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Before

In last year’s QIP,
▸ Aram Harrow gave the tutorial of Quantum
Shannon theory (also ask for non-trivial upper
bounds for classical capacity),

▸ John Watrous gave the tutorial of Quantum
Interactive Proofs and Semidefinite Programs.

Let’s combine them!
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Introduction One-shot information theory Strong converse bounds Summary

Channel & capacity

▸ Quantum Channel: completely positive
(CP) trace-preserving (TP) linear map N .

A BN

▸ Stinespring rep. N ∶ ρ→ TrE(V ρV †), with
isometry V ∶ A→ B ⊗ E

▸ Complementary N c ∶ ρ→ TrB(V ρV †)

ρ A
V

B N(ρ)
E N c(ρ)

▸ Choi-Jamiołkowski representation of N :

JN = ∑
ij

∣i⟩⟨j ∣A′⊗N(∣i⟩⟨j ∣A) = (idA′⊗N)∣ΦA′A⟩⟨ΦA′A∣,

with ∣ΦA′A⟩ = ∑k ∣kA′⟩∣kA⟩.
▸ Capacity is the maximum rate for
asymptotically error-free (classical,
quantum or private) data transmission
using the channel N many times.
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Classical communication via quantum channels

▸ Classical capacity (Holevo’73, 98; Schumacher &
Westmoreland’97):

C(N) = sup
k→∞

1
k
χ(N⊗k

),

with χ(N) = max{(pi ,ρi)}H (∑i piN(ρi))−∑i piH(N(ρi)).

▸ Difficulties of evaluating C(N) §
▸ χ(N): NP-hard (Beigi & Shor’07)
▸ Worse: χ(N) is not additive (Hastings’09)
▸ Classical capacity of amplitude damping channel is
unknown.
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Practical setting and assisted communication

▸ Resource is finite and we are in the early stage of
quantum information processing.

▸ Practical question: given n uses of the channel, how to
efficiently evaluate or optimize the trade-off between

▸ Rate R : the amount of information transmitted per
channel use

▸ Error probability ε of the information processing

▸ Assisted capacities (use auxiliary resources)
▸ Motivation: Increase capacities and simplify problem
▸ Entanglement-assisted capacity (Bennett, Shor,
Smolin, Thapliyal 1999, 2002)
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Main question and outline

▸ Non-asymptotic communication capability
▸ psucc(N ,R) - the maximum success probability of
transmitting classical information at rate R

▸ C (1)(N , ε) - the maximum rate for transmission with
error tolerance ε (or the one-shot ε-error capacity)

▸ Asymptotic communication capability
▸ Non-trivial upper bounds for classical and quantum
capacities of general quantum channels

▸ Estimation of the capacities for basic channels
▸ All these results are given by SDPs.

▸ An analytical tool in proof (Watrous’ Book)
▸ There are efficient algorithms.
▸ Implementations: CVX for MATLAB, toolbox QETLAB.
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Non-asymptotic communication capability
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Optimal success probability and capacity
▸ (Shannon, 1948) The fundamental problem
of communication is that of reproducing at
one point, either exactly or approximately, a
message selected at another point.

A B
E N Dk ∈ {1, ...,m} k̂ ∈ {1, ...,m}

M = D ○N ○ E

▸ Optimal success probability

ps(N ,m) ∶ = sup
E,D

1
m

m

∑
k=1

p(k = k̂)

= sup
E,D

1
m

m

∑
k=1

Tr[M(∣k⟩⟨k ∣)∣k⟩⟨k ∣].

▸ Classical capacity C(N) ∶= sup{r ∶ lim
n→∞ps(N⊗n,2rn) = 1}.

▸ Question: how to solve or estimate ps(N ,m)?
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General codes

▸ ps(N ,m) = supE,D
1
m ∑

m
k=1 TrM(∣k⟩⟨k ∣)∣k⟩⟨k ∣, withM= D ○N ○ E .

▸ No-signalling code Π is bipartite channel
Π ∶ L(Ai) ⊗ L(Bi) → L(Ao) ⊗ L(Bo)
with NS constraints (Leung &
Matthews’16; Duan & Winter’16),i.e., A
and B cannot use the channel to
communicate classical information.

