. Joint work with Wei Xie, Runyao Duan (UTS:QSI)
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Introduction

Before

In last year's QIP,

» Aram Harrow gave the tutorial of Quantum
Shannon theory (also ask for non-trivial upper
bounds for classical capacity),

» John Watrous gave the tutorial of Quantum
Interactive Proofs and Semidefinite Programs.
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Introduction

Before

In last year's QIP,

» Aram Harrow gave the tutorial of Quantum
Shannon theory (also ask for non-trivial upper
bounds for classical capacity),

» John Watrous gave the tutorial of Quantum
Interactive Proofs and Semidefinite Programs.

Let's combine them!
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Introduction

Channel & capacity

> Quantum Channel: completely positive A B
(CP) trace-preserving (TP) linear map N. N
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Introduction

Channel & capacity

> Quantum Channel: completely positive
(CP) trace-preserving (TP) linear map N.

» Stinespring rep. N : p — Tre(VpV1), with
isometry V:A—- BQ®E

» Complementary N€: p — Trg(VpVT)

A W B
B
AT = N(p)
ZIvIiE
g v — N<(p)
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Introduction

Channel & capacity

> Quantum Channel: completely positive A B
(CP) trace-preserving (TP) linear map N. N

» Stinespring rep. N : p — Tre(VpV1), with A B N(p)
isometry V:A— B®E p_ViN'c(p)
» Complementary N€: p — Trg(VpVT)

» Choi-Jamiotkowski representation of N:

Iy = Z |1YJlar®N([i)j]a) = (ida@N) [P aalPaal,

ij

with [®aa) = Xk [kar)ka).
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Introduction

Channel & capacity

> Quantum Channel: completely positive A B
(CP) trace-preserving (TP) linear map N. N

» Stinespring rep. N : p — Tre(VpV1), with A B N(p)
isometry V:A— B®E p_ViN'c(p)

» Complementary N€: p — Trg(VpVT)

» Choi-Jamiotkowski representation of N:

Iv = Z| (jlar®N([iXjla) = (ida@N)|[PaaXPaal,

with |¢A’A> = D |kA/)|kA>.

» Capacity is the maximum rate for S 5
asymptotically error-free (classical, -»u-» -
quantum or private) data transmission Freoder pecoser
using the channel N’ many times.
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Introduction

Classical communication via quantum channels

» Classical capacity (Holevo'73, 98; Schumacher &
Westmoreland'97):

1
C(N) = sup ;x(/\/m),

with x(N) = maxq(p, o)y H (Z; PN (pi)) = Zi piH(N (p1)).
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Introduction

Classical communication via quantum channels

» Classical capacity (Holevo'73, 98; Schumacher &
Westmoreland'97):

CN) = sup TX(N®5),
oo k
with x(N) = maxq(p, o)y H (Z; PN (pi)) = Zi piH(N (p1)).

» Difficulties of evaluating C(N) o
» X(N): NP-hard (Beigi & Shor'07)
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Classical communication via quantum channels

» Classical capacity (Holevo'73, 98; Schumacher &
Westmoreland'97):

1
C(N) = sup ;x(/\m"),

with x(N) = maxq(p, o)y H (Z; PN (pi)) = Zi piH(N (p1)).
» Difficulties of evaluating C(N) @
» x(N): NP-hard (Beigi & Shor'07)
» Worse: x(N) is not additive (Hastings'09)
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Introduction

Classical communication via quantum channels

» Classical capacity (Holevo'73, 98; Schumacher &
Westmoreland'97):

1
C(N) = sup ;x(/\/@‘),

with x(N) = maxq(p, o)y H (Z; PN (pi)) = Zi piH(N (p1)).
» Difficulties of evaluating C(N) @
» x(N): NP-hard (Beigi & Shor'07)
» Worse: x(N) is not additive (Hastings'09)
» Classical capacity of amplitude damping channel is
unknown.
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Introduction

Practical setting and assisted communication

» Resource is finite and we are in the early stage of
quantum information processing.
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Introduction

Practical setting and assisted communication

» Resource is finite and we are in the early stage of

quantum information processing.
» Practical question: given n uses of the channel, how to
efficiently evaluate or optimize the trade-off between

» Rate R: the amount of information transmitted per

channel use
» Error probability € of the information processing

7

Ly |
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Practical setting and assisted communication

