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Setup I

Given a quantum channel N and a quantum key distribution (QKD) protocol that
uses it n times, how much key can be generated?
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Non-asymptotic private capacity: maximum rate of ε-close secret key achievable
using the channel n times with two-way classical communication (LOCC) assistance

P̂↔N (n, ε) := sup
{
P : (n,P, ε) is achievable for N using LOCC

}
. (1)
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Setup II

Practical question: how to characterize P̂↔N (n, ε) for all n ≥ 1 and ε ∈ (0, 1)?

The answers give the fundamental limitations of QKD.

Upper bounds on P̂↔N (n, ε) can be used as benchmarks for quantum

repeaters [Lütkenhaus].

Today, I will present

the tightest known upper bound on P̂↔N (n, ε)

for several channels of practical interest. Interesting special case: single-mode

phase-insensitive bosonic Gaussian channels.
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Overview

1 Main Results (Examples)

2 Proof Idea: Meta Converse

3 Conclusion
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Main Result: Gaussian Channels I

Converse bounds for single-mode phase-insensitive bosonic Gaussian channels,

most importantly the photon loss channel

Lη : b̂ =
√
ηâ +

√
1− ηê (2)

where transmissivity η ∈ [0, 1] and environment in vacuum state.

Our approach gives a complete proof for the following weak converse bound,

stated in [Pirandola et al. 2016]:

P↔(Lη) := lim
ε→0

lim
n→∞

P̂↔Nη
(n, ε) ≤ log

(
1

1− η

)
, (3)

which is actually tight in the asymptotic limit, i.e., P↔(Nη) = log
(

1
1−η

)
.

Drawback: an asymptotic statement, and thus says little for practical

protocols (called a weak converse bound).
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Main Result: Gaussian Channels II

We show the non-asymptotic converse bound

P̂↔Lη
(n, ε) ≤ log

(
1

1− η

)
+

C (ε)

n
, (4)

where C (ε) := log 6 + 2 log
(

1+ε
1−ε

)
(other choices possible).

Can be used to assess the performance of any practical quantum

repeater which uses a loss channel n times for desired security ε.

Other variations of this bound are possible if η is not the same for each

channel use, if η is chosen adversarially, etc.

We give similar bounds for the quantum-limited amplifier channel (tight),

thermalizing channels, amplifier channels, and additive noise channels.
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Main Result: Dephasing Channels I

Asymptotic result [Pirandola et al. 2016] for the qubit dephasing channel

Zγ : ρ 7→ (1− γ) ρ+ γZρZ

with γ ∈ (0, 1) is

P↔(Zγ) := lim
ε→0

lim
n→∞

P̂↔Zγ
(n, ε) = 1− h(γ) , (5)

with the binary entropy h(γ) := −γ log γ − (1− γ) log(1− γ).

By combining with [Tomamichel et al. 2016] we show the expansion

P̂↔Zγ
(n, ε) = 1− h(γ) +

√
v(γ)

n
Φ−1(ε) +

log n

2n
+ O

(
1

n

)
, (6)

with Φ the cumulative standard Gaussian distribution and the binary entropy

variance v(γ) := γ(log γ + h(γ))2 + (1− γ)(log(1− γ) + h(γ))2.
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Main Result: Dephasing Channels II

For the dephasing parameter γ = 0.1 we get (figure from [Tomamichel et al.

2016]):
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Proof Idea: Meta Converse I

Meta converse approach from classical channel coding [Polyanskiy et al. 2010],
uses connection to hypothesis testing. In the quantum regime, e.g., for classical
communication [Tomamichel & Tan 2015] or quantum communication [Tomamichel
et al. 2014 & 2016]. We extend this approach to private communication.

