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Motivation

Generalize de Finetti reductions to problems with continuous variables
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Motivation

Generalize de Finetti reductions to problems with continuous variables

de Finetti: permutation (S,) invariance in H®* —  iid. |¢)®" € H®®
but only if the local dimension is small
what about continuous-variable systems (Fock space)?

This work: unitary U(n) invariance =~ =  Gaussian i.i.d.

» mathematical framework: arXiv:1612.05080  (special thanks to Matthias Christandl!)
» application to QKD with continuous variables: arXiv:1701.03393
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Outline of the talk

The (usual) symmetric subspace and de Finetti theorems
Application to quantum key distribution
The “unitary” symmetric subspace and SU(p, q) coherent states

Gaussian de Finetti theorems
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The symmetric subspace
Let H = C9, the space H®" = (C4)®" of n qudits is exponentially large.
=— the permutation group S, acts by permuting the factors

Definition
sym*(€?) := {|p) € (©*)" : P(m)|g) = |9}, ¥r € S0}

Main properties
» It is as small as it can be: spanned by SU(d) coherent states
sym*(€?) = Span {|g)*» : |¢) e €}

» It has polynomial dimension: dim = O(nd) ...ifd < n

» Symmetric operators admit a purification in the symmetric subspace of (H ® H)®»

— we can restrict our attention to pure states
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SU(d) coherent states

The states |¢)“" with |¢) € C? are an example of generalized CS, associated to SU(d).

An example of Perelomov generalized CS construction for H®" = (C4)®n
» a Lie group G, e.g SU(d), and a representation (g — Tg) of G on H®»

u€SU(d) ~u® on (CY)*m

a distinguished vector g € H®", e.g. |0)®™

v

v

generalized G-coherent states: {|g) = Tg|tho), g € G}, e.g. |Pu)®™ = u®2|0)®"

» H: stationary subgroup {g € G : Tg|th) = e|1po) }

v

the CS are labeled by elements of G/H, e.g. ¢, € SU(d)/SU(d — 1) = &;(C9)

This work: SU(p,q) CS are a natural generalization for bosonic systems (H = Fock space)
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de Finetti theorem (Caves, Fuchs, Schack, Christandl, Konig, Mitchison, Renner, Chiribella ..

Theorem

Tracing out a few subsystems of a symmetric density operator p = |¥)(¥| on H®(®+k)

gives an approximate mixture of CS:

1t (0) e [ (909D (9 with e =0 (LS2)

Main property of CS: they resolve the identity on Sym™™*(C4):

v (k) 3 _
dim(Sym) [sl<cd>(|¢><¢|)® Y = Tsym

intuition.

f ) I (p)dgp
> trmﬂ ..... v [EYCED = [UP) (WD E™ (] ) *A(p)dpA () d
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de Finetti reduction: Christandl, Konig, Renner (2009)
Consider two CPTP maps &, F : H®* — H'.

Diamond norm: ||€ — F||o

» natural notion of distance between 2 CPTP maps, with an operational meaning;:

» quantifies the maximal probability of distinguishing & and F

> not easy to compute

I =l sup I = P @ L)owoc s (w2 5
pll1<1

de Finetti reduction

If A is permutation-invariant, then
14l < 0P D [ (A® 1) Tyng 1 with Ty = /UH n(oy)

= only needs to consider a specific i.i.d. state (de Finetti state)
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Summary about the symmetric subspace

useful to analyze protocols, systems with permutation invariance
useful ansatz: the SU(d) coherent states, i.i.d. states |¢)“"

these states are “sufficient”: they resolve the identity on Sym

> de Finetti theorem: the partial trace of a symmetric state is approx. a mixture of CS

» de Finetti reduction: computing ||Al|o for A symmetric can be done by considering CS
inputs

the approach breaks down for large d (ex: continuous variables)
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QKD protocols
with qubits (ex: BB84)

v

Alice and Bob share n 2-qubit states.
They measure their systems with {|0), [1), |+),