» Resource is finite and we are in the early stage of

quantum information processing.
» Practical question: given n uses of the channel, how to
efficiently evaluate or optimize the trade-off between

» Rate R: the amount of information transmitted per

channel use
» Error probability € of the information processing

R,
._-/ \/\\\g/—,
-l

» Assisted capacities (use auxiliary resources)
» Motivation: Increase capacities and simplify problem
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Introduction

Practical setting and assisted communication

» Resource is finite and we are in the early stage of

quantum information processing.
» Practical question: given n uses of the channel, how to
efficiently evaluate or optimize the trade-off between

» Rate R: the amount of information transmitted per

channel use
» Error probability € of the information processing

FRV e 8
?~iL &
1 S
-‘L. 3
» Assisted capacities (use auxiliary resources)
» Motivation: Increase capacities and simplify problem

» Entanglement-assisted capacity (Bennett, Shor,
Smolin, Thapliyal 1999, 2002)

Xin Wang (UTS:QSI) | SDP strong converse
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Introduction

Main question and outline

» Non-asymptotic communication capability

> Psucc (N, R) - the maximum success probability of
transmitting classical information at rate R
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Main question and outline

» Non-asymptotic communication capability

> Psucc (N, R) - the maximum success probability of
transmitting classical information at rate R

» CO(N€) - the maximum rate for transmission with
error tolerance € (or the one-shot e-error capacity)
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Introduction

Main question and outline

» Non-asymptotic communication capability
> Psucc (N, R) - the maximum success probability of
transmitting classical information at rate R
» CO(N€) - the maximum rate for transmission with
error tolerance € (or the one-shot e-error capacity)
» Asymptotic communication capability
» Non-trivial upper bounds for classical and quantum
capacities of general quantum channels
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Main question and outline

» Non-asymptotic communication capability

> Psucc (N, R) - the maximum success probability of
transmitting classical information at rate R
» CO(N€) - the maximum rate for transmission with
error tolerance € (or the one-shot e-error capacity)
» Asymptotic communication capability

» Non-trivial upper bounds for classical and quantum
capacities of general quantum channels
» Estimation of the capacities for basic channels
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Introduction

Main question and outline

» Non-asymptotic communication capability

> Psucc (N, R) - the maximum success probability of
transmitting classical information at rate R
» CO(N€) - the maximum rate for transmission with
error tolerance € (or the one-shot e-error capacity)
» Asymptotic communication capability

» Non-trivial upper bounds for classical and quantum
capacities of general quantum channels
» Estimation of the capacities for basic channels
» All these results are given by SDPs.

» An analytical tool in proof (Watrous' Book)
» There are efficient algorithms.
» Implementations: CVX for MATLAB, toolbox QETLAB.
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One-shot information theory

Non-asymptotic communication capability
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One-shot information theory

Optimal success probability and capacity

> (Shannon, 1948) The fundamental problem
of communication is that of reproducing at
one point, either exactly or approximately, a
message selected at another point.

ke{l,..om

M=DoN

b ds for F | iti |  QIP 17, Microsoft Research, Seattle
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One-shot information theory

Optimal success probability and capacity

> (Shannon, 1948) The fundamental problem
of communication is that of reproducing at
one point, either exactly or approximately, a
message selected at another point.

ke{l,..om

M=DoN
» Optimal success probability

ps(N,m): = zug;ép(k = k)
—sup = " TMIKYKDIKKK]
ED M 5
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One-shot information theory

Optimal success probability and capacity

> (Shannon, 1948) The fundamental problem
of communication is that of reproducing at
one point, either exactly or approximately, a
message selected at another point.

ke{l,..om

M=DoN
» Optimal success probability

ps(N,m): = zug;ép(k = k)
—sup = " TMIKYKDIKKK]
ED M 5

» Classical capacity C(N) :=sup{r: lim ps(N®" 2™) =1}.
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One-shot information theory

Optimal success probability and capacity

> (Shannon, 1948) The fundamental problem
of communication is that of reproducing at
one point, either exactly or approximately, a
message selected at another point.

ke{l,...m

M=DoN

» Optimal success probability

ps(N,m): = zug;g:lp(k = k)
—sup = " TMIKYKDIKKK]
ED M 5

» Classical capacity C(N) :=sup{r: lim ps(N®" 2™) =1}.

