SU(p, q) coherent states and Gaussian de Finetti theorems

arXiv:1612.05080 arXiv:1701.03393

Anthony Leverrier

Inria Paris

QIP 2017

Motivation

Generalize de Finetti reductions to problems with continuous variables

- ▶ de Finetti: permutation (S_n) invariance in $\mathcal{H}^{\otimes n}$ \implies i.i.d. $|\phi\rangle^{\otimes n} \in \mathcal{H}^{\otimes n}$
- ▶ but only if the local dimension is small
- ▶ what about continuous-variable systems (Fock space)?
- ightharpoonup This work: unitary U(n) invariance \implies Gaussian i.i.d.
 - ▶ mathematical framework: arXiv:1612.05080 (special thanks to Matthias Christandl!)
 - ▶ application to QKD with continuous variables: arXiv:1701.0339

Motivation

Generalize de Finetti reductions to problems with continuous variables

- de Finetti: permutation (S_n) invariance in $\mathcal{H}^{\otimes n}$ \implies i.i.d. $|\phi\rangle^{\otimes n} \in \mathcal{H}^{\otimes n}$
- ▶ but only if the local dimension is small
- ▶ what about continuous-variable systems (Fock space)?
- ▶ This work: unitary U(n) invariance \implies Gaussian i.i.d.
 - ▶ mathematical framework: arXiv:1612.05080 (special thanks to Matthias Christandl!)
 - ▶ application to QKD with continuous variables: arXiv:1701.03393

- 1 The (usual) symmetric subspace and de Finetti theorems
- 2 Application to quantum key distribution
- 3 The "unitary" symmetric subspace and SU(p, q) coherent states
- 4 Gaussian de Finetti theorems

- 1 The (usual) symmetric subspace and de Finetti theorems
- 2 Application to quantum key distribution
- 3 The "unitary" symmetric subspace and SU(p, q) coherent states
- 4 Gaussian de Finetti theorems

The symmetric subspace

Let $\mathcal{H} = \mathbb{C}^d$, the space $\mathcal{H}^{\otimes n} = (\mathbb{C}^d)^{\otimes n}$ of n qudits is exponentially large.

 \implies the permutation group S_n acts by permuting the factors

Definition

$$\operatorname{Sym}^n(\mathbb{C}^d) := \left\{ |\psi\rangle \in (\mathbb{C}^d)^{\otimes n} \, : \, P(\pi) |\psi\rangle = |\psi\rangle, \forall \pi \in S_n \right\}$$

Main properties

▶ It is as small as it can be: spanned by SU(d) coherent states

$$\operatorname{\mathsf{Sym}}^{\operatorname{n}}(\mathbb{C}^{\operatorname{d}}) = \operatorname{\mathsf{Span}}\left\{|\phi
angle^{\otimes \operatorname{n}} : |\phi
angle \in \mathbb{C}^{\operatorname{d}}
ight\}$$

- ▶ It has polynomial dimension: $\dim = O(n^d) \dots$ if $d \ll n$
- ▶ Symmetric operators admit a purification in the symmetric subspace of $(\mathcal{H} \otimes \mathcal{H})^{\otimes n}$ \implies we can restrict our attention to pure states

SU(d) *coherent states*

The states $|\phi\rangle^{\otimes n}$ with $|\phi\rangle \in \mathbb{C}^d$ are an example of generalized CS, associated to SU(d).

An example of Perelomov generalized CS construction for $\mathcal{H}^{\otimes n} \cong (\mathbb{C}^d)^{\otimes n}$

▶ a Lie group G, e.g SU(d), and a representation $(g \mapsto T_g)$ of G on $\mathcal{H}^{\otimes n}$

$$u \in SU(d) \mapsto u^{\otimes n}$$
 on $(\mathbb{C}^d)^{\otimes n}$

- a distinguished vector $\psi_0 \in \mathcal{H}^{\otimes n}$, e.g. $|0\rangle^{\otimes n}$
- generalized G-coherent states: $\{|\psi_{g}\rangle = T_{g}|\psi_{0}\rangle$, $g \in G\}$, e.g. $|\phi_{u}\rangle^{\otimes n} = u^{\otimes n}|0\rangle^{\otimes n}$
- H: stationary subgroup $\left\{g \in G : T_g | \psi_0 \right\rangle = e^{i\theta} | \psi_0 \rangle \right\}$
- ▶ the CS are labeled by elements of G/H, e.g. $\phi_u \in SU(d)/SU(d-1) \cong \mathcal{S}_1(\mathbb{C}^d)$

This work: SU(p,q) CS are a natural generalization for bosonic systems ($\mathcal{H}=Fock$ space)

de Finetti theorem (Caves, Fuchs, Schack, Christandl, König, Mitchison, Renner, Chiribella ...)