They each get n classical outcomes (basis, bit)

=)}

Parameter estimation, error correction, privacy amplification
They obtain 2 keys

vV V. Vv Vv

with continuous variables

v

Alice and Bob share n 2-mode states.

v

They measure their systems with hererodyne detection {|a) : « € C}.

v

They each get n classical outcomes w; € C

\4

Parameter estimation, error correction, privacy amplification
They obtain 2 keys

\{
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Security proof via a de Finetti reduction

QKD protocol: completely-positive trace-preserving map & : 7-[ — SASBC

» maps an arbitrary state ©0AB as input to keys Sa, Sp
Security of £

» compare &£ to an ideal protocol F that either outputs identical, secret keys or aborts

» & is esecure if ||€ — Flls <& == needs to consider all possible input states

de Finetti reduction: Christandl, Konig, Renner (2009)

If £, F are permutation-invariant, then
(€ = F)lle <@ | (£~ F @ Dmoe 1 with = [ oFu(on)

The term ||((£ —F) ® 1)tynr||1 can be bounded by proving that the protocol is secure
against collective attacks: inputs restricted to (cap)®®
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Continuous-variable protocols

Alice and Bob are not exchanging finite-dimensional systems, but rather standard
(Glauber) coherent states:

» appealing from an implementation viewpoint: coherent states are easy to prepare and
measure with coherent detection (homodyne detection): no need for photon counters

» H: infinite-dimensional Fock space =— d = o
» previous results have error term scaling as npPoly(d)

» possible approach: truncate the Hilbert space, but d = Q(logn) is needed
— not good enough for applications

Solution

» exploit invariance of the protocol under the action of U(n) (instead of Sy)
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Fock spaces

Fock space

Let H be a finite-dimensional Hilbert space.
F(H) := P Sym"(H),
k=0

with Symk(H): the symmetric part of H®¥ (system with k excitations).
n-mode space: H = C"
» orthonormal basis of F(H):
{|k1, k2, ..., kn) : k; € N}

> a pair of annihilation/creation operators is associated with each mode: [a;,af] = 1.

> states can be expressed as functions of creation operators applied to the vacuum:

’k]_,kQ, 000 ,kn> = \/ﬁ(a{)kl ce (a;)kn’0>
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Segal-Bargmann representation: F (H) as a space of holomorphic functions

» Bras and kets are not well-suited to deal with states of many modes
» A better approach is to realize F(C") as a space of functions of n variables:

> ‘l[)> < l[)(za ..... ) )
> with norm ||¢||= : <lP P) = 7'(“ [ exp(—|z|*)|y(z)|*dz < oo
» to recover the bra-ket formalism: replace the zy by é{i and apply to the vac. state

Examples

» Glauber coherent state: o) = Yo \";—%H{) =ef|0) e

» Two-mode squeezed vacuum state:
(e ]

k N !
Z)‘k“{ k) Z A A+kb+k Aa+b+‘0> o M

» n 2-mode squeezed vacuum states:

® (Z A¥fk k) ) ] R

i=1
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Action of the unitary group on ¥, ( »
Consider (p + q) copies of F(C")

» functions of n(p + q) variables: , ) , ,
210 Zn1) o0 (Z1p e Znp)i (210 Zn1)s oo (21 Zng)
71 7p 7' Z-él’

The unitary group U(n) acts in a natural way on Fp, 4 := F(C"P @ C"?)

= = =7 o .
zi — uzi, zj > uz; (change of variables)

Fp qn carries a representation of U(n):

Vi $@ e B B (0 B T )

» Physically, a unitary u € U(n) is a linear optical network made of phase-shifters and
beamsplitters acting on n modes.
» The previous CV QKD protocol is invariant under U(n).
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The symmetric subspace ¥, 511)1

Foan = {|9) € Fpqn : Vul$p) = [¢), Yu € U(n)}

A)ER = Mms +tma) ¢ F?(lnr)l (n two-mode squeezed vacuum states)

The quadratic form Z := zlz’l + ...+ zy7) is invariant under the change of variable
7z — uz, 7z — uz’:

ki:l(uz)k(uzl)k = i i

k=1i=1j

n n n

n
Uk, iZi Uk, j J/ = Z Z Z1ZJ/ Z uy i (u Jk = ZZiZJ{

1 i=1j=1 k=1 i=1

=

since wut = 1,.