» Question: how to solve or estimate ps(N, m)?
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One-shot information theory

General codes

> ps(N,m) =supg p = Y0, Tr M(|k)K|) k) k|, with M =DoNo&.
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One-shot information theory

General codes

> ps(N,m) =supg p = Y0, Tr M(|k)K|) k) k|, with M =DoNo&.
» No-signalling code I is bipartite channel

M: L(A)®L(B;i) = L(As) ® L(Bo)

with NS constraints (Leung & All .................. TBO

Matthews'16; Duan & Winter'16),i.e., A c D
and B cannot use the channel to [
communicate classical information. : .

» Also see causal operations (Beckman, ‘M A B

Gottesman, Nielsen, Preskill'01; Eggeling, M(A; - B,): k- k
Schlingemann, Werner'02, Piani,
Horodecki et al.’06).
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One-shot information theory

General codes

> ps(N,m) =supg p = Y0, Tr M(|k)K|) k) k|, with M =DoNo&.
» No-signalling code I is bipartite channel

M: L(A)®L(B;i) = L(As) ® L(Bo)

with NS constraints (Leung & All .................. TBO

Matthews'16; Duan & Winter'16),i.e., A c D
and B cannot use the channel to [
communicate classical information. : .

» Also see causal operations (Beckman, ‘M A B

Gottesman, Nielsen, Preskill'01; Eggeling, M(A; - B,): k- k
Schlingemann, Werner'02, Piani,
Horodecki et al.’06).

» Classical (Cubitt, Leung, Matthews, Winter'11;Matthews'12)

b ds for F | iti |  QIP 17, Microsoft Research, Seattle
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One-shot information theory

General codes

> ps(N,m) =supg p = Y0, Tr M(|k)K|) k) k|, with M =DoNo&.

» No-signalling code I is bipartite channel
M: L(A)®L(B;i) = L(As) ® L(Bo)
with NS constraints (Leung & All .................. T

Matthews'16; Duan & Winter'16),i.e., A c D
and B cannot use the channel to [
communicate classical information. : .

» Also see causal operations (Beckman, ‘M A B

Gottesman, Nielsen, Preskill'01; Eggeling, M(A; - B,): k- k
Schlingemann, Werner'02, Piani,
Horodecki et al.'06).

» Classical (Cubitt, Leung, Matthews, Winter'11;Matthews'12)

» A hierarchy of codes by adding constraints on I1, e.g.,
Positive-partial-transpose preserving (PPT) constraint
(Rains'01; Leung & Matthews'16).

b ds for F | iti |  QIP 17, Microsoft Research, Seattle
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One-shot information theory

Optimal success probability

M(A - By): k- k

» Optimal success probability of Q codes (2 = NS or NSn PPT
in this talk)

psa(N,m) = SUP; Z Tr[M(kXKDIkX K], M given by N, 1.

MeQ k=1
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One-shot information theory

Result 1: Optimal success probability for NS/PPT codes

Theorem

For any N, the optimal success probability to transmit m messages
assisted by NSNPPT codes is given by the following SDP:

ps,NsnppT (N, m) = max Tr Iy Fag
s.t. 0< Fup < PA R ]IB,TrpA =1,
TrA FAB = ]IB/m,
0<Fe<pa®lg (PPT),

where Jns is the Choi-Jamiotkowski matrix of N.
When assisted by NS codes, one can remove PPT constraint to obtain

psNs(N,m) =maxTr yFag sit. 0< Fag < pa®1p,Trpa=1,
TI’A FAB = ]lB/m.
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One-shot information theory

Sketch of proof

» Target: oo m) = sup; ZTr M([k)K|)kX K], (1)

MeQ k=1
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One-shot information theory

Sketch of proof

» Target: oo m) = sup; ZTr M([k)K|)kX K], (1)

MeQ k=1
> Recall Jpg = X5 |i)jlar ® M(Ji)jla;) and let V = 317, |kk X kk|
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One-shot information theory

Sketch of proof
» T t:
TE pea(Nm) = sup— zTr (KXADIKXKDL, (1)

MNeQ M
> Recall Jpg = X5 |i)jlar ® M(Ji)jla;) and let V = 317, |kk X kk|

eyt o 3 THMORRKIKK = o TImVag, ] (@)
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Sketch of proof
» Target:
ps.(N, m) = sup ; Z Tr[M([kX k)| kXKI], (1)