▸ Also see causal operations (Beckman,
Gottesman, Nielsen, Preskill’01; Eggeling,
Schlingemann, Werner’02, Piani,
Horodecki et al.’06).

Ai Bo

E D

Ao Bi
N

Π

M
M(Ai → Bo): k → k̂

▸ Classical (Cubitt, Leung, Matthews, Winter’11;Matthews’12)
▸ A hierarchy of codes by adding constraints on Π, e.g.,
Positive-partial-transpose preserving (PPT) constraint
(Rains’01; Leung & Matthews’16).

Xin Wang (UTS:QSI) | SDP strong converse bounds for quantum channel capacities | QIP 17, Microsoft Research, Seattle



Introduction One-shot information theory Strong converse bounds Summary

General codes

▸ ps(N ,m) = supE,D
1
m ∑

m
k=1 TrM(∣k⟩⟨k ∣)∣k⟩⟨k ∣, withM= D ○N ○ E .

▸ No-signalling code Π is bipartite channel
Π ∶ L(Ai) ⊗ L(Bi) → L(Ao) ⊗ L(Bo)
with NS constraints (Leung &
Matthews’16; Duan & Winter’16),i.e., A
and B cannot use the channel to
communicate classical information.

▸ Also see causal operations (Beckman,
Gottesman, Nielsen, Preskill’01; Eggeling,
Schlingemann, Werner’02, Piani,
Horodecki et al.’06).

Ai Bo

E D

Ao Bi
N

Π

M
M(Ai → Bo): k → k̂

▸ Classical (Cubitt, Leung, Matthews, Winter’11;Matthews’12)
▸ A hierarchy of codes by adding constraints on Π, e.g.,
Positive-partial-transpose preserving (PPT) constraint
(Rains’01; Leung & Matthews’16).

Xin Wang (UTS:QSI) | SDP strong converse bounds for quantum channel capacities | QIP 17, Microsoft Research, Seattle



Introduction One-shot information theory Strong converse bounds Summary

General codes

▸ ps(N ,m) = supE,D
1
m ∑

m
k=1 TrM(∣k⟩⟨k ∣)∣k⟩⟨k ∣, withM= D ○N ○ E .

▸ No-signalling code Π is bipartite channel
Π ∶ L(Ai) ⊗ L(Bi) → L(Ao) ⊗ L(Bo)
with NS constraints (Leung &
Matthews’16; Duan & Winter’16),i.e., A
and B cannot use the channel to
communicate classical information.

▸ Also see causal operations (Beckman,
Gottesman, Nielsen, Preskill’01; Eggeling,
Schlingemann, Werner’02, Piani,
Horodecki et al.’06).

Ai Bo

E D

Ao Bi
N

Π

M
M(Ai → Bo): k → k̂

▸ Classical (Cubitt, Leung, Matthews, Winter’11;Matthews’12)

▸ A hierarchy of codes by adding constraints on Π, e.g.,
Positive-partial-transpose preserving (PPT) constraint
(Rains’01; Leung & Matthews’16).

Xin Wang (UTS:QSI) | SDP strong converse bounds for quantum channel capacities | QIP 17, Microsoft Research, Seattle



Introduction One-shot information theory Strong converse bounds Summary

General codes

▸ ps(N ,m) = supE,D
1
m ∑

m
k=1 TrM(∣k⟩⟨k ∣)∣k⟩⟨k ∣, withM= D ○N ○ E .

▸ No-signalling code Π is bipartite channel
Π ∶ L(Ai) ⊗ L(Bi) → L(Ao) ⊗ L(Bo)
with NS constraints (Leung &
Matthews’16; Duan & Winter’16),i.e., A
and B cannot use the channel to
communicate classical information.

▸ Also see causal operations (Beckman,
Gottesman, Nielsen, Preskill’01; Eggeling,
Schlingemann, Werner’02, Piani,
Horodecki et al.’06).

Ai Bo

E D

Ao Bi
N

Π

M
M(Ai → Bo): k → k̂

▸ Classical (Cubitt, Leung, Matthews, Winter’11;Matthews’12)
▸ A hierarchy of codes by adding constraints on Π, e.g.,
Positive-partial-transpose preserving (PPT) constraint
(Rains’01; Leung & Matthews’16).

