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Clifford+T circuits

 Computational universality

 Efficient gate synthesis 

 Fault-tolerant realization

Clifford gates



Clifford+T circuits

T-count: number of T-gates

Clifford gates



This talk: classical simulation algorithms for 
Clifford+T circuits with a small T-count

• Fault-tolerant T gates are expensive

• Verification of small quantum computers

• Understand conditions for “quantum supremacy”

Motivation



Qubits 𝑛

Clifford gates 𝑐

T-count 𝑡

Universal simulators: store a complete description of
a quantum state as a complex vector of size 2𝑛

Runtime:

Limited to a small number of qubits 𝑛 ≤ 30 − 40

Wecker and Svore (2014) : LIQUi|〉

Smelyanskiy, Sawaya, Aspuru-Guzik (2016) : qHIPSTER

Steiger, Haner, Troyer (2016) : ProjectQ

Can simulate any gate set.



Qubits 𝑛

Clifford gates 𝑐

T-count 𝑡

Stabilizer simulators: simulate Clifford gates using
the Gottesman-Knill theorem. 

Runtime:

Limited to a small T-count

How small ?

Aaronson and Gottesman (2004) :  2𝑂(𝑡) Pauli frames
Garcia, Markov, Cross (2014)  : 2𝑂(𝑡) stabilizer states
Howard and Campbell (2016)  : 2𝑂(𝑡) Monte Carlo samples

How practical ?



Task 1 (strong simulation):
Approximate probability 𝑃𝑜𝑢𝑡(𝑥) within a relative 

error 𝜖 for a given measurement outcome 𝑥

Remark: strong simulation is hard even for a
quantum computer. 

simulator runtime



Task 2 (weak simulation): 
Sample 𝑥 from a probability distribution

which is 𝜖–close to 𝑃𝑜𝑢𝑡(𝑥) in the 𝐿1-norm  

practical ?

MATLAB implementation;  5 CPU hours:    

𝑤 - output width

simulator runtime



Task 2 (weak simulation): 
Sample 𝑥 from a probability distribution

which is 𝜖–close to 𝑃𝑜𝑢𝑡(𝑥) in the 𝐿1-norm  

𝑤 - output width

simulator runtime

simulator runtime

unpublished



• Magic states and gadgetized circuits

• Stabilizer rank of magic states

• Fast norm estimation algorithm

Outline of the simulation algorithm



“magic” state

T-gadget



“magic” state

Postselected T-gadgets (implement 𝑇/ 2)



Clifford+T
circuit

Postselected T-gadgets (implement 𝑇/ 2)



Clifford+T
circuit

gadgetized
Clifford circuit



Approximate gadgetized circuit:

Lemma The approximate gadgetized circuit with

random 𝑦 simulates an approximate target circuit:     

gadgetized
Clifford circuit

how close ?



Approximate gadgetized circuit:

Corollary: weak simulation of Clifford+T circuits 
reduces to strong simulation of random postselective

Clifford circuits with the initial state |  𝜓 ≈ |  𝐴⊗𝑡

Our method: try to choose 𝜓 as a linear combination 
of a few stabilizer states; use Gottesman-Knill theorem.

gadgetized
Clifford circuit



• Magic states and gadgetized circuits

• Stabilizer rank of magic states

• Fast norm estimation algorithm



Stabilizer states:

Clifford unitary

set of all n-qubit
stabilizer states

1 qubit: 6 states 2 qubits: 60  states



Stabilizer rank 𝜒(𝜓 ): smallest 𝜒 such that 𝜓 can be 
written as a linear combination of 𝜒 stabilizer states:

Stabilizer rank 𝜒𝜖(𝜓 ): smallest 𝜒 such that 𝜓 is 

𝜖-close to a linear combination of 𝜒 stabilizer states:



Example: magic state

stabilizer
state

stabilizer
state



Example: magic state

stabilizer
state

stabilizer
state



Example: magic state

numerical 
search

SB, Smith, Smolin, Phys. Rev. X, 6, 021034 (2016)

Why should we care ?



Strong simulator’s runtime:

Implications for simulation of Clifford+T circuits:

Weak simulator’s runtime:

Sub-exponential upper bounds on the stabilizer rank of 
magic states gives sub-exponential classical simulator 
for constant depth Clifford+T circuits ! 



Best known upper bounds

Proof:

new result

SB, Smith, Smolin (2016)



Approximate 𝐴⊗𝑛 by subset states:  

stabilizer states

Simple 
facts 

sketch of
the proof:

Stabilizer rank:



Approximate 𝐴⊗𝑛 by subset states:  

stabilizer states

sketch of
the proof:

Lemma Suppose 𝑀 ⊆ 0,1 𝑛 is a random linear 

subspace with a fixed dimension 𝑘.  

w.h.p.