Introduce the p X q operators: Z;; = Zl,iz/l,j 4+ 4+ Zn,iZ;,j YRS aJ{vibJ{’j +--tay lb;r“
= Z;; corresponds to the coherent addition of a photon in H,, and HBJ..

> Obs.: (Zi1,...,2Zpq) € Fggnl)l —> only p X q parameters, instead of n(p + q)

» Main technical contribution: these are the only states
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SU(p, q) coherent states

SU(p,a) 1= {A € Mpiq(€) 1 AlpgAT =T, detA =1} with Ipq= <HOP _%q)

Perelomov’s construction (1972) applied to G = SU(p,q)  (noncompact group)

» stationary subgroup: H = SU(p) x SU(q) x U(1)
» factor space G/H: set D of p x q matrices A such that AAT < 1, (spectral norm < 1)

» generalized coherent state associated with A € D
|A, 1) = |A, 1) = det(1 — AAD)Zexp(A11Z11 + - - - + Ap.gZpq)|0)
» |A,n) is an i.i.d. Gaussian state (exp. of a quadratic form in the creation operators).
Theorem (arXiv:1612.05080)
FY) = Span{|A,n) : A €D}
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Gaussian de Finetti

de Finetti Theorem (arXiv:1612.05080)

Let n,k > p+q, p = |$) (| symmetric (pure) state in ng’nJrk.

k(p 4+ q) modes gives an approximate mixture of SU(p, q) coherent states:

(k) Phen tracing out over

. pan
i) () o [ 1(A)A D) (A nldu(a) with e=0 (295 )
de Finetti reduction for p = q = 2, application to QKD (arXiv:1701.03393)
Let A: End(F7},) — End(#') such that AoV, = A for all u € U(n), then

K* _
1Allo < =5 | (A@id) Ty,

with 7}, a mixture of |A,n).
— prefactor improved from gpolylog(n) ¢, O(n*) compared to previous results
— sufficient to consider security for Gaussian i.i.d. input states

A. Leverrier (Inria) SU(p, q) coherent states and Gaussian de Finetti QIP 2017 21/23



Gaussian de Finetti: proof technique

rather straightforward once we have defined the coherent states

Resolution of the identity on Fgg’% (arXiv:1612.05080)

Forn > p+q,
1A ) (A nldgn(4) = L,

with the invariant measure on D: dpn(A) = Cy[det(1, — AAT)]~(P+a) [T} dA;

Approximate version for bounded energy, p = q = 2 (arXiv:1701.03393)
Forn>5and 7 € [0,1], if K < % for N =n — 5, then

1A (A nldpn(4) = (1 - )<

with & = 2N*(1 + K/N)7exp(—ND(KL+N Il 7)) and Il<k projector onto the finite subspace

with less than K excitations in Fggﬁ
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Conclusion

» de Finetti theorems are ubiquitous for studying large permutation-invariant
multipartite systems / protocols

» but they fail to address infinite-dimensional systems (continuous variables)
» for some problems, a stronger invariance under U(n) is satisfied

> the corresponding symmetric subspace is spanned by SU(p, q) coherent states
» Gaussian de Finetti: considering such Gaussian i.i.d. states is sufficient

—> ex: continuous-variable QKD

Dualities
> Schur-Weyl duality:
SUM) <+ Sy on (CH®*"=C!®..-®C?

» this work:
SU(p,q) ¢ U@m) on Fpqn=Fpg1® - -Q@Fpq1
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