Theorem

Tracing out a few subsystems of a symmetric density operator $\rho = |\Psi\rangle\langle\Psi|$ on $\mathcal{H}^{\otimes(n+k)}$ gives an approximate mixture of CS:

$$\operatorname{tr}_{\mathcal{H}_{n+1},\dots,\mathcal{H}_{n+k}}(\rho) \approx_{\varepsilon} \int (|\phi\rangle\langle\phi|)^{\otimes n} \nu(\phi) d\phi \quad \text{with} \quad \varepsilon = O\left(\frac{dn}{n+k}\right)$$

Main property of CS: they resolve the identity on $\operatorname{Sym}^{n+k}(\mathbb{C}^d)$:

$$\frac{1}{\text{dim}(\mathsf{Sym})} \int_{\mathcal{S}_1(\mathbb{C}^d)} (|\phi\rangle\langle\phi|)^{\otimes (n+k)} d\psi = \mathbb{1}_{\mathsf{Sym}}$$

intuition.

- $\blacktriangleright |\Psi\rangle = \int |\phi\rangle^{\otimes(n+k)}\lambda(\phi)d\phi$
 - $\blacktriangleright \operatorname{tr}_{\mathcal{H}_{n+1},\dots,\mathcal{H}_{n+k}}(|\Psi\rangle\langle\Psi|) = \int (|\phi\rangle\langle\psi|)^{\otimes n} (\langle\psi|\phi\rangle)^k \lambda(\phi) d\phi \lambda(\psi) d\psi$
 - $(\langle \phi | \psi \rangle)^{k} \to \delta_{\phi,\psi}$ for $k \to \infty$.

OIP 2017

de Finetti reduction: Christandl, König, Renner (2009)

Consider two CPTP maps $\mathcal{E}, \mathcal{F}: \mathcal{H}^{\otimes n} \to \mathcal{H}'$.

Diamond norm: $\|\mathcal{E} - \mathcal{F}\|_{\diamond}$

- ▶ natural notion of distance between 2 CPTP maps, with an operational meaning:
 - \triangleright quantifies the maximal probability of distinguishing $\mathcal E$ and $\mathcal F$
- ▶ not easy to compute

$$\|\mathcal{E} - \mathcal{F}\|_{\diamond} := \sup_{\|
ho\|_1 \le 1} \|((\mathcal{E} - \mathcal{F})_{\mathcal{H}^{\otimes n}} \otimes \mathbb{1}_{\mathcal{K}})
ho_{\mathcal{H}^{\otimes n} \mathcal{K}} \|_1 \qquad (\text{with } \mathcal{K} \cong \mathcal{H}^{\otimes n})$$

de Finetti reduction

If Δ is permutation-invariant, then

$$\|\Delta\|_{\diamond} \leq n^{\text{poly}(d)} \parallel (\Delta \otimes \mathbb{1}) \tau_{\mathcal{H}^n \mathcal{R}} \parallel_1 \quad \text{with} \quad \tau_{\mathcal{H}^n} = \int \sigma_{\mathcal{H}}^{\otimes n} \mu(\sigma_{\mathcal{H}})$$

⇒ only needs to consider a specific i.i.d. state (de Finetti state)

Summary about the symmetric subspace

- ▶ useful to analyze protocols, systems with permutation invariance
- useful ansatz: the SU(d) coherent states, i.i.d. states $|\phi\rangle^{\otimes n}$
- ▶ these states are "sufficient": they resolve the identity on Sym
 - de Finetti theorem: the partial trace of a symmetric state is approx. a mixture of CS
 - ▶ de Finetti reduction: computing $\|\Delta\|_{\diamond}$ for Δ symmetric can be done by considering CS inputs
- ▶ the approach breaks down for large d (ex: continuous variables)

