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MOTIVATION

Finite temperature quantum simulations
m) Strongly correlated/frustrated materials

mp  Quantum SDP solvers, Quantum machine learning

New tools for the analysis of many body systems

m) | ocal recovery in many body systems

mp Fxotic phases/topological order
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STRONG SUB-ADDITIVITY

Strong sub-additivity (SSA): _

I,(A:C|B) = S(AB) + S(BC) — S(B) — S(ABC) > 0

Area Law for mixed states:

I(A: A%) = S(A) + S(A°) — S(AA°) < c|oA

mp Quantitative extension to the Area Law

I(ABlBn_|_1)—I(ABlBn):I(ABn+1|BlBn)

Tells us how rapidly the area law Is saturated




LOCAL RECOVERY MAPS

Strong subadditivity (SSA): 4| B -
I,(A:C|B) = S(AB) + S(BC) — S(B) — S(ABC) > 0

Equality
I,(A:C|B)=0 <  Rap(ppc)=p

1/2 —1/2 —1/2 1/2
Petz map Rag(0) = pinps “ops'*pin
M. Ohya and D. Petz, (2004)
Markov State P = DjPaBE ® PBEC

P. Hayden, et. al., CMP 246 (2004)

m) there exists a disentangling unitary on B.



Approximately
CATTRFCOVERY MAPS
Strengthening SSA:

I,(A:C|B) > —2log F(p, Rap(pBc))

O. Fawzi and R. Renner, CMP 340 (2015)

Rotated Petz map

a4 —1_ ¢ Ly Lo
(o) — / Bt it oo Mapp it

M. Junge, et. al. arXiv:1509.07127
D. Sutter, et. al. arXiv:1604.03023

ABC are arbitrary

m) Related to theory of approximate error
correction (subspaces) S. Flammia ct.al. arXiv:1610.06169



CLASSIFICATION

Fxact recovery

For any A, and B shielding A:
I,(A:C|B)=0

H=HP

p > 01s the Gibbs state of a local
commutmg

W. Brown, D. P

<=
4: p = |¥)(@| is the ground state ofa
local commuting H




CLASSIFICATION

Exact recovery
For any A, and B shielding A:

H=HP

L I,(A:C|B) =0
4> p > 0sthe Gibbs state of a local
commuting

W. Brown, D. Poulin, arXiv:1206.0755

4: p = |¥){¥| is the ground state of a
local commuting H

Approximate recovery

For any A, and B shielding A: I,(A:C|B) < Ke
? p>0 isthe Gibbs state of a quasi-local Hamiltonian

K. Kato, F Brandao, arXiv:1609.06636

? p = |Y){2| is the ground state of a gaped quasi-local Hamiltonian




Dynamics?



MON TE-CARLO SIMULATIONS

Want to evaluate: (@) = 7(z)Q(z) o

classical Gibbs state

|[dea: - obtain a sample configuration from the distribution 7

- Set up a Markov chain with 7 as an approximate
fixed point
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MON TE-CARLO SIMULATIONS

Want to evaluate: (@) = 7(z)Q(z) o

classical Gibbs state

|[dea: - obtain a sample configuration from the distribution 7

- Set up a Markov chain with 7 as an approximate
fixed point

Metropolis algorithm: (- start with random configuration)

- Flip a spin at random, calculate energy
- It energy decreased, accept the flip
- It energy increased, accept the flip with probability paip = €

- Repeat until equilibrium is reached Equilibl’ium?