Xin Wang (UTS:QSI) | SDP strong converse bounds for quantum channel capacities | QIP 17, Microsoft Research, Seattle



Introduction One-shot information theory Strong converse bounds Summary

Optimal success probability

Ai Bo

E D

Ao Bi
N

Π

M
M(Ai → Bo): k → k̂

▸ Optimal success probability of Ω codes (Ω = NS or NS ∩PPT
in this talk)

ps,Ω(N ,m) = sup
Π∈Ω

1
m

m

∑
k=1

Tr[M(∣k⟩⟨k ∣)∣k⟩⟨k ∣], M given by N ,Π.
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Result 1: Optimal success probability for NS/PPT codes

Theorem
For any N , the optimal success probability to transmit m messages
assisted by NS∩PPT codes is given by the following SDP:

ps,NS∩PPT(N ,m) = maxTr JNFAB

s.t. 0 ≤ FAB ≤ ρA ⊗ 1B ,Tr ρA = 1,
TrA FAB = 1B/m,
0 ≤ FTB

AB ≤ ρA ⊗ 1B (PPT),

where JN is the Choi-Jamiołkowski matrix of N .
When assisted by NS codes, one can remove PPT constraint to obtain

ps,NS(N ,m) = maxTr JNFAB s.t. 0 ≤ FAB ≤ ρA ⊗ 1B ,Tr ρA = 1,
TrA FAB = 1B/m.
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Sketch of proof

▸ Target:
ps,Ω(N ,m) = sup

Π∈Ω

1
m

m

∑
k=1

Tr[M(∣k⟩⟨k ∣)∣k⟩⟨k ∣], (1)

▸ Recall JM = ∑ij ∣i⟩⟨j ∣A′i ⊗M(∣i⟩⟨j ∣Ai
) and let V = ∑m

k=1 ∣kk⟩⟨kk ∣

Key:
1
m

m

∑
k=1

Tr[M(∣k⟩⟨k ∣)∣k⟩⟨k ∣] = 1
m

Tr[JMVAiBo ]. (2)

▸ Moreover, JM can be represented by JN and JΠ (Leung &
Matthews’16; based on Chiribella, D’Ariano, Perinotti’08)

JM = TrAoBi
(JT
N
⊗ 1AiBo)JΠ. (3)

▸ Combining Eqs. (1), (2), (3), we have

ps,Ω(N ,m) = max
Π∈Ω

Tr[(JT
N
⊗ 1AiBo)JΠ(1AoBi

⊗VAiBo)]/m,

▸ Impose the NS and PPT constraints of Π to obtain the SDP.
▸ Exploit the permutation invariance of VAiBo to simplify SDP.
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Example: assess the preformance of AD channel

▸ For amplitude damping channel NAD
γ (ρ) = ∑1

i=0 EiρE
†
i with

E0 = ∣0⟩⟨0∣ +
√
1 − γ∣1⟩⟨1∣ and E1 =

√
γ∣0⟩⟨1∣,

▸ if we use the channel 3 times, the optimal success probabilty
to transmit 1 bit is given as follows:
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Result 2: One-shot capacities
▸ One-shot ε-error capacity assisted with Ω-codes:

C
(1)
Ω (N , ε) ∶= sup{logλ ∶ 1 − ps,Ω(N , λ) ≤ ε}.

Theorem
For given channel N and error threshold ε,

C
(1)
NS∩PPT(N , ε) = − logminη s.t. 0 ≤ FAB ≤ ρA ⊗ 1B ,Tr ρA = 1,

TrA FAB = η1B ,Tr JNFAB ≥ 1 − ε,
0 ≤ FTB

AB ≤ ρA ⊗ 1B (PPT),

To obtain C
(1)
NS (N , ε), one only needs to remove the PPT constraint:

C
(1)
NS (N , ε) = − logminη s.t. 0 ≤ FAB ≤ ρA ⊗ 1B ,Tr ρA = 1,

TrA FAB = η1B ,Tr JNFAB ≥ 1 − ε.

▸ Study zero-error capacity by setting ε = 0, e.g., C (1)NS (N ,0) recovers
the one-shot NS assisted zero-error capacity in (Duan & Winter’16).
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Comparsion with previous converse bounds

▸ Converse for classical channel (Polyanskiy, Poor, Verdú 2010) and
classical-quantum channel (Wang & Renner 2010).