- 1 The (usual) symmetric subspace and de Finetti theorems
- 2 Application to quantum key distribution
- 3 The "unitary" symmetric subspace and SU(p, q) coherent states
- 4 Gaussian de Finetti theorems

QKD protocols

with qubits (ex: BB84)

- ▶ Alice and Bob share n 2-qubit states.
- ▶ They measure their systems with $\{|0\rangle, |1\rangle, |+\rangle, |-\rangle\}$.
- ► They each get n classical outcomes (basis, bit)
- ▶ Parameter estimation, error correction, privacy amplification
- ► They obtain 2 keys

with continuous variables

- ▶ Alice and Bob share n 2-mode states.
- ▶ They measure their systems with hererodyne detection $\{|\alpha\rangle : \alpha \in \mathbb{C}\}$.
- ▶ They each get n classical outcomes $\alpha_i \in \mathbb{C}$
- ▶ Parameter estimation, error correction, privacy amplification
- ► They obtain 2 keys

Security proof via a de Finetti reduction

QKD protocol: completely-positive trace-preserving map $\mathcal{E}: \mathcal{H}_{AB}^{\otimes n} \to \mathcal{S}_A \mathcal{S}_B \mathcal{C}$

ightharpoonup maps an arbitrary state ho_{AB} as input to keys S_A , S_B

Security of \mathcal{E}

- \triangleright compare \mathcal{E} to an ideal protocol \mathcal{F} that either outputs identical, secret keys or aborts
- ▶ \mathcal{E} is ε -secure if $\|\mathcal{E} \mathcal{F}\|_{\diamond} \leq \varepsilon$ \implies needs to consider all possible input states

de Finetti reduction: Christandl, König, Renner (2009)

If \mathcal{E} , \mathcal{F} are permutation-invariant, then

$$\|(\mathcal{E} - \mathcal{F})\|_{\diamond} \leq \mathrm{n}^{\mathrm{poly}(\mathrm{d})} \| ((\mathcal{E} - \mathcal{F}) \otimes \mathbb{1}) \tau_{\mathcal{H}^{\mathrm{n}}\mathcal{R}} \|_{1} \quad \text{with} \quad \tau_{\mathcal{H}^{\mathrm{n}}} = \int \sigma_{\mathcal{H}}^{\otimes \mathrm{n}} \mu(\sigma_{\mathcal{H}})$$

The term $\|((\mathcal{E} - \mathcal{F}) \otimes \mathbb{1})\tau_{\mathcal{H}^n\mathcal{R}}\|_1$ can be bounded by proving that the protocol is secure against collective attacks: inputs restricted to $(\sigma_{AB})^{\otimes n}$.

Continuous-variable protocols

Alice and Bob are not exchanging finite-dimensional systems, but rather standard (Glauber) coherent states:

- ▶ appealing from an implementation viewpoint: coherent states are easy to prepare and measure with coherent detection (homodyne detection): no need for photon counters
- \triangleright \mathcal{H} : infinite-dimensional Fock space \implies $d = \infty$
- ▶ previous results have error term scaling as n^{poly(d)}
- ▶ possible approach: truncate the Hilbert space, but $d = \Omega(\log n)$ is needed \implies not good enough for applications

Solution

▶ exploit invariance of the protocol under the action of U(n) (instead of S_n)

- 1 The (usual) symmetric subspace and de Finetti theorems
- 2 Application to quantum key distribution
- 3 The "unitary" symmetric subspace and SU(p, q) coherent states
- 4 Gaussian de Finetti theorems

Fock spaces

Fock space

Let H be a finite-dimensional Hilbert space.

$$\mathcal{F}(H) := \bigoplus_{k=0}^{\infty} \operatorname{Sym}^{k}(H),$$

with $\operatorname{Sym}^k(H)$: the symmetric part of $H^{\otimes k}$ (system with k excitations).