_BAE




ANALY TIC RESULTS

Note: - Glauber dynamics (Metropolis) is modelled by a
semigroup P, = etk



ANALY TIC RESULTS

Note: - Glauber dynamics (Metropolis) is modelled by a
semigroup

}%;::GtL

Fundamental result for Glauber dynamics:

T has exponentially
decaying correlations

€

c

=) o intermediate mixing

DENC

DENC

ent o

N g

ent o1

P mixes in time O(log(N))

L is gapped

F. Martinelli, Lect. Prof. Theor. Stats , Springer
A. Guionnet, B. Zegarlinski, Sem. Prob., Springer

" boundary condrtions in 2D
" specifics of the model



QUANTUM GIBBS SAMPLERS

Commuting Hamiltonian T, = e'*
| — o — id
Davies maps are another o ze;\ jo — id)
. : J
generalhzann of Glauber R;p is the Petz recovery map!
dynamlcs MJK and K. Temme, arXiv:1505.07811 N :
The exists a partial extension of the *

statics = dynamics theorem

MIJK and F. Brandao, CMP 344 (2016)




QUANTUM GIBBS SAMPLERS

Commuting Hamiltonian T, = e'*
Davies maps are another g %:\(Rj@ g
. : J
generalhzaﬂon of Glauber R.s is the Petz recover R
dynamlcs MJK and K. Temme, arXiv:1505.07811 L R e e E
The exists a partial extension of the *

statics = dynamics theorem

MIJK and F. Brandao, CMP 344 (2016)

Non-commuting Hamiltonian

= Z;(Rja ) m) no longer frustration-free

yAS
R is the rotated Petz map! ™ Theorem % does not hold
mp Davies maps are non-local



New approach



L attice: ACA A
i 4 N
. . h; A
Hamiltonian:  Ha= )  hz — L
ZCA
hy =0 for |Z| > K .

SET TING

Gibbs states: p* = e P24 /Tr[e PH4] s the Gibbs state

\NOte:

restricted to A

Superscript for domain of definition of Gibbs state,
while subscript for partial trace.



THE MARKOV CONDITION

Uniform Markov: l

C \
Any subset X = ABC C Awith B AW
shielding A from C' in X ,we i
have . B
Ix(A:C|B) < §(¢) ‘
[=4%)
c |Z|a|B

\

Recall: p* = e PHx /Tr[ePHx]

Also must hold for non-
contractible regions L




CORRELATIONS

Uniform Clustering:

Any subset X = ABC c A with
supp(f) C A and supp(g) C B

Covyx (f,g) < €(f)

|

Cov,(f,g) = |tr|pfg] — tr|pf]tr|pg]|

|Note: Uniform Clustering
follows from uniform Gap




L OCAL PERTURBATIONS

Commuting Hamiltonian

A A
o, PE —pH

f [HA7HB] _q A -
abe
Non-commuting Hamiltonian \
General e PEV) — Oye=PHQOY, °
|0y — Oy | < cre™ 2 = y(¢) 10y < eflIlVI

MB. Hastings, PRB 201102 (2007)

@rks fV @




APPROXIMATIONS

Uniform Markov C [

I,x(A:C|B) < ()

Uniform clustering .

Covyx (f,9) < e(8) (B¢ o,

L ocal perturbations

le=PH+Y) _ 0L e=PHOL|| < cre™%2" = 4(0) A




LOCAL INDISTINGUISHABILITY

Result |I:

Any subset X = ABC C Awith B C
shielding A from C' in X ,if P 1Is

uniformly clustering, L

ltrpc[p??C] = trplp? 7|l < | AB|(e(0) + ()

|

L Consequence: | Efficient evaluation of local expectation values

(04) = tr[p"Oa] = tr[p"P O]



LOCAL INDISTINGUISHABILITY

Result I: - Proof idea:

Any subset X = ABC C A with B C 566860660
shielding A from C' in X ,if P 1Is >

-
uniformly clustering, A
B

ltrpc[p??C] = trplp? 7|l < | AB|(e(0) + ()

| Remove pleces of the
boundary of B one by one

telescopic sum ltreolo™ — p%% @ pC)lli < D |ltreelp™ i+t — p™]||;

J

Bound each term  |jtrpc[p™i+* — p%]||1 = sup |tr[ga(O%p™ 05T — p™9]]

gA
L, ¢
p— COVpXj (gA, O] TOJ)



