ≥M > 0. In any round when an action S with
S ∈ Si,j is played, Ni,j is increased by 1. So

T∑
t=1

Pr{St ∈ Si,j , Ni,j,t−1 < `T (x, 2−j)} ≤ `T (x, 2−j).

If we add an additional restriction ∆St ≥ x, the probability will not increase, so

T∑
t=1

Pr{∆St ≥ x, St ∈ Si,j , Ni,j,t−1 < `T (x, 2−j)} ≤ `T (x, 2−j).

We use the shorthand ESti,j to denote the event {St ∈ Si,j , Ni,j,t−1 < `T (x, 2−j)}. Suppose X is a
non-negative random variable with Pr{X ≥M} = p and Pr{X = 0} = 1− p. Then by the basic
principal on expectation, we have

E[X] =

∫ +∞

0

Pr{X ≥ x} dx =

∫ M

0

Pr{X ≥ x} dx+

∫ +∞

M

Pr{X ≥ x} dx

= pM +

∫ +∞

M

Pr{X ≥ x} dx.

Applying the above, we have

Reg({∆St ≥M} ∩ E
St
i,j)

=

T∑
t=1

E[I({∆St ≥M} ∩ E
St
i,j) ·∆St ]

=

T∑
t=1

(
Pr[{∆St ≥M} ∩ E

St
i,j ] ·M +

∫ +∞

M

Pr[{∆St ≥ x} ∩ E
St
i,j ] dx

)

=

T∑
t=1

Pr[{∆St ≥M} ∩ E
St
i,j ] ·M +

∫ +∞

M

T∑
t=1

Pr[{∆St ≥ x} ∩ E
St
i,j ] dx

=

T∑
t=1

Pr[{∆St ≥M} ∩ E
St
i,j ] ·M +

∫ max{∆i
max,M}

M

T∑
t=1

Pr[{∆St ≥ x} ∩ E
St
i,j ] dx

≤ `T (M, 2−j)M +

∫ max{∆i
max,M}

M

`T (x, 2−j) dx.

F.3 Comparison between 1-norm and∞-norm

In this paper, we give upper bounds of regret for CMAB-T problems that satisfy TPM bounded
smoothness with 1-norm or with∞-norm. We emphasis Theorem 1 and Theorem 5 do not imply
each other. For clarity, we use a1 and a∞ in place of a in bounded smoothness function f(x) = ax.
If a CMAB-T problem instance satisfies TPM bounded smoothness with 1-norm with f(x) = a1x,
then it also satisfies TPM bounded smoothness with∞-norm with f(x) = a∞x, where a∞ = Ka1.
Conversely, if a CMAB-T problem instance satisfies TPM bounded smoothness with∞-norm with
f(x) = a∞x, then it also satisfies TPM bounded smoothness with 1-norm with f(x) = a1x, where
a1 = a∞. For distribution-dependent upper bound, according to Theorems 1 and 5, we have
O(

a21Km lnT
∆ ) and O(

a2∞m lnT
∆ ) respectively. For a problem instance that satisfies TPM bounded

smoothness with 1-norm with f(x) = a1x, if we use the bound for ∞-norm with a∞ = Ka1,
the result will be O(

a21K
2m lnT
∆ ). For a problem instance that satisfies TPM bounded smoothness

with∞-norm with f(x) = a∞x, if we use the bound for 1-norm with a1 = a∞, the result will be
O(

a2∞Km lnT
∆ ). Both give an additional K factor. It is similar for distribution-independent bound,

which will have an additional
√
K factor in both cases.
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G Refined regret bounds for probabilistically triggered linear bandit

In this section, we present our new result that takes advantages from special properties on certain
instances of combinatorial semi-bandits, e.g. matroid bandits [13] and classical combinatorial semi-
bandits [15]. In Theorem 1, the regret bound is taking summation over all base arms. In those special
cases, the achieved regret bounds only take summation over the base arms that are not in the optimal
action.