MeQ k=1
> Recall Jpg = X5 |i)jlar ® M(Ji)jla;) and let V = 317, |kk X kk|

eyt o 3 THMORRKIKK = o TImVag, ] (@)

» Moreover, Jyq can be represented by Jyr and Jn (Leung &
Matthews'16; based on Chiribella, D'Ariano, Perinotti'08)

JM TrAO (JN®]1ABO)J|'| (3)
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Sketch of proof
» Target:
ps.(N, m) = sup ; Z Tr[M([kX k)| kXKI], (1)

MeQ k=1
> Recall Jpg = X5 |i)jlar ® M(Ji)jla;) and let V = 317, |kk X kk|

eyt o 3 THMORRKIKK = o TImVag, ] (@)

» Moreover, Jyq can be represented by Jyr and Jn (Leung &
Matthews'16; based on Chiribella, D'Ariano, Perinotti'08)

JM TrAO (JN®]1ABO)J|'| (3)

» Combining Egs. (1), (2), (3), we have
ps.a(N,m) = maxTr{(Jy ® 14,5,)In(La,5,® Vas,)]/m

Xin Wang (UTS:QSI) | SDP strong converse bounds for } | iti |  QIP 17, Microsoft Research, Seattle




One-shot information theory

Sketch of proof

» Target: psQ(N m) _ sup— Z Tr |k)<k|)|k><k|] (1)

NneQ M

v

Recall Jug =25 [i)i[ar ® M([iXjla;) and let V' = 337, [kk)(kk|
eyt o 3 THMORRKIKK = o TImVag, ] (@)

» Moreover, Jyq can be represented by Jyr and Jn (Leung &
Matthews'16; based on Chiribella, D'Ariano, Perinotti'08)

JM TrAO (JN®]IA BO)JI'I (3)
» Combining Egs. (1), (2), (3), we have
psn(N,m) = max Tr[(JNr ® La,s,) In(La,5 ® Vas,)]/m,

» Impose the NS and PPT constraints of I to obtain the SDP.
» Exploit the permutation invariance of Vg, to simplify SDP.
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One-shot information theory

Example: assess the preformance of AD channel

» For amplitude damping channel N,’YAD(p) =y, E,-pEI.Jr with

Eo = [0X0[ + VT =7|1)1| and £y = \/70X1],
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One-shot information theory

Example: assess the preformance of AD channel

» For amplitude damping channel N,’YAD(p) =y, E,-pE;r with
Eo =[0X0] + /I -~[1X1] and £y = /7]0X1],

» if we use the channel 3 times, the optimal success probabilty
to transmit 1 bit is given as follows:

1.1

PsNsnPPT (/\amw 2)
Psns(NF2,2)

1

success probability
°© o o o
(o)) ~ © ©

o
3
T

I
IS

0.2 0.4 0.6 0.8 1
~from 0 to 1

o
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One-shot information theory

Result 2: One-shot capacities

» One-shot e-error capacity assisted with Q-codes:

Cg(zl)(./\f,e) :=sup{log A : 1 - psa(N,\) <€}
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One-shot information theory

Result 2: One-shot capacities
» One-shot e-error capacity assisted with Q-codes:

CE (W) i= sup{log A+ 1~ pea(N, 2) < €}
Theorem
For given channel N and error threshold e,

Clslls)nPPT(N7€) =—logminn s.t. 0<Fap<pa®lp, Trpa=1,
TraFag =nlg, TrdyFag >1—¢,
0<Fi8<pa®lg (PPT),

To obtain Clgls) (N, €), one only needs to remove the PPT constraint:

CIEIIS)(N,e) =—logminn s.t. 0<Fag<pa®lp, Trpa=1,
TraFag =nlg, TrdyFag >1-e.
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One-shot information theory

Result 2: One-shot capacities
» One-shot e-error capacity assisted with Q-codes:

Cf(zl)(J\/'7 €) :=sup{logA\:1-psa(N,\) <e}.

Theorem

For given channel N and error threshold e,

Clslls)nPPT(N7€) =—logminn s.it. 0<Fap<pa®lp, Trpa=1,
TraFag =nlg, TrdyFag >1—¢,
0<Fi8<pa®lg (PPT),

To obtain Clgls) (N, ¢€), one only needs to remove the PPT constraint:

CIEIIS)(N7€) =—logminn sit. 0<Fag<pa®lp, Trpa=1,
TraFag=nlpg, TrdyFag > 1 —¢.