• Magic states and gadgetized circuits

• Stabilizer rank of magic states

• Fast norm estimation algorithm



Reminder: weak simulation of Clifford+T circuits 
reduces to strong simulation of random postselective

Clifford circuits with the initial state |  𝜓 ≈ |  𝐴⊗𝑡



Reminder: weak simulation of Clifford+T circuits 
reduces to strong simulation of random postselective

Clifford circuits with the initial state |  𝜓𝑀 ≈ |  𝐴⊗𝑡

subset state



Reminder: weak simulation of Clifford+T circuits 
reduces to strong simulation of random postselective

Clifford circuits with the initial state |  𝜓𝑀 ≈ |  𝐴⊗𝑡

𝑥 ∈ 0,1 𝑤 : output           𝑦 ∈ 0,1 𝑡 : postselection

Want: compute 𝑃𝑜𝑢𝑡 𝑥, 𝑦 with a small relative error

gadgetized
Clifford circuit

subset
state



Gottesman-Knill
preprocessing:

Π – postselective Clifford circuit (gates=projectors)

We can compute 𝑘 and Π in time 𝑝𝑜𝑙𝑦(𝑛, 𝑐, 𝑡)

gadgetized
Clifford circuit

subset
state



Π – postselective Clifford circuit (gates=projectors)

(since Π maps stabilizer states to stabilizer states)

gadgetized
Clifford circuit

subset
state

Gottesman-Knill
preprocessing:

Π|  𝜓𝑀 – sum of roughly  20.23𝑡 stabilizer states



Π – postselective Clifford circuit (gates=projectors)

Want: norm estimation algorithm for states with
VERY LARGE stabilizer rank

gadgetized
Clifford circuit

subset
state

Π|  𝜓𝑀 – sum of roughly  20.23𝑡 stabilizer states

Gottesman-Knill
preprocessing:



Stabilizer states: algorithmic tools

runtime

Inner Product

Pauli Measurement

Random Stabilizer State

Given

Compute

Given

Compute

problem

Generate uniform random



Stabilizer states: algorithmic tools

runtime

Inner Product

Pauli Measurement

Random Stabilizer State

Given

Compute

Given

Compute

problem

Generate uniform random
new ?



Stabilizer states: algorithmic tools

runtime

Norm Estimation

Given

problem

Estimate within relative error 𝛿
Linear in 𝜒 ! 



Stabilizer states: algorithmic tools

runtime

Norm Estimation

Given

problem

Estimate within relative error 𝛿

Brute-force algorithm:

compute each term in time

Linear in 𝜒 ! 



Stabilizer states: algorithmic tools

runtime

Norm Estimation

Given

problem

Estimate within relative error 𝛿

Brute-force algorithm:

compute each term in time

Square-root
speedup !



Key idea: compute inner products between 𝜙
and random stabilizer states

random uniformly distributed

Use the fact that 𝑆𝑛 is a 2-design



Key idea: compute inner products between 𝜙
and random stabilizer states

random uniformly distributed

We get unbiased estimator of the norm 𝜙
2
with a

constant relative error ! 



Key idea: compute inner products between 𝜙
and random stabilizer states

random uniformly distributed

One can compute 𝜉 in time 
random

state generation
inner

products

each term
can be computed in time



random uniformly distributed

Monte Carlo: generate 𝐾 ∼ 𝛿−2 samples 𝜉1, 𝜉2, … , 𝜉𝐾 .
Compute the average 

Overall running time: 

Unbiased estimator of the norm | 𝜙 |2 with a
constant relative error. We need relative error 𝛿

Chebyshev

w.h.p.



Want to
compute:

Π – postselective Clifford circuit (gates=projectors)

norm 
estimation

Pauli 
measurementrandom

20.23𝑡 inner 
products

|  𝜓𝑀 – sum of roughly  20.23𝑡 stabilizer states

workflow



Implementation and benchmarking



1. Deterministic output:

How to choose benchmark circuits ?

2. Small T-count (𝑡 ≤ 50)

Desiderata:

3. Large number of qubits (𝑛 ≥ 40)



Hidden shift quantum algorithm 
for bent functions Roetteler (2010)



Hidden shift quantum algorithm 
for bent functions Roetteler (2010)



Hidden shift quantum algorithm 
for bent functions Roetteler (2010)

Reminder: 𝑓 is a bent function if both 𝑓 and 
the Hadamard transform of 𝑓 take values ±1



hidden shift string

Hidden shift quantum algorithm 
for bent functions Roetteler (2010)



Oracles:

hidden shift string

Hidden shift quantum algorithm 
for bent functions Roetteler (2010)
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Hidden shift quantum algorithm 
for bent functions Roetteler (2010)

𝑓 is a bent function

Promise:

Problem: find 𝑠 by making 
as few queries to the oracles
as possible



Oracles:

hidden shift string

Hidden shift quantum algorithm 
for bent functions Roetteler (2010)

𝑓 is a bent function

Promise:

Problem: find 𝑠 by making 
as few queries to the oracles
as possible

Quantum algorithm: two queries

Classical algorithms: Ω(𝑛) queries



Hidden shift string:  𝑠 = 10011101

Example for 𝑛 = 8



Jones (2013)

CCZ gadget:

Example for 𝑛 = 8



Numerical results



Numerical results



Summary

 Random gadgetized circuits
 Low-rank stabilizer approximations of magic states
 Fast norm estimation

New algorithmic tools for stabilizer-based simulators:

qubits

T-count

≈ 40

≈ 100

hard ?easy

easyeasy



Open problems and future work

 More efficient (parallel) implementation
 Better upper/lower bounds on the stabilizer rank
 Stabilizer rank reduction algorithms 

qubits

T-count

≈ 40

≈ 100

hard ?easy

easyeasy


