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Motivation

When many-body systems are described by local (short-range)
Hamiltonians, states have special correlation properties.

Area law for gapped ground states: restricts entanglement
(rigorously proven for 1D systems [Hastings, 07])

Area law for Gibbs (thermal) states: restricts correlations
(proven for any dim. [Wolf, et al., 07])

> efficient descriptions of many-body states (MPS, PEPS, MPO,...)

A useful consequence of area laws|{ Q. How to characterize ? |

small “conditional mutual information (CMI)” on certain regions
(Applications: [Kim, “12,'13], [Swingle & Kim, 14], [Kastryano & Brandao, ‘16] ...)




Motivation

When many-body systems are described by local (short-range)
Hamiltonians, states have special correlation properties.

This talk: “approximate I\jlarkov chains”

1. Characterizing states with small CMI in terms of Gibbs states

(cf. previous talk by Kastoryano)

2. An application to “entanglement spectrum” of 2D gapped systems

A useful consequence of area Iawsw characterize ?]

small “conditional mutual information (CMI)” on certain regions
(Applications: [Kim, “12,'13], [Swingle & Kim, 14], [Kastryano & Brandao, ‘16] ...)




Outline of this talk

Part I: A characterization of approximate Markov chains

@ Area law for Gibbs States

€ Quantum Markov Chains & Approximate Quantum Markov
Chains

€ Equivalence to Gibbs states of short-range Hamiltonians

Part Il: An application to entanglement spectrum in 2D systems

€ Topological Entanglement Entropy and Entanglement
Spectrum

@ Previous Results on Entanglement Spectrum

@ Locality of Entanglement Hamiltonian and Spectrum




Part I:
A characterization of approximate
Markov chains



Area law for Gibbs states

i ) WLOG: nearest-neighbor
Hamiltonian J

/
H=) hii Il <]
L

Gibbs state
1
— _pBH / =t —-pH
p=—e ", re
[Wolf, et al., ‘07]

I(A:B), = S(A), + S(B), — S(AB), < 28J|9A

> S(A), = —trpylog,pa



Conditional Mutual Information of Gibbs States

The conditional mutual information:

I(A:C|B), =1(A:BC), —I(A:B),= 0

* Monotonicity of MI: I(A: BC), = I(A:B),

— I(A:By), < I(A:B1By), < - < I(A:By ...Bp), < 2|04

/ B\ 1(A: B, ---Bi)p
2 A

L < 2B]10A4]

small for large m !

I(A Bm|B1 Bm—l)p
_______ T iD

m—1 m



Quantum Markov Chain (for three systems)

A B C
® ® ®

If I(A: C|B), = 0, quantum state p,p is called a Quantum Markov
Chain A— B — C.

1: [Hayden, et al., 03], [Brown & Poulin, “12]

1. There exists a CPTP-map Ag_g-: B = BC s.1.

Papc = idp Q@ Ag_pc(PaB) A E - - ~€
o—©0 )

2. There exists a Hamiltonian Hygr = Hag + Hp( S.1.

papc = e 48C [Hyp, Hge]l = 0 (papc > 0)



Longer Chains

¢t AjAy Ay A;

[\k o—oC O—O0—O0—"—C—=0 0}—0——-0

Ay Ay - Ay

@)
@)
@)
@)
@)
@)
@)

p4 onthe chain A4, ... A, is a (quantum) Markov chain if
I(Al "'Ai—l:Ai+1 AnlAL)p — O

for arbitrary i € [n].