» Study zero-error capacity by setting € =0, e.g., Clgls) (N, 0) recovers
the one-shot NS assisted zero-error capacity in (Duan & Winter'16).
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One-shot information theory

Comparsion with previous converse bounds

» Converse for classical channel (Polyanskiy, Poor, Verdi 2010) and
classical-quantum channel (Wang & Renner 2010).

> (Matthews & Wehner 2014) shows SDP converse bounds
C (W €) < maxmin Diy((idy @ N) (paa)loa ® 05).
A 9B
CO W) < maxmin Df por ((id ® N) (o) lpa ® 75),

where Djf; and Dy, ppr are hypothesis testing relative entropies.

> (Datta & Hsieh'13) gives converse for Cél)(./\/', €) (hard to compute).
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One-shot information theory

Comparsion with previous converse bounds

» Converse for classical channel (Polyanskiy, Poor, Verdi 2010) and
classical-quantum channel (Wang & Renner 2010).

> (Matthews & Wehner 2014) shows SDP converse bounds
C (W €) < maxmin Diy((idy @ N) (paa)loa ® 05).
A 9B
CHW,e) < (L) D, ppr((idar ® N')(para)llpar ® 08),

where Djf; and Dy, ppr are hypothesis testing relative entropies.

> (Datta & Hsieh'13) gives converse for Cél)(./\/', €) (hard to compute).

> One-shot e-error capacities can provide better efficiently computable
converse bounds:

Cél)(./\/', €) < Clslls)(./\/, €) < max min D ((ida ® N)(para)llpar ® 08),
A 9B

COW. ) £ Cppr (N €) < maxmin D por ((idw © N) (para)low ® 05).
A oB

The blue inequalities can be strict for amplitude damping channels.
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Strong converse bounds

Asymptotic communication capability
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Strong converse bounds

Weak vs Strong Converse

In the large n limit Strong converse (unknown)

1 ; T
| |
| |
| |
Error : |
Probability | : Forbidden area
|
| Weak converse |
I |
0 Achievability : : Rate

Capacity ; Ztmng converse
oun

> The converse part of the HSW theorem due to Holevo (1973) only
establishes a weak converse, which states that there cannot be an
error-free communication scheme if rate exceeds capacity.
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Strong converse bounds

Weak vs Strong Converse

In the large n limit Strong converse (unknown)

1 ; n
| |
| |
| n
Error : |
Probability | “ Forbidden area
|
| Weak converse |
I |
0 Achievability : u Rate

Capacity ; Ztmng converse
oun

> The converse part of the HSW theorem due to Holevo (1973) only
establishes a weak converse, which states that there cannot be an
error-free communication scheme if rate exceeds capacity.

» A strong converse bound: ps,cc — 0 as n increases if the rate
exceeds this bound.
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Strong converse bounds

Weak vs Strong Converse

In the large n limit Strong converse (unknown)

1 : |
| |
| |
! n
Error : |
Probability | u Forbidden area
|
| Weak converse |
I |
0 Achievability : u Rate

Capacity; Ztrong converse
oun

> The converse part of the HSW theorem due to Holevo (1973) only
establishes a weak converse, which states that there cannot be an
error-free communication scheme if rate exceeds capacity.

» A strong converse bound: ps,cc — 0 as n increases if the rate
exceeds this bound.

» If the capacity of a channel is also its strong converse bound, then
the strong converse property holds.
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Strong converse bounds

Result 3: Strong converse bound for classical capacity

» Known strong converse bound: the entanglement-assisted
capacity (Bennett, Shor, Smolin, Thapliyal 1999, 2002)
Theorem (SDP strong converse bound for C)
For any quantum channel N,
C(N) < Cg(N) = logminTr Sp
s.t.— Rag < J\P < Rag,
~14®Sg<R/E<1,®Sg.

And psycc = 0 when the rate exceeds Cg(N).

Properties:
» A relaxed bound: C(N) < C3(N) < log dBHJj\T/B oo
» For qudit noiseless channel Iy, C(l4) = Cs(lg) = logd.
» Ca(N1®N2) = Cg(Ny) + CB(Nz) for any N1 and N>.

