Improved classical simulation of quantum circuits

Sergey Bravyi and David Gosset

IBM

PRL 116, 250501 (2016)

QIP 2017 Seattle

Clifford+T circuits

- ✓ Computational universality
- ✓ Efficient gate synthesis
- √ Fault-tolerant realization

Clifford+T circuits

$$T=\left[egin{array}{cccc} 1 & 0 \ 0 & e^{i\pi/4} \end{array}
ight]$$
 $S=T^2 & H & CNOT$ Clifford gates

T-count: number of T-gates

This talk: classical simulation algorithms for Clifford+T circuits with a small T-count

Motivation

- Fault-tolerant T gates are expensive
- Verification of small quantum computers
- Understand conditions for "quantum supremacy"

Qubits	n
Clifford gates	С
T-count	t

Universal simulators: store a complete description of a quantum state as a complex vector of size 2^n

Runtime: $2^n(c+t)$

Limited to a small number of qubits $n \le 30 - 40$

Can simulate any gate set.

Wecker and Svore (2014): LIQUI|

Smelyanskiy, Sawaya, Aspuru-Guzik (2016): qHIPSTER

Steiger, Haner, Troyer (2016): ProjectQ

Qubits	n
Clifford gates	С
T-count	t

Stabilizer simulators: simulate Clifford gates using the Gottesman-Knill theorem.

Runtime: $2^{O(t)} \cdot poly(c, n)$ How small?

Limited to a small T-count How practical?

Aaronson and Gottesman (2004): $2^{O(t)}$ Pauli frames Garcia, Markov, Cross (2014): $2^{O(t)}$ stabilizer states Howard and Campbell (2016): $2^{O(t)}$ Monte Carlo samples

Task 1 (strong simulation):

Approximate probability $P_{out}(x)$ within a relative error ϵ for a given measurement outcome x

$$\boxed{ poly(n,c,t) + 2^{0.47t} \cdot t^3 \epsilon^{-2} }$$
 simulator runtime

Remark: strong simulation is hard even for a quantum computer.

Task 2 (weak simulation):

Sample x from a probability distribution which is ϵ -close to $P_{out}(x)$ in the L_1 -norm

$$poly(n,c,t) + 2^{0.23t} \cdot t^3 w^4 \epsilon^{-5}$$
 practical? simulator runtime

MATLAB implementation; 5 CPU hours:

$$t \approx 50$$
, $n \approx 50$, $c \approx 1000$, $w = 1$, $\epsilon \approx 10\%$

Task 2 (weak simulation):

Sample x from a probability distribution which is ϵ -close to $P_{out}(x)$ in the L_1 -norm

$$poly(n,c,t) + 2^{0.23t} \cdot t^3 w^4 \epsilon^{-5}$$
 simulator runtime

$$poly(n,c,t) + 2^{0.23t} \cdot t^3 w^3 \epsilon^{-3}$$
 simulator runtime

unpublished

Outline of the simulation algorithm

- Magic states and gadgetized circuits
- Stabilizer rank of magic states
- Fast norm estimation algorithm

$$|A\rangle = (|0\rangle + e^{i\pi/4}|1\rangle)/\sqrt{2}$$

"magic" state

T-gadget

$$\Pr(0) = \Pr(1) = \frac{1}{2}$$

$$(|A\rangle = (|0\rangle + e^{i\pi/4}|1\rangle)/\sqrt{2}$$

"magic" state

Postselected T-gadgets (implement $T/\sqrt{2}$)

Postselected T-gadgets (implement $T/\sqrt{2}$)

$$= \begin{array}{c|c} |0^n\rangle - \begin{array}{c} \text{gadgetized} \\ \text{Clifford circuit} \\ Uy \end{array} - \langle y_1 y_2 \dots y_t |$$

Approximate gadgetized circuit:

Lemma The approximate gadgetized circuit with random y simulates an approximate target circuit:

$$\|U|0^{n}\rangle\langle 0^{n}|U^{\dagger} - \frac{1}{2^{t}} \sum_{y \in \{0,1\}^{t}} |\phi_{y}\rangle\langle \phi_{y}| \|_{1} \leq O(\epsilon)$$

$$\epsilon \equiv \|\psi - A^{\otimes t}\|$$

Approximate gadgetized circuit:

Corollary: weak simulation of Clifford+T circuits reduces to strong simulation of random postselective Clifford circuits with the initial state $|\psi\rangle\approx|A^{\otimes t}\rangle$

Our method: try to choose ψ as a linear combination of a few stabilizer states; use Gottesman-Knill theorem.

