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Beyond-classical Computing
AKA Quantum Supremacy, J. Preskill, 2012

With a quantum device
perform a well-defined
computational task
beyond the capabilities of
state-of-the-art classical
supercomputers
in the near-term

without error correction (shallow
circuits with high fidelity gates).

Not necessarily solving a practical problem.



Beyond-classical computing in the near-term

We want a computational task which requires direct simulation of quantum
evolution.

Cost exponential in number of qubits.
Typical of chaotic systems (no shortcuts).

Specific figure of merit for the computational task, related to fidelity.
Relation to Computational Complexity.

Previous work in sampling problems, such as BosonSampling (Aaronson and
Arkhipov) and Commuting Circuits (M. Bremner et. al.).
Recent conjecture by Aaronson and Chen: for a random circuit C of depth ∼ √n
there is no polynomial-time classical algorithm that guesses if | 〈0n|C |0n〉 |2 is
greater than the mediam of | 〈x |C |0n〉 |2 with success probability 1/2 + Ω(1/2n).
Nevertheless, formal Computational Complexity is asymptotic, requires error
correction (Strong Church-Turing Thesis). We don’t know how to satisfy the
previous conjecture in the near term.



Random Universal Quantum Circuits
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Figure: Vertical lines correspond to controlled-phase gates .

Random quantum circuits are examples of quantum chaos.
Classically sampling pU(x) = | 〈x |U |0〉 |2 expected to require direct
simulations. Cost in 2D exponential in ∝ min(n,d

√
n), with n qubits, d depth.

(7× 7 qubits requires d ' 40 with current constraints.)
Good benchmark for quantum computers.
New results in computational complexity.



Porter-Thomas distribution

(Pseudo-)random circuit U (random gates from universal set)

|Ψ〉 = U |0〉 =
N∑

j=1

ci |xi〉 .

Sample the output distribution with probabilities

pi = |ci |2 = | 〈xi |U |Ψ〉 |2 .

Real and imaginary parts of ci are distributed (quasi) uniformly on a 2N
dimensional sphere (Hilbert space) if the circuit (or Hamiltonian evolution) has
sufficient depth (evolution time).

The distribution of ci is, up to finite moments, Gaussian with mean 0 and
variance ∝ 1/N.

Porter-Thomas distribution: Pr(Np) = e−Np.



Verification and uniformity test

There is no polynomial witness for this sampling problem. This problem is
much harder than NP.

This is required for near-term (few qubits) supremacy.

The PT distribution is very flat: p(xj) ∼ 1/N.

If we don’t know anything about p(xj) (black-box setting) we need Θ(
√

N)
measurements to distinguish from uniform over bit-strings.
The `1 distance between PT and uniform distribution is∑

j

|p(xj)− 1/N| = 2/e .

If we calculate p(xj) given circuit U, we can distinguish these distributions with
a constant number of measurements.

Hardware verification.



Convergence to chaos (Porter-Thomas distribution)

0 5 10 15 20 25 30

Depth

26.0

26.5

27.0

27.5

28.0

28.5

29.0

29.5

E
nt

ro
py

0 5 10 15 20 25 30
22.5

23.0

23.5

24.0

24.5

25.0

Figure: Depth required for PT distribution. Dashed line is known entropy for
PT. 2D circuit 7× 6 qubits. Inset 6× 6 qubits.
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Figure: Participation ratios PR(k) ' N〈pk 〉 with k = 2, 4, 6, 8, 10,
normalized to 1 for PT distribution. Related to t-designs. 7× 6 qubits.

For decoupling in random circuits (Brown & Fawzi), and anti-concentration on sparse-IQP
(Bremner et. al.), depth scales like Õ(

√
n). We expect this for 2-designs, entropy (Nahum et. al.),

out-of-time ordered correlator,...



Sampling from ideal circuit U

Sample S = {x1, . . . , xm} of bit-strings xj from circuit U (measurements in the
computational basis).

log PrU(S) =
∑
xj∈S

log pU(xj) = −m H(pU) + O(m1/2) ,

where H(pU) is the entropy of PT

H(pU) = −
∫ ∞

0
pN2e−Np log p dp = log N − 1 + γ .

and γ ' 0.577.