Xin Wang (UTS:QSI) | SDP strong converse bounds for | iti |  QIP 17, Microsoft Research, Seattle




Strong converse bounds

Sketch of proof

» Subadditive bounds on ps (Tool: duality of SDP)
PsNsrPPT(N®7,27)< pd (N®7,2) < pI (N, 27)", (4)

where
pe(N,m)=min TrZg st. —Rag< J/\CB < Rag,

—m]lA®ZBSRZ\—ESm]lA®ZB.

(5)
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Strong converse bounds

Sketch of proof

» Subadditive bounds on ps (Tool: duality of SDP)
PsNsrPPT(N®7,27)< pd (N®7,2) < pI (N, 27)", (4)

where
pe(N,m)=min TrZg st. —Rag< J/\CB < Rag,

—m]lA®ZBSRZ\—ESm]lA®ZB.

(5)

» For any r > Cg(/), one can prove that pf(N,2") < 1. Thus,

PsNsppT(N®7,2) < pl(N,27)" - 0, (when n increases)
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Strong converse bounds

Application 1: Amplitude damping channel

For amplitude damping channel,

C(NZP) < Co(NP) = log(1+/1-7).
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Strong converse bounds

Application 1: Amplitude damping channel

For amplitude damping channel,

C(NZP) < Co(NP) = log(1+/1-7).
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07t
06 New upper bound
— — Upper bound in [BEHY11]
-------- Cy(NAP) [GFO5]
05t

0 0.1 0.2 0.3 0.4 05
~from 010 0.5

» Solid line depicts our bound.

» Dashed line depicts the previously best upper bound (Brandio,
Eisert, Horodecki, Yang 2011).

> Dotted line depicts the lower bound (Giovannetti and Fazio 2005).
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Strong converse bounds

Application 1: Amplitude damping channel

For amplitude damping channel,

09r

08r

07r

06

New upper bonnd
— — Upper bound in [BEHY11|
C4(NAD) [GEO3)

051

C(NZP) < Co(NP) = log(1+/1-7).

0

0.1

0.2 0.3 0.4
~from 010 0.5

» Solid line depicts our bound.
» Dashed line depicts the previously best upper bound (Brandio,
Eisert, Horodecki, Yang 2011).

v

> Note that Cg(N7'P) > 1 when < 0.5.

05

Dotted line depicts the lower bound (Giovannetti and Fazio 2005).
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Strong converse bounds

Application 1: Amplitude damping channel

For amplitude damping channel,

C(NZP) < Co(NP) = log(1+/1-7).

Eisert, Horodecki, Yang 2011).

09r

08r

07r

06

New upper bonnd

— — Upper bound in [BEHY11|

Cy(NAP) [GE05]

051

0

0.1

02

03

~from 0t 0.5
» Solid line depicts our bound.
» Dashed line depicts the previously best upper bound (Brandio,

04 05

> Dotted line depicts the lower bound (Giovannetti and Fazio 2005).
> Note that Cg(N7'P) > 1 when < 0.5.
» Problem: how to further improve the lower bound or upper bound?
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Strong converse bounds

Application 2: Strong converse property for new channels

» Previous known channels:
» classical-quantum channels (Ogawa, Nagaoka'99; Winter'99)
» particular covariant quantum channels (Koenig and Wehner'09)
» entanglement-breaking, Hadamard channels (Wilde, Winter,
Yang'14).
» Optical quantum channels (Bardhan, et al.'16)
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Strong converse bounds

Application 2: Strong converse property for new channels

» Previous known channels:
» classical-quantum channels (Ogawa, Nagaoka'99; Winter'99)
» particular covariant quantum channels (Koenig and Wehner'09)
» entanglement-breaking, Hadamard channels (Wilde, Winter,
Yang'14).
» Optical quantum channels (Bardhan, et al.'16)
» The channel from A to B is given by NV, (p) = EopE(;r + ElpEir
(0 << 7/4) with

Eo = sinalOX1| + |1X2], E1 = cosa|2)(1] +|1)0].
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Strong converse bounds

Application 2: Strong converse property for new channels

» Previous known channels:
» classical-quantum channels (Ogawa, Nagaoka'99; Winter'99)
» particular covariant quantum channels (Koenig and Wehner'09)
» entanglement-breaking, Hadamard channels (Wilde, Winter,
Yang'14).
» Optical quantum channels (Bardhan, et al.'16)
» The channel from A to B is given by NV, (p) = EopE(;r + ElpEir
(0 << 7/4) with