- Magic states and gadgetized circuits
- Stabilizer rank of magic states
- Fast norm estimation algorithm

Stabilizer states:
$$|\psi\rangle = U|0^n\rangle$$

$$|\psi\rangle = U|0^n\rangle$$

Clifford unitary

1 qubit: 6 states

$$(I\otimes U)(|00\rangle + |11\rangle)/\sqrt{2}$$

2 qubits: 60 states

$$\mathcal{S}_n$$
 set of all n-qubit stabilizer states

$$|\mathcal{S}_n| \sim 2^{0.5n^2}$$

Stabilizer rank $\chi(\psi)$: smallest χ such that ψ can be written as a linear combination of χ stabilizer states:

$$|\psi\rangle = \sum_{a=1}^{\chi} c_a |\psi_a\rangle, \quad \psi_a \in \mathcal{S}_n$$

Stabilizer rank $\chi_{\epsilon}(\psi)$: smallest χ such that ψ is ϵ -close to a linear combination of χ stabilizer states:

$$\| |\psi\rangle - \sum_{a=1}^{\chi} c_a |\psi_a\rangle \| \le \epsilon, \qquad \psi_a \in \mathcal{S}_n$$

Example: magic state
$$|A\rangle \sim |0\rangle + e^{i\pi/4}|1\rangle$$

$$\chi(A) = 2$$

$$\chi(A^{\otimes 2}) = ?$$

$$|A^{\otimes 2}\rangle \sim (|00\rangle + i|11\rangle) + e^{i\pi/4}(|01\rangle + |10\rangle)$$
 stabilizer state state

Example: magic state
$$|A\rangle \sim |0\rangle + e^{i\pi/4}|1\rangle$$

$$\chi(A) = 2$$

$$\chi(A^{\otimes 2}) = 2$$

$$|A^{\otimes 2}\rangle \sim (|00\rangle + i|11\rangle) + e^{i\pi/4}(|01\rangle + |10\rangle)$$
 stabilizer state state

Example: magic state

$$|A\rangle \sim |0\rangle + e^{i\pi/4}|1\rangle$$

$$\chi(A) = 2$$

$$\chi(A^{\otimes 2}) = 2$$

$$\chi(A^{\otimes 3}) \le 3$$

$$\chi(A^{\otimes 4}) \le 4$$

$$\chi(A^{\otimes 5}) \le 6$$

$$\chi(A^{\otimes 6}) \le 7$$

numerical search

Why should we care?

SB, Smith, Smolin, Phys. Rev. X, 6, 021034 (2016)

Implications for simulation of Clifford+T circuits:

Strong simulator's runtime:

$$poly(n, c, t) + \chi(A^{\otimes t}) \cdot t^3 \epsilon^{-2}$$

Weak simulator's runtime:

$$poly(n, c, t) + \chi_{\epsilon}(A^{\otimes t}) \cdot t^3 w^4 \epsilon^{-3}$$

Sub-exponential upper bounds on the stabilizer rank of magic states gives sub-exponential classical simulator for constant depth Clifford+T circuits!

Best known upper bounds

$$\chi(A^{\otimes n}) \le 7^{n/6} \approx 2^{0.47n}$$

SB, Smith, Smolin (2016)

Proof:

$$\chi(A^{\otimes 6}) \le 7$$

$$\chi(\psi \otimes \phi) \leq \chi(\psi)\chi(\phi)$$

$$\chi_{\epsilon}(A^{\otimes n}) \le \epsilon^{-2} \cos(\pi/8)^{-2n} \approx \epsilon^{-2} \cdot 2^{0.23n}$$

new result

$$\chi_{\epsilon}(A^{\otimes n}) \leq \epsilon^{-2} \cos(\pi/8)^{-2n} \approx \epsilon^{-2} \cdot 2^{0.23n}$$
 sketch of the proof:

$$R\equiv\frac{1}{\sqrt{2}}\left[\begin{array}{cc}1&e^{-i\pi/4}\\1&e^{i\pi/4}\end{array}\right] \qquad \begin{array}{c}R|0\rangle\\R|1\rangle\end{array} \} \ \ \text{stabilizer states}$$

Approximate $A^{\otimes n}$ by subset states:

$$|\psi_M\rangle \sim R^{\otimes n} \sum_{x \in M} |x\rangle \qquad M \subseteq \{0, 1\}^n$$

Stabilizer rank: $\chi(\psi_M) \leq |M|$

Simple facts
$$|M| = 2^n \quad \Longrightarrow \quad |\psi_M\rangle = |A^{\otimes n}\rangle \\ |M| = 1 \quad \Longrightarrow \quad |\langle A^{\otimes n}|\psi_M\rangle| = \max_{\psi\in\mathcal{S}_n} |\langle A^{\otimes n}|\psi\rangle|$$

$$\chi_{\epsilon}(A^{\otimes n}) \le \epsilon^{-2} \cos(\pi/8)^{-2n} \approx \epsilon^{-2} \cdot 2^{0.23n}$$

sketch of the proof:

$$R \equiv \frac{1}{\sqrt{2}} \left[\begin{array}{cc} 1 & e^{-i\pi/4} \\ 1 & e^{i\pi/4} \end{array} \right] \qquad \begin{array}{c} R|0\rangle \\ R|1\rangle \end{array} \right\} \ \, {\rm stabilizer} \ \, {\rm states}$$