n-mode space: $H = \mathbb{C}^n$

ightharpoonup orthonormal basis of $\mathcal{F}(H)$:

$$\{|k_1,k_2,\ldots,k_n\rangle\,:\,k_i\in\mathbb{N}\}$$

- ▶ a pair of annihilation/creation operators is associated with each mode: $[a_i, a_i^{\dagger}] = 1$.
- \triangleright states can be expressed as functions of creation operators applied to the vacuum:

$$|\mathbf{k}_{1}, \mathbf{k}_{2}, \dots, \mathbf{k}_{n}\rangle = \frac{1}{\sqrt{|\mathbf{k}_{1}| \cdots |\mathbf{k}_{n}|}} (\mathbf{a}_{1}^{\dagger})^{\mathbf{k}_{1}} \cdots (\mathbf{a}_{n}^{\dagger})^{\mathbf{k}_{n}} |0\rangle$$

Segal-Bargmann representation: $\mathcal{F}(H)$ as a space of holomorphic functions

- ▶ Bras and kets are not well-suited to deal with states of many modes
- \blacktriangleright A better approach is to realize $\mathcal{F}(\mathbb{C}^n)$ as a space of functions of n variables:
 - $|\psi\rangle \leftrightarrow \psi(z_{\underline{1}},\ldots,z_n)$

with norm
$$\|\psi\|^2 := \langle \psi, \psi \rangle = \frac{1}{\pi^n} \int \exp(-|z|^2) |\psi(z)|^2 dz < \infty$$

 \blacktriangleright to recover the bra-ket formalism: replace the z_k by \hat{a}_k^{\dagger} and apply to the vac. state

Examples

• Glauber coherent state: $|\alpha\rangle =$

$$|\alpha\rangle = \sum_{k=0}^{\infty} \frac{\alpha^k}{\sqrt{k!}} |k\rangle = e^{\hat{a}^{\dagger}} |0\rangle \quad \leftrightarrow \quad e^{\alpha z}$$

► Two-mode squeezed vacuum state:

$$\sum_{k=0}^{\infty} \lambda^{k} |k, k\rangle = \sum_{k=0}^{\infty} \frac{\lambda^{k}}{k!} \hat{a}^{\dagger k} \hat{b}^{\dagger k} = e^{\lambda \hat{a}^{\dagger} \hat{b}^{\dagger}} |0\rangle \quad \leftrightarrow \quad e^{\lambda zz'}$$

▶ n 2-mode squeezed vacuum states:

$$\bigotimes_{i=1}^n \left(\sum_{k=0}^\infty \lambda^k |k,k\rangle \right) = e^{\lambda(\hat{a}_1^\dagger \hat{b}_1^\dagger + \dots + \hat{a}_n^\dagger \hat{b}_n^\dagger)} |0\rangle \quad \leftrightarrow \quad e^{\lambda(z_1 z_1' + \dots + z_n z_n')}$$

Action of the unitary group on $F_{p,q,n}$

Consider (p+q) copies of $\mathcal{F}(\mathbb{C}^n)$

- $\blacktriangleright \ F_{p,q,n} = \mathcal{H}_{A_1} \otimes \mathcal{H}_{A_2} \otimes \cdots \otimes \mathcal{H}_{A_p} \otimes \mathcal{H}_{B_1} \otimes \cdots \mathcal{H}_{B_q} \qquad \text{ with } \mathcal{H}_{A_i} \cong \mathcal{H}_{B_j} \cong \mathcal{F}(\mathbb{C}^n)$
- functions of n(p+q) variables:

$$\underbrace{(z_{1,1}\ldots z_{n,1})}_{\vec{z_1}},\ldots,\underbrace{(z_{1,p}\ldots z_{n,p})}_{\vec{z_p}};\underbrace{(z'_{1,1}\ldots z'_{n,1})}_{\vec{z_1}'},\ldots,\underbrace{(z'_{1,q}\ldots z'_{n,q})}_{\vec{z_q}'}$$

The unitary group U(n) acts in a natural way on $F_{p,q,n}:=F(\mathbb{C}^{np}\otimes\mathbb{C}^{nq})$

$$\vec{z_i} \mapsto u\vec{z_i}, \quad \vec{z_j}' \mapsto \overline{u}\vec{z_j}' \quad \text{(change of variables)}$$

 $F_{p,q,n}$ carries a representation of U(n):

$$V_u: \psi(\vec{z_1}, \ldots, \vec{z_p}, \vec{z_1}', \ldots, \vec{z_q}') \mapsto \psi(u\vec{z_1}, \ldots, u\vec{z_p}, \overline{u}\vec{z_1}', \ldots, \overline{u}\vec{z_q}')$$

- ▶ Physically, a unitary $u \in U(n)$ is a linear optical network made of phase-shifters and beamsplitters acting on n modes.
 - The previous CV QKD protocol is invariant under U(n).

