Characterizing Quantum Supremacy in Near-Term Devices

S. Boixo

S. Isakov, V. Smelyanskiy, R. Babbush, M. Smelyanskiy,
N. Ding, Z. Jiang, M. J. Bremner, J. Martinis, H. Neven

Google

January 19th



Beyond-classical Computing

AKA Quantum Supremacy, J. Preskill, 2012

With a quantum device

@ perform a well-defined
computational task

@ beyond the capabilities of
state-of-the-art classical
supercomputers

@ in the near-term

@ without error correction (shallow
circuits with high fidelity gates).

Not necessarily solving a practical problem.



Beyond-classical computing in the near-term

@ We want a computational task which requires direct simulation of quantum
evolution.
e Cost exponential in number of qubits.
e Typical of chaotic systems (no shortcuts).

@ Specific figure of merit for the computational task, related to fidelity.

@ Relation to Computational Complexity.

e Previous work in sampling problems, such as BosonSampling (Aaronson and
Arkhipov) and Commuting Circuits (M. Bremner et. al.).

o Recent conjecture by Aaronson and Chen: for a random circuit C of depth ~ +/n
there is no polynomial-time classical algorithm that guesses if | (0”| C |0") |? is
greater than the mediam of | (x| C |0") |> with success probability 1/2 + Q(1/2").

o Nevertheless, formal Computational Complexity is asymptotic, requires error
correction (Strong Church-Turing Thesis). We don’t know how to satisfy the
previous conjecture in the near term.



Random Universal Quantum Circuits
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Figure: Vertical lines correspond to controlled-phase gates .

@ Random quantum circuits are examples of quantum chaos.

@ Classically sampling py(x) = | (x| U |0) |? expected to require direct
simulations. Cost in 2D exponential in oc min(n, dv/n), with n qubits, d depth.
(7 x 7 qubits requires d ~ 40 with current constraints.)

@ Good benchmark for quantum computers.

@ New results in computational complexity.



Porter-Thomas distribution

@ (Pseudo-)random circuit U (random gates from universal set)

=U|0) = Zc, |X;)

@ Sample the output distribution with probabilities
pi = lcif? = [ (x| U V) [?

@ Real and imaginary parts of ¢; are distributed (quasi) uniformly on a 2N
dimensional sphere (Hilbert space) if the circuit (or Hamiltonian evolution) has
sufficient depth (evolution time).

e The distribution of ¢; is, up to finite moments, Gaussian with mean 0 and
variance « 1/N.

@ Porter-Thomas distribution: Pr(Np) = e~ .



Verification and uniformity test

@ There is no polynomial witness for this sampling problem. This problem is
much harder than NP.

e This is required for near-term (few qubits) supremacy.
@ The PT distribution is very flat: p(x;) ~ 1/N.
@ If we don’t know anything about p(x;) (black-box setting) we need O(V'N)
measurements to distinguish from uniform over bit-strings.
@ The ¢4 distance between PT and uniform distribution is

S lp(x) — 1/N| = 2/e.
J

@ If we calculate p(x;) given circuit U, we can distinguish these distributions with
a constant number of measurements.

e Hardware verification.



Convergence to chaos (Porter-Thomas distribution)
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Figure: Depth required for PT distribution. Dashed line is known entropy for

i : icipati i k) ~ Ky wi —
PT. 2D circuit 7 x 6 qubits. Inset 6 x 6 qubits. Figure: Participation ratios PRI ~ N(p") withk =2,4,6,8, 10,

normalized to 1 for PT distribution. Related to {-designs. 7 x 6 qubits.

For decoupling in random circuits rown & Fawzi), and anti-concentration on sparse-IQP

@remner et. al), depth scales like é(ﬁ). We expect this for 2-designs, entropy wanumet a),

out-of-time ordered correlator,...



Sampling from ideal circuit U

Sample S = {xy,..., xn} of bit-strings x; from circuit U (measurements in the
computational basis).

log Pry(S) = ) log pu(x;) = —mH(py) + O(m'/?) ,

X €S

where H(py) is the entropy of PT

H(py) = —/0 pN?e™Plogpdp =logN — 1+ .

and v ~ 0.577.



Sampling with polynomial classical circuit A,.(U)

A polynomial classical algorithm A,.(U) produces sample S,y = {x?', ... x&"}.
The probability Pry(Spe) that this sample S, is observed from the output |1y of
the circuit U is

log Pry(Spa) = —MH(ppal, pu) + O(m'/?) |
where

(ppcl pU prcl Xj|U) |Og pU(X/)
j=1

is the cross entropy.



Sampling with polynomial classical circuit A, (U) (I1)

We are interested in the average over {U} of random circuits

Ey [H(ppa, pu)| = Eu [Z Ppi(X|U) log PU1] :

Because U is chaotic, Hilbert space has exponential dimension, and A, (U) is
polynomial, we conjecture that p, and py are (almost) uncorrelated (see next).
We can take averages independently.

~Ey [log pu(x))] / Ne M logpdp =logN +~ .

Ey [H(Ppe1, pu)] =log N+~ =Hg . J




Chaotic sensitivity to perturbations

Residual correlation after a single Pauli error
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Figure: Correlation after a single X error at different depths. 5 x 4 qubits. Figure: Correlation after a single Z error at different depths. 5 x 4 qubits.



Cross entropy and fidelity

@ For algorithm A (quantum or classical of any cost) define the cross entropy
difference

a = AH(,DA) =Hp — H(pA”oU) .
@ The output of an evolution with fidelity & is
p=au|0)(0| U + (1 —d)oy,
with pexp(x) = (x| p |x) = dpu(x) + (1 — &) (x| oy |X).
@ We again conjecture that (x| oy |x) is uncorrelated with py(x).
a = Ey[AH(pexp)]

=Ho + Y _ (apu(x) + (1 = &) (x| ou|x)) log pu(x))
j
= Ho — aH(py) — (1 — &)Hp = & .