Approximate $A^{\otimes n}$ by subset states:

$$|\psi_M\rangle \sim R^{\otimes n} \sum_{x \in M} |x\rangle \qquad M \subseteq \{0, 1\}^n$$

Lemma Suppose $M \subseteq \{0,1\}^n$ is a random linear subspace with a fixed dimension k.

$$2^k \ge \epsilon^{-2} (\cos(\pi/8))^{-2n} \quad \Longrightarrow \quad ||A^{\otimes n} - \psi_M|| \le \epsilon$$
 w.h.p.

- Magic states and gadgetized circuits
- Stabilizer rank of magic states
- Fast norm estimation algorithm

Reminder: weak simulation of Clifford+T circuits reduces to strong simulation of random postselective Clifford circuits with the initial state $|\psi\rangle\approx|A^{\otimes t}\rangle$

Reminder: weak simulation of Clifford+T circuits reduces to strong simulation of random postselective Clifford circuits with the initial state $|\psi_M\rangle \approx |A^{\bigotimes t}\rangle$ subset state

Reminder: weak simulation of Clifford+T circuits reduces to strong simulation of random postselective Clifford circuits with the initial state $|\psi_M\rangle \approx |A^{\bigotimes t}\rangle$

$$P_{out}(x,y) = \left\| \begin{array}{c} |0^n\rangle - \boxed{\text{gadgetized} \\ \text{Clifford circuit} \\ |\psi_M\rangle - \boxed{U_y} \end{array} \right\|^2$$
 subset state

$$x \in \{0,1\}^w$$
: output $y \in \{0,1\}^t$: postselection

Want: compute $P_{out}(x, y)$ with a small relative error

$$P_{out}(x,y) = \left\| \begin{array}{c} |0^n\rangle - \begin{bmatrix} \text{gadgetized} \\ \text{Clifford circuit} \\ Uy \end{bmatrix} - \frac{\langle x|}{\langle y|} \right\|^2$$
 subset state

Gottesman-Knill preprocessing:

$$P_{out}(x,y) = 2^k \cdot \|\Pi|\psi_M\rangle\|^2$$

$$k \in \mathbb{Z}$$

 Π - postselective Clifford circuit (gates=projectors)

We can compute k and Π in time poly(n, c, t)

Gottesman-Knill preprocessing:

$$P_{out}(x,y) = 2^k \cdot \|\Pi|\psi_M\rangle\|^2$$

$$k \in \mathbb{Z}$$

 Π - postselective Clifford circuit (gates=projectors) $\Pi |\psi_M\rangle$ - sum of roughly $2^{0.23t}$ stabilizer states (since Π maps stabilizer states to stabilizer states)

Gottesman-Knill preprocessing:

$$P_{out}(x,y) = 2^k \cdot \|\Pi|\psi_M\rangle\|^2$$

 $k \in \mathbb{Z}$

 Π - postselective Clifford circuit (gates=projectors)

 $\Pi |\psi_{M}
angle$ - sum of roughly $2^{0.23t}$ stabilizer states

Want: norm estimation algorithm for states with VERY LARGE stabilizer rank

Stabilizer states: algorithmic tools

problem	runtime
Inner Product	
Given $\psi,\phi\in\mathcal{S}_n$	$O(n^3)$
Compute $\langle \psi \phi angle = 2^{-p/2} e^{i\pi m/4}$	
Pauli Measurement	
Given $\psi \in \mathcal{S}_n$ $P \in \operatorname{Pauli}(n)$	$O(n^2)$
Compute	
$ \phi\rangle = (1/2)(I+P) \psi\rangle \in \mathcal{S}_n$	
Random Stabilizer State	

Generate uniform random $\psi \in \mathcal{S}_n$

 $O(n^2)$

Stabilizer states: algorithmic tools

problem	runtime
Inner Product	
Given $\psi,\phi\in\mathcal{S}_n$	$O(n^3)$
Compute $\langle \psi \phi angle = 2^{-p/2} e^{i\pi m/4}$	
Pauli Measurement	
Given $\psi \in \mathcal{S}_n$ $P \in \operatorname{Pauli}(n)$	$O(n^2)$
Compute	
$ \phi\rangle = (1/2)(I+P) \psi\rangle \in \mathcal{S}_n$	
Random Stabilizer State	

Generate uniform random $\psi \in \mathcal{S}_n$

 $O(n^2)$

Stabilizer states: algorithmic tools

problem	runtime
Norm Estimation	
Given $ \phi angle = \sum_{a=1}^\chi c_a \phi_a angle, \phi_a \in \mathcal{S}_n$	$O(\chi n^3 \delta^{-2})$
Estimate $\ \phi\ $ within relative error δ	Linear in χ !