The symmetric subspace $F_{p,q,n}^{\mathrm{U(n)}}$

$$F_{p,q,n}^{U(n)} = \{|\psi\rangle \in F_{p,q,n} \,:\, V_u|\psi\rangle = |\psi\rangle, \forall u \in U(n)\}$$

$$|\lambda\rangle^{\otimes n}=e^{\lambda(z_1z_1'+\cdots+z_nz_n')}\in F_{1,1,n}^{U(n)}$$
 (n two-mode squeezed vacuum states)

The quadratic form $Z := z_1 z_1' + \ldots + z_n z_n'$ is invariant under the change of variable $z \to uz, z' \to \overline{u}z'$:

$$\sum_{k=1}^n (uz)_k (\overline{u}z')_k = \sum_{k=1}^n \sum_{i=1}^n \sum_{j=1}^n u_{k,i} z_i \overline{u}_{k,j} z_j' = \sum_{i=1}^n \sum_{j=1}^n z_i z_j' \sum_{k=1}^n u_{k,i} (u^\dagger)_{j,k} = \sum_{i=1}^n z_i z_j'$$

since $uu^{\dagger} = 1_n$.

Introduce the $p \times q$ operators: $Z_{i,j} = z_{1,i}z'_{1,j} + \cdots + z_{n,i}z'_{n,j} \leftrightarrow a^{\dagger}_{1,i}b^{\dagger}_{1,j} + \cdots + a^{\dagger}_{n,i}b^{\dagger}_{n,i} \Rightarrow Z_{i,j}$ corresponds to the coherent addition of a photon in \mathcal{H}_{A_i} and \mathcal{H}_{B_i} .

- ▶ Obs.: $\psi(Z_{1,1},...,Z_{p,q}) \in F_{p,q,n}^{U(n)} \implies \text{only } p \times q \text{ parameters, instead of } n(p+q)$
- ▶ Main technical contribution: these are the only states

SU(p, q) coherent states

$$SU(p,q) := \left\{ A \in M_{p+q}(\mathbb{C}) : A\mathbb{1}_{p,q} A^{\dagger} = \mathbb{1}_{p,q}, \quad \det A = 1 \right\} \quad \text{with} \quad \mathbb{1}_{p,q} = \begin{pmatrix} \mathbb{1}_p & 0 \\ 0 & -\mathbb{1}_q \end{pmatrix}$$

Perelomov's construction (1972) applied to G = SU(p, q)(noncompact group)

- ▶ stationary subgroup: $H = SU(p) \times SU(q) \times U(1)$
- factor space G/H: set \mathcal{D} of p × q matrices Λ such that $\Lambda \Lambda^{\dagger} < \mathbb{1}_p$ (spectral norm < 1)
- generalized coherent state associated with $\Lambda \in \mathcal{D}$

$$|\Lambda,n\rangle = |\Lambda,1\rangle^{\otimes n} := \det(1 - \Lambda\Lambda^{\dagger})^{n/2} \exp(\lambda_{11}Z_{11} + \dots + \lambda_{p,q}Z_{pq})|0\rangle$$

 $\triangleright |\Lambda, n\rangle$ is an i.i.d. Gaussian state (exp. of a quadratic form in the creation operators).