▸ (Matthews & Wehner 2014) shows SDP converse bounds

C (1)E (N , ε) ≤ max
ρA

min
σB

Dε
H((idA′ ⊗N)(ρA′A)∣∣ρA′ ⊗ σB),

C (1)(N , ε) ≤ max
ρA

min
σB

Dε
H,PPT ((idA′ ⊗N)(ρA′A)∣∣ρA′ ⊗ σB),

where Dε
H and Dε

H,PPT are hypothesis testing relative entropies.

▸ (Datta & Hsieh’13) gives converse for C (1)E (N , ε) (hard to compute).

▸ One-shot ε-error capacities can provide better efficiently computable
converse bounds:

C (1)E (N , ε) ≤ C
(1)
NS (N , ε) ≤ max

ρA
min
σB

Dε
H((idA′ ⊗N)(ρA′A)∣∣ρA′ ⊗ σB),

C (1)(N , ε) ≤ C (1)NS∩PPT(N , ε) ≤ max
ρA

min
σB

Dε
H,PPT ((idA′ ⊗N)(ρA′A)∣∣ρA′ ⊗ σB).

The blue inequalities can be strict for amplitude damping channels.
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Asymptotic communication capability
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Weak vs Strong Converse

▸ The converse part of the HSW theorem due to Holevo (1973) only
establishes a weak converse, which states that there cannot be an
error-free communication scheme if rate exceeds capacity.

▸ A strong converse bound: psucc → 0 as n increases if the rate
exceeds this bound.

▸ If the capacity of a channel is also its strong converse bound, then
the strong converse property holds.
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Result 3: Strong converse bound for classical capacity

▸ Known strong converse bound: the entanglement-assisted
capacity (Bennett, Shor, Smolin, Thapliyal 1999, 2002)

Theorem (SDP strong converse bound for C)

For any quantum channel N ,
C(N) ≤ Cβ(N) = logminTrSB

s.t. − RAB ≤ JTB
N

≤ RAB ,

− 1A ⊗ SB ≤ RTB
AB ≤ 1A ⊗ SB .

And psucc → 0 when the rate exceeds Cβ(N).

Properties:
▸ A relaxed bound: C(N) ≤ Cβ(N) ≤ log dB∥JTB

N
∥∞.

▸ For qudit noiseless channel Id , C(Id) = Cβ(Id) = log d .
▸ Cβ(N1 ⊗N2) = Cβ(N1) + Cβ(N2) for any N1 and N2.
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Sketch of proof

▸ Subadditive bounds on ps (Tool: duality of SDP)

ps,NS∩PPT(N⊗n,2rn)≤ p+s (N⊗n,2rn) ≤ p+s (N ,2r)n, (4)

where

p+s (N ,m) = min TrZB s.t. − RAB ≤ JTB
N

≤ RAB ,

−m1A ⊗ ZB ≤ RTB
AB ≤ m1A ⊗ ZB .

(5)

▸ For any r > Cβ(N), one can prove that p+s (N ,2r) < 1. Thus,

ps,NS∩PPT(N⊗n,2rn) ≤ p+s (N ,2r)n → 0, (when n increases)
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Application 1: Amplitude damping channel
For amplitude damping channel,

C(NAD
γ ) ≤ Cβ(NAD

γ ) = log(1 +
√
1 − γ).

▸ Solid line depicts our bound.
▸ Dashed line depicts the previously best upper bound (Brandão,

Eisert, Horodecki, Yang 2011).
▸ Dotted line depicts the lower bound (Giovannetti and Fazio 2005).
▸ Note that CE(NAD

γ ) ≥ 1 when γ ≤ 0.5.
▸ Problem: how to further improve the lower bound or upper bound?
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Application 2: Strong converse property for new channels

▸ Previous known channels:
▸ classical-quantum channels (Ogawa, Nagaoka’99; Winter’99)
▸ particular covariant quantum channels (Koenig and Wehner’09)
▸ entanglement-breaking, Hadamard channels (Wilde, Winter,
Yang’14).

▸ Optical quantum channels (Bardhan, et al.’16)

▸ The channel from A to B is given by Nα(ρ) = E0ρE
†
0 + E1ρE

†
1

(0 < α ≤ π/4) with

E0 = sinα∣0⟩⟨1∣ + ∣1⟩⟨2∣,E1 = cosα∣2⟩⟨1∣ + ∣1⟩⟨0∣.
▸ Applying the strong converse bound Cβ ,

C(Nα) = CNS∩PPT(Nα) = Cβ(Nα) = 1.