Sampling with polynomial classical circuit Apcl(U)

A polynomial classical algorithm Apcl(U) produces sample Spcl = {xpcl
1 , . . . , xpcl

m }.
The probability PrU(Spcl) that this sample Spcl is observed from the output |ψ〉 of
the circuit U is

log PrU(Spcl) = −m H(ppcl,pU) + O(m1/2) ,

where

H(ppcl,pU) ≡ −
N∑

j=1

ppcl(xj |U) log pU(xj)

is the cross entropy.



Sampling with polynomial classical circuit Apcl(U) (II)

We are interested in the average over {U} of random circuits

EU
[
H(ppcl,pU)

]
= EU

 N∑
j=1

ppcl(xj |U) log
1

pU(xj)

 .

Because U is chaotic, Hilbert space has exponential dimension, and Apcl(U) is
polynomial, we conjecture that ppcl and pU are (almost) uncorrelated (see next).
We can take averages independently.

−EU
[
log pU(xj)

]
≈ −

∫ ∞
0

Ne−Np log p dp = log N + γ .

EU
[
H(ppcl,pU)

]
= log N + γ ≡ H0 .



Chaotic sensitivity to perturbations
Residual correlation after a single Pauli error
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Figure: Correlation after a single X error at different depths. 5× 4 qubits.
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Figure: Correlation after a single Z error at different depths. 5× 4 qubits.



Cross entropy and fidelity

For algorithm A (quantum or classical of any cost) define the cross entropy
difference

α ≡ ∆H(pA) ≡ H0 − H(pA,pU) .

The output of an evolution with fidelity α̃ is

ρ = α̃U |0〉〈0|U† + (1− α̃)σU ,

with pexp(x) = 〈x | ρ |x〉 = α̃pU(x) + (1− α̃) 〈x |σU |x〉.
We again conjecture that 〈x |σU |x〉 is uncorrelated with pU(x).

α = EU [∆H(pexp)]

= H0 +
∑

j

(
α̃pU(xj) + (1− α̃) 〈xj |σU |xj〉

)
log pU(xj)

= H0 − α̃H(pU)− (1− α̃)H0 = α̃ .

The cross entropy α approximates the fidelity α̃.



Numerics and theory for realistic 2D circuits

Cross entropy difference � and estimated fidelity ◦.
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r is two-qubit gate error rate. α = 1 for PT distribution. Depth 25.



Experimental proposal

1 Implement a random universal circuit U (chaotic evolution).
2 Take large sample Sexp = {xexp

1 , . . . , xexp
m } of bit-strings x in the computational

basis (m ∼ 103 − 106).
3 Compute quantities log pU(xexp

j ) with supercomputer.

Cross entropy difference (figure of merit)

α =
1
m

m∑
j=1

log pU(xexp
j ) + log 2n + γ ± κ√

m
, κ ' 1, γ = 0.577

Measure and extrapolate α (size, depth, T gates).
Fit to theory: α approx. circuit fidelity, chaotic state very sensitive to errors.

α ≈ exp(−r1g1 − r2g2 − rinitn − rmesn) ,

r1, r2 � 1 one and two-qubit gates Pauli error rates, g1,g2 � 1 number of one and
two-qubit gates, rinit, rmes � 1 initialization and measurement error rates.



Complex Ising models from universal circuits

As in a path integral, the output amplitude of U is

〈x |U |0〉 =
∑
{st}

d∏
t=0

〈st |U(t) |st−1〉 , |sd〉 = |x〉 .

where |st〉 = ⊗n
j=1 |st

j 〉 is the computational basis, st
j = ±1, and U(t) are gates

at clock cycle t .
Gates give Ising couplings between spins sk

j , like in path integral QMC. For
instance, for X1/2 gates

iπ
4

HX1/2

s =
iπ
2

n∑
j=1

d(j)∑
k=0

αk
j

1 + sk−1
j sk

j

2
.

where αk
j = 1 if a X1/2 gate was applied at qubit j in (clock cycle) k .