Theorem (arXiv:1612.05080)

$$F_{p,q,n}^{U(n)} = Span\{|\Lambda, n\rangle : \Lambda \in \mathcal{D}\}$$

OIP 2017

- 1 The (usual) symmetric subspace and de Finetti theorems
- 2 Application to quantum key distribution
- 3 The "unitary" symmetric subspace and SU(p, q) coherent states
- 4 Gaussian de Finetti theorems

Gaussian de Finetti

de Finetti Theorem (arXiv:1612.05080)

Let $n, k \ge p + q$, $\rho = |\psi\rangle\langle\psi|$ symmetric (pure) state in $F_{p,q,n+k}^{U(n+k)}$. Then tracing out over k(p+q) modes gives an approximate mixture of SU(p,q) coherent states:

$$\operatorname{tr}_{k(p+q)}(\rho) \approx_{\varepsilon} \int \nu(\Lambda) |\Lambda, n\rangle \langle \Lambda, n| d\mu(\Lambda) \quad \text{with} \quad \varepsilon = O\left(\frac{pqn}{n+k}\right)$$

de Finetti reduction for p = q = 2, application to QKD (arXiv:1701.03393)

Let $\Delta : \operatorname{End}(F_{1,1,n}^{\leq K}) \to \operatorname{End}(\mathcal{H}')$ such that $\Delta \circ V_u = \Delta$ for all $u \in U(n)$, then

$$\|\Delta\|_{\diamond} \leq \frac{\mathrm{K}^4}{50} \| (\Delta \otimes \mathrm{id}) \tau_{\mathcal{H} \mathcal{N}}^{\eta} \|_1$$
,

with $\tau_{\mathcal{H}}^{\eta}$ a mixture of $|\Lambda, n\rangle$.

 \implies prefactor improved from $2^{\text{polylog(n)}}$ to $O(n^4)$ compared to previous results

 \implies sufficient to consider security for Gaussian i.i.d. input states

Gaussian de Finetti: proof technique

rather straightforward once we have defined the coherent states

Resolution of the identity on $F_{p,q,n}^{U(n)}$ (arXiv:1612.05080)

For $n \ge p + q$,

$$\int_{\mathcal{D}} |\Lambda, \mathbf{n}\rangle \langle \Lambda, \mathbf{n}| \mathrm{d}\mu_{\mathbf{n}}(\Lambda) = \mathbb{1}_{F_{\mathbf{p}, \mathbf{q}, \mathbf{n}}^{\mathbf{U}(\mathbf{n})}},$$

with the invariant measure on \mathcal{D} :

$$d\mu_n(\varLambda) = \mathrm{C_n}[\det(\mathbb{1}_p - \varLambda \varLambda^{\dagger})]^{-(p+q)} \textstyle\prod_{i,j}^p d\varLambda_{i,j}$$

Approximate version for bounded energy, p = q = 2 (arXiv:1701.03393)

For $n \ge 5$ and $\eta \in [0, 1[$, if $K \le \frac{\eta N}{1-\eta}$ for N = n - 5, then

$$\int_{\mathcal{D}_n} |\Lambda, n\rangle \langle \Lambda, n| d\mu_n(\Lambda) \geq (1-\epsilon) \Pi_{\leq K}$$

with $\varepsilon = 2N^4(1 + K/N)^7 \exp(-ND(\frac{K}{K+N} \parallel \eta))$ and $\Pi_{\leq K}$ projector onto the finite subspace with less than K excitations in $F_{2,2,n}^{U(n)}$

Conclusion

- ▶ de Finetti theorems are ubiquitous for studying large permutation-invariant multipartite systems / protocols
- ▶ but they fail to address infinite-dimensional systems (continuous variables)
- ▶ for some problems, a stronger invariance under U(n) is satisfied
 - \triangleright the corresponding symmetric subspace is spanned by SU(p, q) coherent states
 - ► Gaussian de Finetti: considering such Gaussian i.i.d. states is sufficient ⇒ ex: continuous-variable QKD

Dualities

► Schur-Weyl duality:

$$\mathrm{SU}(\mathrm{d}) \quad \leftrightarrow \quad \mathrm{S}_n \quad \text{on} \quad (\mathbb{C}^\mathrm{d})^{\otimes n} = \mathbb{C}^\mathrm{d} \otimes \cdots \otimes \mathbb{C}^\mathrm{d}$$

▶ this work:

$$SU(p,q) \leftrightarrow U(n)$$
 on $F_{p,q,n} = F_{p,q,1} \otimes \cdots \otimes F_{p,q,1}$