Ep =sina|OX1|+ |1)2], E1 = cosa2)1| +|1)O|.
» Applying the strong converse bound Cg,
C(Na) = CnsrppT(WNa) = Ca(Na) = 1.
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Strong converse bounds

Application 2: Strong converse property for new channels

» Previous known channels:
» classical-quantum channels (Ogawa, Nagaoka'99; Winter'99)
» particular covariant quantum channels (Koenig and Wehner'09)
» entanglement-breaking, Hadamard channels (Wilde, Winter,
Yang'14).
» Optical quantum channels (Bardhan, et al.'16)
» The channel from A to B is given by NV, (p) = EopE(;r + ElpElJr
(0 << 7/4) with

Ep =sina|OX1|+ |1)2], E1 = cosa2)1| +|1)O|.
» Applying the strong converse bound Cg,
C(Na) = CnsrppT(WNa) = Ca(Na) = 1.

» In (W. & D.,1608.04508), Cg(N,) =2 < logd(N'), and 9(N)
is the quantum Lovasz number (Duan,Severini,Winter'13).

Xin Wang (UTS:QSI) | SDP strong converse bounds for } | iti |  QIP 17, Microsoft Research, Seattle




Strong converse bounds

Application 2: Strong converse property for new channels

» Previous known channels:
» classical-quantum channels (Ogawa, Nagaoka'99; Winter'99)
» particular covariant quantum channels (Koenig and Wehner'09)
» entanglement-breaking, Hadamard channels (Wilde, Winter,
Yang'14).
» Optical quantum channels (Bardhan, et al.'16)
» The channel from A to B is given by NV, (p) = EopE(;r + ElpElJr
(0 << 7/4) with

Ep =sina|OX1|+ |1)2], E1 = cosa2)1| +|1)O|.
» Applying the strong converse bound Cg,
C(Na) = CnsrppT(WNa) = Ca(Na) = 1.

n (W. & D.,1608.04508), Cr(N,) =2 < logd(N'), and 9(N)
is the quantum Lovasz number (Duan,Severini,Winter'13).

v

> In particular,

Q(N)<1—P(N)—C(N)——CE(N)
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Strong converse bounds

Quantum capacity

» Quantum capacity is established by (Lloyd, Shor, Devetak
97-05) & (Barnum, Nielsen, Schumacher 96-00)

o 1 em
Q) = fim — (A=),

» Coherent information I.(N') := max,[H(N (p)) - HN(p))]
» Q(N) is also difficult to evaluate.
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Strong converse bounds

Quantum capacity

» Quantum capacity is established by (Lloyd, Shor, Devetak
97-05) & (Barnum, Nielsen, Schumacher 96-00)

Q) = riiinw%IC(N®m).
» Coherent information I.(N') := max,[H(N (p)) - HN(p))]

Q(N) is also difficult to evaluate.
» Known strong converse bounds:

v

» Partial Transposition bound (Holevo, Werner 2001;
Muller-Hermes, Reeb, Wolf 2016)

» Rains information (Tomamichel, Wilde, Winter 2015)

» Channel’s entanglement cost (Berta, Brandao, Christandl,
Wehner 2013)
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Strong converse bounds

SDP strong converse bound for quantum capacity

Theorem (SDP strong converse bound for Q)
For any quantum channel N,

Q(N) < Qr(N) = logmaxTr IxrRag
s.t. Rag,pa>0,Trpa=1,
—pA®]13SRZESpA®]lB.

The fidelity of transmission goes to zero if the rate exceeds Qr(N').
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Strong converse bounds

SDP strong converse bound for quantum capacity

Theorem (SDP strong converse bound for Q)
For any quantum channel N,
Q) < Qr(N) = logmaxTr Sy Rag
s.t. Rag,pa>0,Trpa=1,
—pA®]13SR;§SpA®]lB.

The fidelity of transmission goes to zero if the rate exceeds Qr(N).

» This is based on the optimal fidelity of transmitting quantum
information assisted with PPT codes (Leung and Matthews'16).