▸ In (W. & D.,1608.04508), CE(Nα) = 2 < logϑ(N), and ϑ(N)
is the quantum Lovász number (Duan,Severini,Winter’13).

▸ In particular,
Q(Nα) < 1 = P(Nα) = C(Nα) =

1
2
CE(Nα).
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is the quantum Lovász number (Duan,Severini,Winter’13).

▸ In particular,
Q(Nα) < 1 = P(Nα) = C(Nα) =

1
2
CE(Nα).

Xin Wang (UTS:QSI) | SDP strong converse bounds for quantum channel capacities | QIP 17, Microsoft Research, Seattle



Introduction One-shot information theory Strong converse bounds Summary

Application 2: Strong converse property for new channels

▸ Previous known channels:
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Yang’14).
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Quantum capacity

▸ Quantum capacity is established by (Lloyd, Shor, Devetak
97-05) & (Barnum, Nielsen, Schumacher 96-00)

Q(N) = lim
m→∞

1
m
Ic(N⊗m).

▸ Coherent information Ic(N) ∶= maxρ[H(N(ρ)) −H(N c(ρ))]
▸ Q(N) is also difficult to evaluate.

▸ Known strong converse bounds:
▸ Partial Transposition bound (Holevo, Werner 2001;
Muller-Hermes, Reeb, Wolf 2016)

▸ Rains information (Tomamichel, Wilde, Winter 2015)
▸ Channel’s entanglement cost (Berta, Brandao, Christandl,
Wehner 2013)
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SDP strong converse bound for quantum capacity

Theorem (SDP strong converse bound for Q)
For any quantum channel N ,

Q(N) ≤ QΓ(N) = logmaxTr JNRAB

s.t. RAB , ρA ≥ 0,Tr ρA = 1,

− ρA ⊗ 1B ≤ RTB

AB ≤ ρA ⊗ 1B .

The fidelity of transmission goes to zero if the rate exceeds QΓ(N).

▸ This is based on the optimal fidelity of transmitting quantum
information assisted with PPT codes (Leung and Matthews’16).

▸ The proof idea is similar to previous bound for classical capacity.

▸ For noiseless quantum channel Id , Q(Id) = QΓ(Id) = log2 d .

▸ QΓ(N ⊗M) = QΓ(M) +QΓ(N) (by utilizing SDP duality).
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Comparison with other bounds
▸ Partial Transposition bound (Holevo & Werner’01,
Muller-Hermes, Reeb, Wolf’16)

Q(N) ≤ QΘ(N) = log2 ∥JTB
N

∥cb,
where ∥ ⋅ ∥cb uses an alternative expression from (Watrous’12).

Improved efficiently computable bound

For any quantum channel N , QΓ(N) ≤ QΘ(N).

▸ Example: Nr = ∑i Ei ⋅ E †
i

with E0 = ∣0⟩⟨0∣ +
√
r ∣1⟩⟨1∣

and E1 =
√
1 − r ∣0⟩⟨1∣ + ∣1⟩⟨2∣.

▸ Solid line: SDP bound QΓ

▸ Dashed line: PT bound QΘ

0 0.1 0.2 0.3 0.4

r from 0 to 0.5

0.6

0.7

0.8

0.9

1
QΓ(Nr)

QΘ(Nr)
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Summary and Outlook

▸ Non-asymptotic classical communication (NS/NS∩PPT codes)

▸ Optimal success probability of communication is given by SDP
▸ One-shot ε-error capacity is given by SDP

▸ Limits for asymptotic classical/quantum communication
▸ SDP strong converse bound for classical capacity

▸ Improved upper bound for C(N AD
)

▸ Strong converse property for new class of quantum channels
▸ SDP strong converse bound for quantum capacity (improve
the Partial Transposition bound).

▸ Outlook
▸ Tighter strong converse bounds without using additive SDP?
▸ Classical capacity of specific channels (AD channel)?
▸ How to implement the NS and PPT-preserving codes?
▸ Relationship between QΓ and Rains information (TWW’15)?
▸ Continuous-variable quantum channels?