Computational complexity

For universal circuits, pU(x) = λ|Z |2 is proportional to the partition function
Z =

∑
s eiθHx (s) of an Ising model Hx (s) = hx ·s + s ·Ĵ ·s with complex

temperature iθ(= iπ/8) and no structure.
Z has a strong sign problem: Z =

∑
j MjeiθEj , number of paths Mj for phase

θEj exponentially larger than |Z |.
Worst-case complexity: Z can not be probabilistically approximated
asymptotically with an NP-oracle (is #P-hard). (Fujii and Morimae 2013,
Goldberg and Guo 2014).
Computational complexity conjecture: average case = worst case complexity.
There is no structure. (Bremner et. al. 2015).
Theorem: if pU(x) can be classically sampled, then Z can be approximated
with an NP-oracle (Bremner et. al. 2015). Contradiction.
Connection to complex Ising model gives interesting perspective.

Complex temperature corresponding to Clifford gates independently known to
be easy.



Simulation time

% of # of # of Avg. time Time per
comm sockets fused per gate (sec) Depth-25 (sec)
5× 4 circuit : 20 qubits, 10.3 gates per level, 17 MB of memory
0.0% 1 0.00 0.00015 0.039

6× 4 circuit : 24 qubits, 12.5 gates per level, 268 MB of memory
0.0% 1 7.01 0.0041 1.294

6× 5 circuit : 30 qubits, 16.2 gates per level, 17 GB of memory
0.0% 1 5.64 0.349 141.3
6× 6 circuit : 36 qubits, 19.5 gates per level, 1 TB of memory
6.2% 64 5.40 0.76 369.0
7× 6 circuit : 42 qubits, 23.0 gates per level, 70 TB of memory

11.2% 4,096 5.54 1.72 989.0

On Edison, a Cray XC30 with 5,576 nodes. Each node is dual-socket Intel R©Xeon
E5 2695-V2 with 12 cores per socket, 2.4GHz. 64GB per node (32GB per socket).
Nodes connected via Cray Aries with Dragonfly topology. (Mikhail Smelyanskiy).



Some open questions

Practical computations with near-term small low-depth high-fidelity quantum
circuits. Details matter.

Quantum chemistry.
Approximate optimization.

Experimental proof of error-correction.
Solve the control problem (see, i.e., D-Wave).
Improve fidelity (coherent and incoherent errors).
Complexity theory without full error correction. (Bremner et. al.
arXiv:1610.01808.)

Improve bounds in 2D random circuits: anti-concentration, t-designs,
complexity bounds.
Optimal classical-simulation algorithms. Details matter.



Conclusions

We expect to be able to approximately sample the output distribution of
shallow random circuits of 7× 7 qubits with significant fidelity in the near term.
We don’t know how to approximately sample the output distribution of shallow
random quantum circuits of ≈ 48 qubits with state-of-the-art supercomputers
(d ∼ 40).
Beyond-classical computing.
New method to benchmark complex quantum circuits efficiently.
Relation to computational complexity.
The cross entropy method applies to other sampling problems: chaotic
Hamiltonians, commuting quantum circuits.



Numerical distribution with digital noise
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Figure: Numerical distribution with digital noise fits well a mixture of ideal + completely mixed distribution.



Porter-Thomas distribution

Histogram of the output distribution for different values of the two-qubit gate error
rate r .
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Figure: Circuit with 5× 4 qubits (2D lattice) and depth 40.



Convergence to chaos (II)

For decoupling in random circuits (Brown & Fawzi), and anti-concentration on sparse-IQP
(Bremner et. al.), depth scales like Õ(

√
n). We expect this for 2-designs, entropy (Nahum et. al.),

out-of-time ordered correlator,...
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Figure: First cycle such that the entropy remains within 2−n/2 of PT entropy.


