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Basic Problem

Consider the following tasks over a quantum channel:

QC = Quantum Communication  — transmission of qubits
ED = Entanglement Distribution  — sharing of ebits

QKD = Quantum Key Distribution — generation of secret bits

Alice

Bob

What are the maximum rates achievable
by point-to-point protocols?

Defined by optimizing the rates

» 2-way capacities over adaptive LOCCs
of the channel (LOs assisted by unlimited 2-way CCs)




Adaptive protocols over a quantum channel

Quantum protocol
assisted by adaptive LOCCs

Alice a mm T mm A Alice

« Arbitrary task (can be QC, ED, QKD...)

« Arbitrary dimension (qubits, qudits, bosonic)



Adaptive protocols over a quantum channel

Quantum protocol
assisted by adaptive LOCCs

Aliceai

Bob b1

Alice and Bob have local registers “a” and “b”

(ensembles of quantum systems)
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Adaptive protocols over a quantum channel

assisted by adaptive LOCCs

Quantum protocol

Alice a mm T mm A Alice

© Ay ® A, ... N rounds
b, b,

Bob b mm | L mmb Bob

Another adaptive LOCC and so on...
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Adaptive protocols over a quantum channel

Alice a == I ] mma )

Ao ©® M ® A; > Dab

Bob b mm | L -bj

> LOCC-sequence defining the protocol £ = {Ay, Ay, -+, Ay}

> Output pgbz qbn target state defining the rate R,, (bits/use)

» Generic 2-way capacity of the channel

C(E) =suplimR,
L n

Optimization over .

adaptive protocols Asymptotic rate
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Two-way capacities and benchmarks

Target bits 2-way quantum

capacity
2-way (Q2= D)
capacity IN
Secret-key
capacity

(K = Py)

2-way capacities are optimal point-to-point rates

| 0 LOCCs
NO constraints on: d Number of channel uses

4 Input energy

Therefore, general benchmarks for quantum repeaters



Bounding two-way capacities

Q,(E) <K(E) £7

e{g)

General Reduction Method

1) Relative Entropy of Entanglement (REE)
2) LOCC-simulation of quantum channels

3) Teleportation Stretching of adaptive protocols

*Formulations are asymptotic for bosonic channels

m) C(E) < Single-Letter Bound
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[PLOB, Theorem 1]



General Reduction Method (1)

0,(E) < K(E) <7

REE bound for the channel

K(g) < E; (5) = Sup lim ER(ﬁab) [PLOB, Theorem 1]
L n '

REE computed on the output state

Er(pab):= min S(papl|o)
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General Reduction Method (1)

Q,(E) <K(E) £7

REE bound for the channel

n

K(E) < E3(E) := sup lim ER(Pab)
L n

PLOB gives alternative but equivalent proofs:

[PLOB, Theorem 1]

Key Proof 1: Size grows (at most) exponentially*

system

n N
Pab= P, nR < Er(p,) + 42108, dap, + 2Hs(c)

1)

dab g C-n..

*For both DVs and CVs justified by known arguments
[Christiand| et al., CMP 311, 397 (2012)]
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General Reduction Method (1)

0,(E) < K(E) <7

REE bound for the channel

K(g) < EE (5) = Sup lim ER(Pap) [PLOB, Theorem 1]
L n

n

PLOB gives alternative but equivalent proofs:

Pab= ¢, {

private
state

Key
system

Shield
system

Proof 1: Size grows (at most) exponentially*
Proof 2: Energy grows (at most) exponentially
Proof 3: No assumptions on the shield

nR < Er(pa,) + 8clogs di + 2Hs(e)

L]

Dimension of key system only



General Reduction Method (1)

0,(E) < K(E) <7

REE bound for the channel

n

K(g) < E; (5) = Sup lim ER(Pap) [PLOB, Theorem 1]
L n

1

Difficult bound
We need to simplify the output state
(2) LOCC-simulation & (3) Teleportation stretching



General Reduction Method (2)

LOCC-simulation of (any) quantum channel

Alice
p a
o —stretchable channel
A
£ Ep)=T(p Q o)
o T
B b
Ep) LOCC Resource
Bob state

*Asymptotic formulation for bosonic channels (LOCC may include parts of the channel)

» Precursory teleportation-based tool in BDSW, restricted to Pauli channels

BDSW = [Bennett et al., PRA 54, 3824 (1996)]

» Different non-local tool in NC, restricted to programmable channels

NC = [Nielsen & Chuang, PRL 79, 321 (1997)]