*We can generalize the concept of
Markov chains to general graphs
as Markov networks



Hammersley-Clifford Theorem (1D)

[Hammersley&Clifford, ‘71]:
Random variables X, X5, ..., X,, forms a (positive) Markov chain

if, and only if, the distribution can be written as

1
DX, Xy Xy (X1) X2, 00ey Xp) = - €XP <— Z h (x;, xi+1)>
i

X1 X, hi(x;, xi+1) o Xp

o—=oC O O O O O o—O O—1—oO O O O O O O O

* also holds for Markov networks

Positive Markov chains

)

Gibbs distributions of 1D short-range Hamiltonians




Quantum Hammersley-Clifford Theorem (1D)

[Leifer & Poulin, '08], [Brown & Poulin, “12]:
A quantum state p,. 4 > 0 on a chain forms a Markov chain
if, and only if, the state can be written as

1
Pa,..A, = 7 exp <— Z hAi,AiH) ) lhAi,AiH; hAj,AjH] =0

l

A4, A, M o
U4ali+1

o—=oC O O O O O o—O O—1—oO O O O O O O O

| * also holds for Markov networks

Positive quantum Markov chains
2. There exists a Hamil’ﬁFian Hype = Hyp + Hp S.1.

) HAB»HBC] =0

—Hap

PaBc = €

Gibbs states of 1D commuting short-range Hamiltonians
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Quantum Hammersley-Clifford Theorem (1D)

[Leifer & Poulin, '08], [Brown & Poulin, “12]:
A quantum state p,. 4 > 0 on a chain forms a Markov chain
if, and only if, the state can be written as

1
pAl...An — E exp <_ Z hAi,Ai+1> ’

l

A4, A, M o
U4ali+1

o—=oC O O O O O o—O O—1—oO O O

lhAiJAi+1’hAjJAj+1] =0

0
0
0

0

l * also holds for Markov networks

2. There exists a Hamiltonian Hyg = Hsg + Hg( S.1.

papc = e 148C [Hyp, Hpe] = 0
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Properties of Approximate Markov Chains

How about states having small but non-zero CMI?

Naive guess: all properties of Markov chains approximately hold
for approximate Markov chains

Classical: / relative entropy

I(X:Z|Y), = q:l\%yﬁovs(pXYZ”CIXYZ)

I(X: Zly)p S € © Pryz ®: Qxvz
However...

Quantum:

I(A: ClB)p # min S(Pacll9asc) [binson, et al., ‘06]
o:Markov

3 property of Markov chains which is invalid for approximate Markov chains
12



Local Recoverability of States with Small CMI

Some properties still approximately hold for approximate Markov chains

[Fawzi & Renner, ‘15]:
There exists a CPTP-map Ag_ g S.1.

I(A:C|B), = —21082F (pasc, Ap—pc(Pap))

I(A:C|B), = 0

L

1. There exists a CPTP-map Ag_g-: B = BC s.1.
Papc = 1day ® Appc(Par)

*The converse part can be shown by using the Alicki-Fannes inequality.
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Question

Q. How about the quantum Hammersley-Clifford theorem
for approximate Markov chains ?

Quantum approximate Markov chains

T4
0 4

Gibbs states of 1D short-range Hamiltonians
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Approximate Quantum HC Theorem (1D)
AA, . A4 A; Ajiq .. Ay

[O O O O O O O O O}—O—% O O O O O O O]

A Ay - A,

p4 IS a e —approximate Markov chain if

I(Al "'Ai—l:Ai+1 AnlAl)p S &

for arbitrary i € [n].

Result 1.
For any £ —approximate Markov chain p, 4, 4., there exists a Hamiltonian

HA — ZhAiAi+1 St,

Application to

S e Ha < ne. » gapped systems
(Pall ) oxt oo

Any approximate Markov chain can be approximated by local Gibbs states

15



Approximate Quantum HC Theorem (1D)

Result 2.
For any Gibbs state p of a short-range Hamiltonian H at tempsg

Application to

I(A:C|B), < ce—a(TVI » Gibbs state

preparation
(see previous talk)

forg(T) = e~<'T"",¢ = 0,c’ > 0 and any partition ABC as in t

All 1D Gibbs states of short-range Hamiltonians are approximate Markov chains
(Strengthen the area law of 1D Gibbs states)
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Approximate Quantum HC Theorem (1D)