» The proof idea is similar to previous bound for classical capacity.
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Strong converse bounds

SDP strong converse bound for quantum capacity

Theorem (SDP strong converse bound for Q)
For any quantum channel N,
QW) < Qr(N) = logmax Tr Jy Rasg
s.t. Rag,pa>0,Trpa=1,

—pA®]13SR;§SpA®]lB.

The fidelity of transmission goes to zero if the rate exceeds Qr(N).

» This is based on the optimal fidelity of transmitting quantum
information assisted with PPT codes (Leung and Matthews'16).

» The proof idea is similar to previous bound for classical capacity.
» For noiseless quantum channel Z,, Q(Zy) = Qr(Zy) = log, d.
> Qr(IN e M) = Qr(M) + Qr(N) (by utilizing SDP duality).
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Strong converse bounds

Comparison with other bounds
» Partial Transposition bound (Holevo & Werner'01,
Muller-Hermes, Reeb, Wolf'16)

Q) < Qo (V) = logy [\ | cbs

where | - | c» uses an alternative expression from (Watrous'12).
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Strong converse bounds

Comparison with other bounds
» Partial Transposition bound (Holevo & Werner'01,
Muller-Hermes, Reeb, Wolf'16)

-
QN) < Qe(N) =logy [\ | cb,
where | - | c» uses an alternative expression from (Watrous'12).

Improved efficiently computable bound

For any quantum channel N, Qr(N) < Qo(N).
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Strong converse bounds

Comparison with other bounds
» Partial Transposition bound (Holevo & Werner'01,
Muller-Hermes, Reeb, Wolf'16)

-
QW) < Qe(N) =logy [/ [ b
where | - | c» uses an alternative expression from (Watrous'12).

Improved efficiently computable bound

For any quantum channel N, Qr(N) < Qo(N).

» Example: NV, =3 E; - EI.Jr
with By = [040] + /7[1)1]
and E; =+/1 - r|OX1|+[1)2].

» Solid line: SDP bound Qr

» Dashed line: PT bound Qg

0 01 02 03 04
rfrom0to 0.5

b ds for F | iti |  QIP 17, Microsoft Research, Seattle
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Summary

Summary and Outlook

» Non-asymptotic classical communication (NS/NSNPPT codes)

» Optimal success probability of communication is given by SDP
» One-shot e-error capacity is given by SDP
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» SDP strong converse bound for quantum capacity (improve
the Partial Transposition bound).
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the Partial Transposition bound).

» Outlook
» Tighter strong converse bounds without using additive SDP?
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» Limits for asymptotic classical/quantum communication
» SDP strong converse bound for classical capacity

» Improved upper bound for C(N*P)
» Strong converse property for new class of quantum channels

» SDP strong converse bound for quantum capacity (improve
the Partial Transposition bound).
» Outlook

» Tighter strong converse bounds without using additive SDP?
» Classical capacity of specific channels (AD channel)?
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Summary and Outlook

» Non-asymptotic classical communication (NS/NSNPPT codes)

» Optimal success probability of communication is given by SDP
» One-shot e-error capacity is given by SDP
» Limits for asymptotic classical/quantum communication
» SDP strong converse bound for classical capacity
» Improved upper bound for C(N*P)
» Strong converse property for new class of quantum channels

» SDP strong converse bound for quantum capacity (improve
the Partial Transposition bound).

» Outlook

» Tighter strong converse bounds without using additive SDP?
» Classical capacity of specific channels (AD channel)?

» How to implement the NS and PPT-preserving codes?

> Relationship between @r and Rains information (TWW'15)7
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Summary

Summary and Outlook

» Non-asymptotic classical communication (NS/NSNPPT codes)

» Optimal success probability of communication is given by SDP
» One-shot e-error capacity is given by SDP
» Limits for asymptotic classical/quantum communication
» SDP strong converse bound for classical capacity
» Improved upper bound for C(N*P)
» Strong converse property for new class of quantum channels
» SDP strong converse bound for quantum capacity (improve
the Partial Transposition bound).
» Outlook

» Tighter strong converse bounds without using additive SDP?
Classical capacity of specific channels (AD channel)?

» How to implement the NS and PPT-preserving codes?
Relationship between Qr and Rains information (TWW'15)?
» Continuous-variable quantum channels?

v

v
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Summary

arXiv:1610.06381 & 1601.06883

Wei Xie Runyao Duan
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Wei Xie Runyao Duan

Thank you for your attention!
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