@ The cross entropy a approximates the fidelity a.



Numerics and theory for realistic 2D circuits

Cross entropy difference [0 and estimated fidelity o.
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r is two-qubit gate error rate. a = 1 for PT distribution. Depth 25.



Experimental proposal

@ Implement a random universal circuit U (chaotic evolution).
@ Take large sample S.q, = {x{"",..., X"} of bit-strings x in the computational
basis (m ~ 103 — 10°).

© Compute quantities log py(x;™") with supercomputer.

Cross entropy difference (figure of merit)

1 & exp . K
_ : - ~ = 0577
o ml;logpu(xl ) +log2 +7im, k~1,v=0.5

Measure and extrapolate « (size, depth, T gates).
Fit to theory: o approx. circuit fidelity, chaotic state very sensitive to errors.

Q= exp(—r1g1 — Qo — hnit — rmesn) 5

r, r. < 1 one and two-qubit gates Pauli error rates, g1, g» > 1 number of one and
two-qubit gates, ryi, fmes < 1 initialization and measurement error rates.



Complex Ising models from universal circuits

@ As in a path integral, the output amplitude of U is

(x| U]0) = ZHS\U(’ st 1Y) = |x) .

{s'} t=0
where |s') = ®[_, |s]) is the computational basis, s! = +1, and U are gates
at clock cycle t

@ Gates give Ising couplings between spins s;‘, like in path integral QMC. For
instance, for X'/2 gates

k—1 ok

X1/2_ Zza +8's

/1k0

where a/’f = 1if a X'/2 gate was applied at qubit j in (clock cycle) k.



Computational complexity

@ For universal circuits, py(x) = \|Z|? is proportional to the partition function
Z =", e""M(s) of an Ising model Hy(s) = hx-s + s-J-s with complex
temperature i6(= i7/8) and no structure.

@ Z has a strong sign problem: Z = 3, M;e/%i, number of paths M, for phase
9 E; exponentially larger than |Z]|.

@ Worst-case complexity: Z can not be probabilistically approximated
asymptotically with an NP-oracle (is #P-hard). (Fujii and Morimae 2013,
Goldberg and Guo 2014).

@ Computational complexity conjecture: average case = worst case complexity.
There is no structure. (Bremner et. al. 2015).

@ Theorem: if py(x) can be classically sampled, then Z can be approximated
with an NP-oracle (Bremner et. al. 2015). Contradiction.

@ Connection to complex Ising model gives interesting perspective.

e Complex temperature corresponding to Clifford gates independently known to
be easy.



Simulation time

% of # of # of Avg. time Time per
comm | sockets | fused | per gate (sec) Depth-25 (sec)
5 x 4 circuit: 20 qubits, 10.3 gates per level, 17 MB of memory
0.0% \ 1 \ 0.00 \ 0.00015 \ 0.039
6 x 4 circuit: 24 qubits, 12.5 gates per level, 268 MB of memory
0.0% \ 1 \ 7.01 \ 0.0041 \ 1.294
6 x 5 circuit: 30 qubits, 16.2 gates per level, 17 GB of memory
0.0% \ 1 \ 5.64 \ 0.349 \ 141.3
6 x 6 circuit: 36 qubits, 19.5 gates per level, 1 TB of memory
6.2% \ 64 \ 5.40 \ 0.76 \ 369.0
7 x 6 circuit: 42 qubits, 23.0 gates per level, 70 TB of memory
11.2% | 4,096 | 554 | 1.72 \ 989.0

On Edison, a Cray XC30 with 5,576 nodes. Each node is dual-socket Intel®Xeon
E5 2695-V2 with 12 cores per socket, 2.4GHz. 64GB per node (32GB per socket).
Nodes connected via Cray Aries with Dragonfly topology. (Mikhail Smelyanskiy).



Some open questions

@ Practical computations with near-term small low-depth high-fidelity quantum
circuits. Details matter.

e Quantum chemistry.
e Approximate optimization.

@ Experimental proof of error-correction.
@ Solve the control problem (see, i.e., D-Wave).
@ Improve fidelity (coherent and incoherent errors).

@ Complexity theory without full error correction. (Bremner et. al.
arXiv:1610.01808.)

@ Improve bounds in 2D random circuits: anti-concentration, t-designs,
complexity bounds.

@ Optimal classical-simulation algorithms. Details matter.



Conclusions

@ We expect to be able to approximately sample the output distribution of
shallow random circuits of 7 x 7 qubits with significant fidelity in the near term.

@ We don’t know how to approximately sample the output distribution of shallow
random quantum circuits of ~ 48 qubits with state-of-the-art supercomputers
(d ~ 40).

@ Beyond-classical computing.

@ New method to benchmark complex quantum circuits efficiently.

@ Relation to computational complexity.

@ The cross entropy method applies to other sampling problems: chaotic
Hamiltonians, commuting quantum circuits.



Numerical distribution with digital noise
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Figure: Numerical distribution with digital noise fits well a mixture of ideal + completely mixed distribution.



Porter-Thomas distribution

Histogram of the output distribution for different values of the two-qubit gate error
rate r.
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Figure: Circuit with 5 x 4 qubits (2D lattice) and depth 40.
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Convergence to chaos (ll)

For decoupling in random circuits @rown & Fawz), @and anti-concentration on sparse-IQP
@remneret. al), depth scales like O(+/n). We expect this for 2-designs, entropy anum et a),
out-of-time ordered correlator,...
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Figure: First cycle such that the entropy remains within 2-1/2 ot PT entropy.