A B

Quantum approximate Markov chains

Gibbs states of 1D short-range Hamiltonian

for g(T) = e=¢'T™",c > 0,¢’ > 0 and any partition ABC as in tHL Sl Nl

All 1D Gibbs states of short-range Hamiltonians are approximate Markov chains
(Strengthen the area law of 1D Gibbs states)

17



Partll:
An application to entanglement
spectrum in 2D systems



Area Law in 2D Gapped Systems

« Ground states of 2D gapped local Hamiltonians typically obey area law:
# of boundary

; 0 (|04] = o0)
S(A), = aldA| —naay ;(Tﬂ/
SN—"

> y:topological entanglement entropy
[Kitaev & Preskill, ‘06], [Levin & Wen ‘06]

(y > 0 & the g.s. is in a topologically ordered phase (?))

A strong type of area law (rest of this talk)

S(A), = al0A| —nguy + e~1041/%

B For any ABC with no holes,
I(A:C|B), < e

[ P apc iS an approximate Markov chain ]
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Entanglement Hamiltonian and Spectrum

« Other tools to study gapped g.s.

_H < entanglement Hamiltonian

Pa =:€

A(H,): entanglement spectrum
(logarithm of the Schmidt coefficients)

€ Correspondence to edge theory in FQHE [Li & Haldane, ‘08]
also has been studied in other systems [Alj, et al., ‘09, Lauchli & Bergholtz, ‘10,...]

€ Previous observations in the PEPS formalism
[Cirac et al., “11], [Schuch, et al., “13], [Cirac, et al., ‘“16] ag — e~ Hp

p =VaoiVT  V:isometry

: short-range
(in trivial phase)

Hb=<

short-range + global interactions
(in topologically ordered phases)




Entanglement Hamiltonian and Spectrum

« Other tools to study gapped g.s.

g —————

Ttomi AT
_H < entanglement Hamiltonian Gasseass

Q. How general this observation in PEPS?

This talk: connection to the topological entanglement entropy

€ Previous observations in the PEPS formalism
[Cirac et al., “11], [Schuch, et al., ‘“13], [Cirac, et al., ‘“16] ag — ¢ Hp

pp=VaosVT  V:isometry

: short-range
(in trivial phase)

Hb=‘<

short-range + global interactions
(in topologically ordered phases)




Locality of Entanglement Spectrum (y = 0)

Suppose |y yyr) satisfies the area law and y = 0 (trivial phase).

Xm
- p is an approx. Markov chain
Xq .o Xom PP veran =
Result 1. Not true when y > 0 O
= Px,. X, EeXp(—thixm) Y : Y’
Xk
[Yyxy') IS pure = A(pyyr) = A(ox, . x,,) Hl
¢« I(Y:Y), = 1Y |X)y = 0 pyyr = py ® pyr = po-

V\

assume reflection sym.

Hl(,z) = logpy QI +1 K logpy

T A (H2) - A(She,)

< e—Cl

‘ 1 for some c > 0.
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TEE and Non-Local Entanglement Hamiltonian

How about the case of y > 07

Result 3.
Under our assumption, for some ¢ > 0 and sufficiently large [,

— - —Hy —cl
2y Hr)?el;l[ZS(pXHe )+e ¢t =0(»1)

> Hp = {H — z:h’XiXi+1’ Hh’XiXi+1H = 0(|X|)}

Yy > 0 — —logpy is non-local

Note: EH is local after tracing out X;.

—Hy __
try,e 7% = eXp(_hxz)% T th—lxm)

Conjecture (no rigorous proof):
The non-local part is dominated by
m-body interactions

23




Non-Locality of Entanglement Spectrum (y > 0)

Result 3.
Under our assumption, for some ¢ > 0 and sufficiently large [,

— - —Hy —cl
2y Hr;lel;lt.zS(pxlle ) t+e

> Hp = {H — Z:hXiXi+1’ HhXiXi+1H = 0(|X|)}

J

() sl ses |7

for a non-local Hy.
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Difference to The Previous Results