We give a general condition to characterize this property and generalize to the case with probabilistic
triggering. In particular, it is satisfied by CMAB-T with linear reward, which are CMAB-T problem
instances such that, for each action S, the expected reward is linear with respect to the expectations
of arms and independent to the arms with pSi = 0, i.e. there exists a vector aS ∈ Rm, such that

rS(µ) = aS · µ, (52)

and pSi = 0 implies (aS)i = 0. We show that our regret bounds given in this section implies
state-of-the-art regret bounds for classical combinatorial semi-bandits. We also show that the regret
bounds can asymptotically match the state-of-the-art regret bounds for matroid semi-bandits by
exploiting its special property.

G.1 Model

First, we make a natural assumption that there exists at least one optimal action Sopt. This assumption
is always satisfied unless the action space S is infinite and the supremum of expected reward is not
achieved by any action.

Although the CUCB algorithm does not know the actual expectation vector µ, we use µ in the
analysis. For every action S, arbitrarily designate a reference optimal action ro(S), which is an
optimal action under µ.

The intuition of the following refined condition is as follows. For CMAB-T with linear reward,
although most regret comes from the over-estimation in CUCB algorithm, we notice that sometimes
over-estimation does not result in choosing a non-optimal action because it increases the expected
reward for both optimal actions and non-optimal actions. For any arm i, if (aS)i ≤

(
aro(S)

)
i
, then

the over-estimation on arm i favors the optimal action ro(S). So if S is played, it is due to the
over-estimation on other arms. And if (aS)i >

(
aro(S)

)
i
, we can replace the bounded smoothness

factor with the relative factor ((aS)i −
(
aro(S)

)
i
). We characterize this property as the following

general condition.
Condition 7 (Relative 1-Norm TPM Bounded Smoothness). For a CMAB-T problem instance, a
distribution D ∈ D with expectation vector µ, and a reference optimal action mapping ro(·), we say
they satisfy relative 1-norm TPM bounded smoothness, if there exists a vector B ∈ Rm such that, for
every distribution D′ ∈ D with expectation vector µ′ that µ′ ≥ µ, if rS(µ′) ≥ rro(S)(µ

′), then

rro(S)(µ)− rS(µ) ≤
∑
i∈[m]

Bip
D,S
i (µ′i − µi). (53)

Lemma 12. For problem instance of CMAB-T with linear reward and a reference optimal action
mapping ro(·), let

Bi = sup
S∈S|pD,Si >0

{
max

(
(aS)i −

(
aro(S)

)
i
, 0
)
/pD,Si

}
.

Then they satisfy relative 1-norm TPM bounded smoothness.

Proof. We need to show that µ′ ≥ µ and rS(µ′) ≥ rro(S)(µ
′) implies (53). Since rS(µ′) ≥

rro(S)(µ
′), we have

(
aS − aro(S)

)
· µ′ ≥ 0. Then we complete the proof by

aro(S) · µ− aS · µ ≤
(
aS − aro(S)

)
· (µ′ − µ) ≤

∑
i∈[m]

Bip
D,S
i (µ′i − µi).

If the reference optimal action ro(S) are the same for all the actions, we can denote it as ro. For
linear bandit, the definition of Bi can be simplified to Bi = (amax)i − (aro)i, where (amax)i =
supS∈S(aS)i.
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G.2 Results

Theorem 6 shows that the regret bounds given in Theorem 1 still holds when the CMAB-T problem
satisfies the relative 1-norm bounded smoothness.
Theorem 6. For the CUCB algorithm on a CMAB-T problem instance that satisfies monotonicity
(Condition 1), and a distribution and a reference optimal action mapping ro(·) that satisfy the relative
1-norm TPM bounded smoothness (Condition 7) withB, (1) if ∆min > 0, we have gap-dependent
bound

Regµ,α,β(T ) ≤
∑
i∈[m]

576B2
iK lnT

∆i
min

+
∑
i∈[m]

(⌈
log2

2BiK

∆i
min

⌉
0

+ 2

)
· π

2

6
·∆max +

∑
i∈[m]

4Bi;

(54)

(2) we have gap-independent bound (it is not distribution-independent, because it depends on ro(·))

Regµ,α,β(T ) ≤ 12

√∑
i∈[m]

B2
imT lnT +

(⌈
log2

T

18 lnT

⌉
0

+ 2

)
·m · π

2

6
·∆max +

∑
i∈[m]

2Bi.