STATE PREPARATION

Main Result:

T P 1s uniformly clustering and uniformly Markov, then there
exists a depth D + 1 circurt of quantum channels F =Fp; ---Fy of
local range O(log(L)), such that

IF () = pllr < cLP (e(0) +8(0) + ()

|

MIJK, F. Brandao, arXiv:1609.07877



STATE PREPARATION

Main Result:

It P 1s uniformly clustering and uniformly Markov, then there
exists a depth D + 1 circurt of quantum channels F =Fpy; ---Fy of
local range O(log(L)), such that

IF@) = plli < eLP(e(6) + 5(0) +7(8)

|

Corollary:

MIJK, F. Brandao, arXiv:1609.07877

T P 1s uniformly clustering and uniformly Markov, then there

exists a depth M = O(log(L)) circurt of strictly local guantum
channels F =F,, ---Fq, such that

E) = plly < cL” (e(£) 4+ 6(€) 4+ ~(0))




PROOF OUTLINE (2D)

Step I: L |
AL A @ (Cover the lattice in concentric
7 squares A_C AC A,
M4 £ ® By the Markov condition
A _

IR (pac) — pllr < Na(y(£) + 6(£))

® By | ocal indistinguishability

Ac
tralpae | — pacllli < Nae(¥)

® [ocal cpt map Fu = R tra

IFA(p%) — pllr < Nale(€) +~(€) +6(£))

=) f we can build the lattice A% with holes, then we can
reconstruct the original lattice.



PROOF OUTLINE (2D)

Step 2: . .
—=22€Pp £ A ® Break up the connecting regions
B_CBCB,
B | ® By the Markov condition
B 14 AS o .
A- 50 IRG, (p5) = "l < Na(1(0) +6(0)

® By | ocal indistinguishability
lerslp -] = pse]ll1 < Npe(?)

a°
® |ocal cpt map Fp = R trs

[FaFa(p="-") = plli < (Na+ Np)(e(f) +~(£) + ()

If we can build the lattice (A_B_)¢, then we can reconstruct
the original lattice.



PROOF OUTLINE (2D)
Step 3:

® Project onto p“

@ By |ocality
Fe(y) = ptreld]

® Fnally ||[FecFaFa(y) —plli < (No + Na+ Np)(e£) +v(¢) +(£))

m) [he entire lattice can be built from a local circuit of cpt maps.



GROUND STATES?

Proof ingredients @ (uniform) Local indistinguishability

@ (uniform) Markov condition

@ | ocal definition of states



GROUND STATES?

Proof Ingredients e (uniform)

@® (uniform)

_ocal Indistinguishability

Markov condrtion

@ | ocal definition of states

= for injective PEPS, proof can be reproduced exactly.

m) Connection to the topological entanglement entropy



TOPOLOGICAL ENTANGLEMENT

A
- Iz \ Area law:
C |¢v|A|B
Al . I(A:C|B) <ell)+v
V |s a topological contribution
. J

= L ocal indistinguishability and zero topological
entanglement implies efficient preparation



OUTLOOK

Spectral gap analysis, entanglement spectrum

The same strategy might work for proving gaps of parent
Hamiltonians of injective PEPS

Relaxing the assumption on uniform decay

More natural assumptions

Other applications of local indistinguishability to
many body systems

Complete the classification



THANKYOU!



SPECTRAL GAP

VVe showed: |FeFpFa(v) — plly < LPe™*/*

Deﬂﬂe FA — €t£A L4 = Z(FAz - id)

J

TFa,Fp,Fc had the same fixed point,then £= L4+ Lp + Lo
IS gaped, by the reverse detectability lemma. 4 asshu et ot by ke 893, 205142 2016)

m) [he same strategy might work for proving gaps of parent
Hamiltonians of injective PEPS

m) New strategy for proving the gap of the 2D AKLT model!!

All about boundary conditions