Assumption: PEPS formalism (fixed-point) [Cirac et al., “11], [Schuch, et al., “13], [Cirac, et al., “16]

A(=logp,) = A(Hp)

[ short-range
(in trivial phase)

Hb — 7
short-range + global interactions /
(in topologically ordered phases) A

—

Assumption: Strong type of area law (+ reflection symmetry) this talk
@) : i
— —C
|2 (By”) - a0 <e =
o X% 1
short-range : /
(v = 0) Y ' Y
HX — X
short-range + global interactions
(y > 0) <

25



Summary

Take-home massages:
Part I: Quantum approximate Markov chains are Gibbs states of 1D
short-range Hamiltonians.

Part Il: The locality of the entanglement spectrum of gapped g.s.
on a cylinder is related to the TEE.

Open problems:
Part I: Better bounds on CMI of 1D Gibbs states?
Generalization of the equivalence to Markov networks?
(— application for Gibbs state preparation)

Part |I: Weaker assumptions?
Do we really need double of the ES?

Consequences of the (non-)locality of ES? 26
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Idea of the proof

Result 1.
For any £ —approximate Markov chain p, 4, 4., there exists a Hamiltonian

HA — ZhAiAi+1 S.t.,

S(palle™4) < ne.

« The maximum entropy principle [Jaynes, ‘57]
The maximum entropy state g, satisfying
OpiAirs = PAiA I

has the form

_ ,~xhaa;
O4iAip, — € s

A result from information geometry [Knauf & Weis, “10]

inf S e Ha) =S(4), — S(A
il Salle™) =54, = 5,

Small by the assumption + SSA -8



|dea of the proof

Result 2.
For any Gibbs state p of a short-range Hamiltonian H at temperature T,

I(A:C|B), < ce™a(TVL

forq(T) = e‘C'T_l, c = 0,c' > 0 and any partition ABC as in the below.

Explicitly construct a recovery map Ag_p¢ S.i. \ ‘
i Fannes

lpapc — Apspc(Pap)lli < c'e™ inequality
« Quantum belief propagation equation [Hastings, ‘07][Kim, ‘11]
(" . . . )
For 1D Hamiltonian with short-range H, 30, s.1.
|e=FH+Y) — 0,e=FHO} || < e=9™
N\ Y,
v_ |

e — 29




|dea of the proof

From the quantum belief propagation equation, there exists X5 s.t.

pasc ~ Kp-pc(Pap) = Xp(trpr[X5 1 pas (X5 DT | @ ppre) X}

A . Bf — Bf |
| | "L <
<L
A BL

[\’;U

>

[ Note: Probably kz_, 5 is not a quantum operation ]

| | / AEEEE Jj A Y

: . Sl I i




Repeat-until-success method

We normalize kz_,5. and define a CPTD-map Az_pc.
— Succeed to recover with a constant probability p (in 1D systems).
A By Bn-1 By-1 B, B B, B, C
I — | — ——
[ 21
i Eai Trace out B;B;C Fai Fail _ Trace out Fail
Apply Ag, g, c ~ & apply — —  By-1..C &apply ——
ABZ—>82§131C ABN—>BN...C
Success" Success Success

Obtain a state ~ p'asc|<

QChoose N ~ [ (|B] = 0(12)).
We can construct a CPTP-map Az_ ¢ satisfying

lpagc —ids @ Ap_pc (Pap)lly < e7OW.



Idea of the proof

Result 3.
Under our assumption, for some ¢ > 0 and sufficiently large I,

— - —Hy —cl
2y HI)?EI%ZS(PXHQ ) te

> H, = {H = Yhyx

hy x,+1 H < 0(|X|)}

i+1’

By assumption, I(X;: X3X,_1|X2Xp), = 0.
— 3 recovery map Aymo1om: X2Xm = Xo X X4

ox = Nym—12m (sz ...Xm)

Facts: Ox;x;.; = PXiXi

— oy~ argminS(px|le™"%),  S(pxllox) = 2y.
Hx€eH,

32