Xin Wang (UTS:QSI) | SDP strong converse bounds for quantum channel capacities | QIP 17, Microsoft Research, Seattle



Introduction One-shot information theory Strong converse bounds Summary

Summary and Outlook

▸ Non-asymptotic classical communication (NS/NS∩PPT codes)

▸ Optimal success probability of communication is given by SDP
▸ One-shot ε-error capacity is given by SDP

▸ Limits for asymptotic classical/quantum communication
▸ SDP strong converse bound for classical capacity

▸ Improved upper bound for C(N AD
)

▸ Strong converse property for new class of quantum channels
▸ SDP strong converse bound for quantum capacity (improve
the Partial Transposition bound).

▸ Outlook
▸ Tighter strong converse bounds without using additive SDP?
▸ Classical capacity of specific channels (AD channel)?
▸ How to implement the NS and PPT-preserving codes?
▸ Relationship between QΓ and Rains information (TWW’15)?
▸ Continuous-variable quantum channels?

Xin Wang (UTS:QSI) | SDP strong converse bounds for quantum channel capacities | QIP 17, Microsoft Research, Seattle



Introduction One-shot information theory Strong converse bounds Summary

Summary and Outlook

▸ Non-asymptotic classical communication (NS/NS∩PPT codes)

▸ Optimal success probability of communication is given by SDP
▸ One-shot ε-error capacity is given by SDP

▸ Limits for asymptotic classical/quantum communication
▸ SDP strong converse bound for classical capacity

▸ Improved upper bound for C(N AD
)

▸ Strong converse property for new class of quantum channels

▸ SDP strong converse bound for quantum capacity (improve
the Partial Transposition bound).

▸ Outlook
▸ Tighter strong converse bounds without using additive SDP?
▸ Classical capacity of specific channels (AD channel)?
▸ How to implement the NS and PPT-preserving codes?
▸ Relationship between QΓ and Rains information (TWW’15)?
▸ Continuous-variable quantum channels?

Xin Wang (UTS:QSI) | SDP strong converse bounds for quantum channel capacities | QIP 17, Microsoft Research, Seattle



Introduction One-shot information theory Strong converse bounds Summary

Summary and Outlook

▸ Non-asymptotic classical communication (NS/NS∩PPT codes)

▸ Optimal success probability of communication is given by SDP
▸ One-shot ε-error capacity is given by SDP

▸ Limits for asymptotic classical/quantum communication
▸ SDP strong converse bound for classical capacity

▸ Improved upper bound for C(N AD
)

▸ Strong converse property for new class of quantum channels
▸ SDP strong converse bound for quantum capacity (improve
the Partial Transposition bound).

▸ Outlook
▸ Tighter strong converse bounds without using additive SDP?
▸ Classical capacity of specific channels (AD channel)?
▸ How to implement the NS and PPT-preserving codes?
▸ Relationship between QΓ and Rains information (TWW’15)?
▸ Continuous-variable quantum channels?

Xin Wang (UTS:QSI) | SDP strong converse bounds for quantum channel capacities | QIP 17, Microsoft Research, Seattle



Introduction One-shot information theory Strong converse bounds Summary

Summary and Outlook

▸ Non-asymptotic classical communication (NS/NS∩PPT codes)

▸ Optimal success probability of communication is given by SDP
▸ One-shot ε-error capacity is given by SDP

▸ Limits for asymptotic classical/quantum communication
▸ SDP strong converse bound for classical capacity

▸ Improved upper bound for C(N AD
)

▸ Strong converse property for new class of quantum channels
▸ SDP strong converse bound for quantum capacity (improve
the Partial Transposition bound).

▸ Outlook
▸ Tighter strong converse bounds without using additive SDP?

▸ Classical capacity of specific channels (AD channel)?
▸ How to implement the NS and PPT-preserving codes?
▸ Relationship between QΓ and Rains information (TWW’15)?
▸ Continuous-variable quantum channels?

Xin Wang (UTS:QSI) | SDP strong converse bounds for quantum channel capacities | QIP 17, Microsoft Research, Seattle



Introduction One-shot information theory Strong converse bounds Summary

Summary and Outlook

▸ Non-asymptotic classical communication (NS/NS∩PPT codes)

▸ Optimal success probability of communication is given by SDP
▸ One-shot ε-error capacity is given by SDP

▸ Limits for asymptotic classical/quantum communication
▸ SDP strong converse bound for classical capacity

▸ Improved upper bound for C(N AD
)

▸ Strong converse property for new class of quantum channels
▸ SDP strong converse bound for quantum capacity (improve
the Partial Transposition bound).