(55)

Proof. The proof is mostly the same as the proof of Theorem 1 and its auxiliary lemmas. For Lemma
5, we use the definitions of κi,j,T (M, s) and `i,j,T (M) defined in Appendix B.4, where B is replaced
by Bi. Then Lemma 5 still holds as follows. In the proof of Lemma 5, the 1-norm TPM bounded
smoothness is used to show

∆St ≤ B
∑
i∈S̃t

pD,Sti (µ̄i,t − µi). (10)

Since ∆St = rro(St)(µ)− rSt(µ), the relative 1-norm TPM bounded smoothness implies

∆St ≤
∑
i∈S̃t

Bip
D,St
i (µ̄i,t − µi).

Then the remaining proof of Lemma 5 still holds.

We replace B with Bi, then the derivation of Lemma 6 still works.

One argument in the proof of Theorem 1 needs to be modified. When setting the maximal group
number jimax in the proof of Theorem 1, we now set jimax =

⌈
log2

2BiK
∆mini

⌉
0
. Then the theorem

follows the proof of Theorem 1.

G.3 Comparison

Matroid bandits [13] and classical linear combinatorial semi-bandits [15] are special cases of CMAB-
T with linear reward, where aS are a 0-1 vectors. We show that these kinds of bandits can be extended
to the case of probabilistically triggered arms while the regret bounds are asymptotically the same.

Let ro be the reference optimal action. Since the actions in matroid bandits and classical linear
combinatorial semi-bandits are virtually sets, we use i ∈ ro to denote arm i is in action ro, i.e.
(aro)i = 1. Since aS is a 0-1 vector for every S, we have (amax)i = 1 and

Bi = (amax)i − (aro)i =

{
0, i ∈ ro;

1, i 6∈ ro.

Theorem 6 gives regret bound

Regµ,α,β(T ) ≤
∑
i∈[m]

576B2
iK lnT

∆i
min

+O(1) =
∑
i 6∈ro

576K lnT

∆i
min

+O(1).

For the classical linear combinatorial semi-bandits, we make the following arguments. First, if
without probabilistically triggered arms, the adaptation used to prove Theorem 6 can be used in
Theorem 4, to get regret bound (see Eq.(5) for the detail of the constant O(1))∑

i6∈ro

48K lnT

∆i
min

+O(1),
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which asymptotically matches the result in [15] and improves on the constant factor. Second,
this shows that the classical linear combinatorial semi-bandits can be generalized to the case with
probabilistically triggered arms while still enjoying the benefit that the regret bound takes summation
only over non-optimal arms. Recall the definition of ∆i

min, which is the minimal gap for non-optimal
actions that might trigger arm i. If i is in the optimal action, then very likely ∆i

min = ∆min. That
shows why it is important to exclude arms in the optimal action from the regret bound.

For matroid bandits, the analysis for classic combinatorial semi-bandits gives a regret bound∑
i6∈ro

48K lnT

∆i
min

+O(1),

with an extra O(K) factor comparing with [13]. That is because of the special property of matroid
that the error on each arm cannot accumulate. So if a non-optimal action is played, that must be
caused by the error on a single arm. That makes it valid to set the bound of sufficiently sampled
threshold to `T (∆i

min) = Θ( lnT
(∆i

min)2
) instead of `T (∆i

min) = Θ( K
2 lnT

(∆i
min)2

). Refining this part of
analysis is possible, but it would be too specific for the discussion in this paper.
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