Hypothesis testing relative entropy defined for a state ρ, positive semi-definite
operator σ, and ε ∈ [0, 1] as

Dε
H(ρ‖σ) := − log inf

{
Tr[Λσ] : 0 ≤ Λ ≤ I ∧ Tr[Λρ] ≥ 1− ε

}
. (7)

The ε-relative entropy of entanglement is defined as

E εR(A;B)ρ := inf
σAB∈S(A:B)

Dε
H(ρAB‖σAB) , (8)

where S(A :B) is the set of separable states (cf. relative entropy of entanglement).
Channel’s ε-relative entropy of entanglement is then given as

E εR(N ) := sup
|ψ〉AA′∈HAA′

E εR(A;B)ρ , (9)

where ρAB := NA′→B(ψAA′).
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Proof Idea: Meta Converse II

Goal is the creation of logK bits of key, i.e., states γABE with

(MA ⊗MB)(γABE ) =
1

K

∑
i

|i〉〈i |A ⊗ |i〉〈i |B ⊗ σE (10)

for some state σE and measurement channels MA,MB .

In one-to-one correspondence with pure states γAA′BB′E such that

[Horodecki et al. 2005 & 2009]

γABA′B′ = UABA′B′(ΦAB ⊗ θA′B′)U†ABA′B′ , (11)

where ΦAB maximally entangled, UABA′B′ =
∑

i,j |i〉〈i |A ⊗ |j〉〈j |B ⊗U ij
A′B′ with

each U ij
A′B′ a unitary, and θA′B′ a state.

Work in the latter, bipartite picture.
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Proof Idea: Meta Converse III

Let ε ∈ [0, 1] and let ρABA′B′ be an ε-approximate γ-private state. The probability
for ρABA′B′ to pass the “γ-privacy test” satisfies

Tr{ΠABA′B′ρABA′B′} ≥ 1− ε, (12)

where ΠABA′B′ ≡ UABA′B′(ΦAB ⊗ IA′B′)U†ABA′B′ is a projective “γ-privacy test.”

For separable states σAA′BB′ (useless for private communication) and a state
γAA′BB′ with logK bits of key we have [Horodecki et al. 2009]

Tr{ΠABA′B′σAA′BB′} ≤ 1

K
, (13)

The monotonicity of the channel’s ε-relative entropy of entanglement E εR(N ) with
respect to LOCC together with (13) implies the meta converse

P̂N (1, ε) ≤ E εR(N ) (LOCC pre- and post-processing assistance). (14)

For n channel uses this gives P̂N (n, ε) ≤ 1
n
E εR

(
N⊗n

)
.

Finite block-length version of relative entropy of entanglement upper bound
[Horodecki et al. 2005 & 2009].

One can then evaluate the meta converse for specific channels of interest.
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Conclusion

Our meta converse P̂N (1, ε) ≤ E εR(N ) gives bounds for the private transmission
capabilities of quantum channels. These give the fundamental limitations of QKD
and thus can be used as benchmarks for quantum repeaters.

Can our bound be improved for the photon loss channel

P̂↔Lη
(n, ε) ≤ log

(
1

1− η

)
+

C(ε)

n
with C(ε) = log 6 + 2 log

(
1 + ε

1− ε

)
(15)

to C ′(ε) := log
(

1
1−ε

)
?

Corresponding matching achievability? (Tight analysis of random coding in infinite
dimensions needed.)

Tight finite-energy bounds for single-mode phase-insensitive bosonic Gaussian
channels?

Understand more channels, for example such with P↔ > 0 but zero quantum
capacity [Horodecki et al. 2008]?
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Extra: Gaussian Formulas

For Gaussian channels we need formulas for the relative entropy D(ρ‖σ) and the
relative entropy variance V (ρ‖σ).

From [Chen 2005, Pirandola et al. 2015] and [Wilde et al. 2016], respectively:
writing zero-mean Gaussian states in exponential form as

ρ = Z−1/2
ρ exp

{
−1

2
x̂TGρx̂

}
with (16)

Zρ := det(V ρ + iΩ/2), Gρ := 2iΩ arcoth(2V ρiΩ) , (17)

and V ρ the Wigner function covariance matrix for ρ, we have

D(ρ‖σ) =
1

2

(
log

(
Zσ
Zρ

)
− Tr [∆V ρ]

)
(18)

V (ρ‖σ) =
1

2
Tr{∆V ρ∆V ρ}+

1

8
Tr{∆Ω∆Ω} , (19)

where ∆ := Gρ − Gσ.
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