▸ Outlook
▸ Tighter strong converse bounds without using additive SDP?
▸ Classical capacity of specific channels (AD channel)?

▸ How to implement the NS and PPT-preserving codes?
▸ Relationship between QΓ and Rains information (TWW’15)?
▸ Continuous-variable quantum channels?

Xin Wang (UTS:QSI) | SDP strong converse bounds for quantum channel capacities | QIP 17, Microsoft Research, Seattle



Introduction One-shot information theory Strong converse bounds Summary

Summary and Outlook

▸ Non-asymptotic classical communication (NS/NS∩PPT codes)

▸ Optimal success probability of communication is given by SDP
▸ One-shot ε-error capacity is given by SDP

▸ Limits for asymptotic classical/quantum communication
▸ SDP strong converse bound for classical capacity

▸ Improved upper bound for C(N AD
)

▸ Strong converse property for new class of quantum channels
▸ SDP strong converse bound for quantum capacity (improve
the Partial Transposition bound).

▸ Outlook
▸ Tighter strong converse bounds without using additive SDP?
▸ Classical capacity of specific channels (AD channel)?
▸ How to implement the NS and PPT-preserving codes?

▸ Relationship between QΓ and Rains information (TWW’15)?
▸ Continuous-variable quantum channels?

Xin Wang (UTS:QSI) | SDP strong converse bounds for quantum channel capacities | QIP 17, Microsoft Research, Seattle



Introduction One-shot information theory Strong converse bounds Summary

Summary and Outlook

▸ Non-asymptotic classical communication (NS/NS∩PPT codes)

▸ Optimal success probability of communication is given by SDP
▸ One-shot ε-error capacity is given by SDP

▸ Limits for asymptotic classical/quantum communication
▸ SDP strong converse bound for classical capacity

▸ Improved upper bound for C(N AD
)

▸ Strong converse property for new class of quantum channels
▸ SDP strong converse bound for quantum capacity (improve
the Partial Transposition bound).

▸ Outlook
▸ Tighter strong converse bounds without using additive SDP?
▸ Classical capacity of specific channels (AD channel)?
▸ How to implement the NS and PPT-preserving codes?
▸ Relationship between QΓ and Rains information (TWW’15)?

▸ Continuous-variable quantum channels?

Xin Wang (UTS:QSI) | SDP strong converse bounds for quantum channel capacities | QIP 17, Microsoft Research, Seattle



Introduction One-shot information theory Strong converse bounds Summary

Summary and Outlook

▸ Non-asymptotic classical communication (NS/NS∩PPT codes)

▸ Optimal success probability of communication is given by SDP
▸ One-shot ε-error capacity is given by SDP

▸ Limits for asymptotic classical/quantum communication
▸ SDP strong converse bound for classical capacity

▸ Improved upper bound for C(N AD
)

▸ Strong converse property for new class of quantum channels
▸ SDP strong converse bound for quantum capacity (improve
the Partial Transposition bound).

▸ Outlook
▸ Tighter strong converse bounds without using additive SDP?
▸ Classical capacity of specific channels (AD channel)?
▸ How to implement the NS and PPT-preserving codes?
▸ Relationship between QΓ and Rains information (TWW’15)?
▸ Continuous-variable quantum channels?

Xin Wang (UTS:QSI) | SDP strong converse bounds for quantum channel capacities | QIP 17, Microsoft Research, Seattle



Introduction One-shot information theory Strong converse bounds Summary

arXiv:1610.06381
& 1601.06888

Wei Xie Runyao Duan

Thank you for your attention!

Xin Wang (UTS:QSI) | SDP strong converse bounds for quantum channel capacities | QIP 17, Microsoft Research, Seattle



Introduction One-shot information theory Strong converse bounds Summary

arXiv:1610.06381
& 1601.06888

Wei Xie Runyao Duan

Thank you for your attention!

Xin Wang (UTS:QSI) | SDP strong converse bounds for quantum channel capacities | QIP 17, Microsoft Research, Seattle