General Reduction Method (3)

Teleportation-stretching:
Reduction of an adaptive protocol to a block one

CgD Transmission between
adaptive LOCCs
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Teleportation-stretching:
Reduction of an adaptive protocol to a block one

d s I el

LOCC-simulation

Au_ e A
k-1 O / & of the channel
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Teleportation-stretching:

Reduction of an adaptive protocol to a block one

Ha

O0O0r

o] | I mb b-O—O— mb

Stretching of the
resource state
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Teleportation-stretching:

Reduction of an adaptive protocol to a block one

Ha

mb
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of the LOCCs

O0O0r



General Reduction Method (3)

Teleportation-stretching:
Reduction of an adaptive protocol to a block one

|
®n — n __ A n
o A E> pab = A(0®™)
| Decomposition
mb of the output

[PLOB, Lemma 3]



General Reduction Method (3)
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Ha Ha
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Teleportation-stretching:

« Maintain the task (QC, ED, QKD, any task!)
* Any channel

* Any dimension (finite or infinite)




General Reduction Method (3)

am

Ha

Ha
X n » a®"(7\ Block
mb

o] | mb

—

®

Adaptive

O0O0Tr
O0O0r

—>>

Teleportation-stretching:

« Maintain the task (QC, ED, QKD, any task!)
* Any channel

* Any dimension (finite or infinite)

» Precursory but restricted argument in BDSW.
« From QC to ED (task changing)
« Restricted to Pauli channels in finite dimension

BDSW = [Bennett et al., PRA 54, 3824 (1996)]
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General Reduction Method (3)

Combining the ingredients: REE + teleportation stretching

C(E) < ERr(E) == sup lim ER(Pab)  pee poing
L n "I
Stretching ~ pip = /_\(O.(Xm )

$

Er(pap) < nEg(o)

Monotonicity & subadditivity of the REE

6(5) < ER (8) < %%%E%(J) Single-Letter Bound




Single-letter bounds for 2-way capacities
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Single-letter bounds for 2-way capacities

Combining the ingredients: REE + teleportation stretching

C(g) < ER (O') [PLOB, Theorem 5]

Tele-covariance[PLOB, Proposition 2]

If € is teleportation-covariant E(UpUT) = VE(p)V'T

then 0 = p¢ (Chol-stretchable channel)

For a Choi-stretchable channel € we have

C(€) = Egr(pe)

*Asymptotic formulation for bosonic channels



Stretchable and Distillable Channels

Choi-stretchable channels

« Bosonic Gaussian channels
 Pauli channels

C(E) < Er(pe)




Stretchable and Distillable Channels

Choi-stretchable channels

« Bosonic Gaussian channels
 Pauli channels

C(E) < Er(pe)

Distillable channels

Bosonic lossy channels
Quantum-limited amplifiers
Dephasing channels
Erasure channels

D,(ps) = C(E) = Er(pe)

2-way capacities all established




Two-way capacities of distillable channels

d Lossy channel (transmissivity n) Q, =K =— lng(l — 77)
0 Quantum-limited amplifier (gaing) | Q, = K = —log,(1 — g~ 1)
*

d Dephasing channel (probability p) Qz =K=1-— H, (p)

*

O Erasure channel (probability p) =1-— p

fz

Only result previously known!
[Bennett et al. PRL 78, 3217 (1997)]

*Similar results for

- - See also the independent proof in
arbltrary dmd = 2 [Goodenough et al. arXiv:1511.08710]



Two-way capacitie

d Lossy channel (transmissivity )

At long distances (17 = 0) rate-loss scaling for
repeaterless quantum communications (QKD)

s of distillable channels

K

Q> —log,(1—n)

K

12
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Conclusions

New methodology

Channel’'s REE + Teleportation Stretching

Reduction of adaptive protocols to single-letter bounds

Our main results

e 2-way capacities of many channels (lossy, amplifiers, dephasing, erasure)
e Fundamental rate-loss scaling for optical quantum comms (1.44 bits/use)

e Benchmarks for quantum repeaters

Some recent developments and follow-up works

Theory extended to repeaters and networks [Pirandola, arXiv:1601.00966]

Single-hop multiuser networks (broadcast, multiple-access, interference channel)
[Laurenza & Pirandola, arXiv:1603.07262]

Quantum metrology and channel discrimination [Pirandola & Lupo, arXiv:1609.02160]

Strong converse rates [Wilde, Tomamichel, Berta, arXiv:1602.08898] — NEXT TALK