Stabilizer states: algorithmic tools

problem	runtime
Norm Estimation	
Given $ \phi angle = \sum_{a=1}^\chi c_a \phi_a angle, \phi_a \in \mathcal{S}_n$	$O(\chi n^3 \delta^{-2})$
Estimate $\ \phi\ $ within relative error δ	Linear in χ !

Brute-force algorithm: $O(\chi^2 n^3)$

$$\|\phi\|^2 = \langle \phi | \phi \rangle = \sum_{a,b=1}^{\chi} \bar{c}_a c_b \langle \phi_a | \phi_b \rangle$$
 compute each term in time $O(n^3)$

Stabilizer states: algorithmic tools

problem	runtime
Norm Estimation	
Given $ \phi angle = \sum_{a=1}^\chi c_a \phi_a angle, \phi_a \in \mathcal{S}_n$	$O(\chi n^3 \delta^{-2})$
Estimate $\ \phi\ $ within relative error δ	Square-root speedup!

Brute-force algorithm: $O(\chi^2 n^3)$

$$\|\phi\|^2 = \langle \phi | \phi \rangle = \sum_{a,b=1}^{\chi} \bar{c}_a c_b \langle \phi_a | \phi_b \rangle$$
 compute each term in time $O(n^3)$

$$|\phi\rangle = \sum_{a=1}^{\chi} c_a |\phi_a\rangle, \quad \phi_a \in \mathcal{S}_n \qquad ||\phi|| = ?$$

Key idea: compute inner products between ϕ and random stabilizer states

$$\begin{cases} \xi \equiv 2^n \cdot |\langle \psi | \phi \rangle|^2 \\ \psi \in \mathcal{S}_n \quad \text{random uniformly distributed} \end{cases}$$

$$\mathbb{E}(\xi) = \|\phi\|^2 \qquad \text{Var}(\xi) = \frac{2^n - 1}{2^n + 1} \|\phi\|^4 \approx \|\phi\|^4$$

Use the fact that S_n is a 2-design

$$|\phi\rangle = \sum_{a=1}^{\chi} c_a |\phi_a\rangle, \quad \phi_a \in \mathcal{S}_n \qquad ||\phi|| = ?$$

Key idea: compute inner products between ϕ and random stabilizer states

$$\begin{cases} \xi \equiv 2^n \cdot |\langle \psi | \phi \rangle|^2 \\ \psi \in \mathcal{S}_n \quad \text{random uniformly distributed} \end{cases}$$

$$\mathbb{E}(\xi) = \|\phi\|^2 \qquad \text{Var}(\xi) = \frac{2^n - 1}{2^n + 1} \|\phi\|^4 \approx \|\phi\|^4$$

We get unbiased estimator of the norm $||\phi||^2$ with a constant relative error!

$$|\phi\rangle = \sum_{\alpha=1}^{\chi} c_a |\phi_a\rangle, \quad \phi_a \in \mathcal{S}_n \qquad ||\phi|| = ?$$

Key idea: compute inner products between ϕ and random stabilizer states

$$\xi \equiv 2^n \cdot |\langle \psi | \phi \rangle|^2$$
 $\psi \in \mathcal{S}_n$ random uniformly distributed

$$\langle \psi | \phi \rangle = \sum_{a=1}^{\chi} c_a \langle \psi | \phi_a \rangle$$
 each term can be computed in time $O(n^3)$

One can compute
$$\xi$$
 in time $O(n^2) + O(\chi n^3) = O(\chi n^3)$ random inner state generation products

$$\xi \equiv 2^n \cdot |\langle \psi | \phi \rangle|^2$$
 $\psi \in \mathcal{S}_n$ random uniformly distributed

Unbiased estimator of the norm $||\phi||^2$ with a constant relative error. We need relative error δ

Monte Carlo: generate $K \sim \delta^{-2}$ samples $\xi_1, \xi_2, \dots, \xi_K$. Compute the average

$$X = K^{-1} \sum_{a=1}^{K} \xi_a \qquad (1-\delta) \|\phi\|^2 \leq X \leq (1+\delta) \|\phi\|^2$$
 w.h.p.

Overall running time: $O(\chi n^3 K) = O(\chi n^3 \delta^{-2})$

Want to compute:

$$P_{out}(x,y) = 2^k \cdot \|\Pi|\psi_M\rangle\|^2$$

 Π - postselective Clifford circuit (gates=projectors) $|\psi_M
angle$ - sum of roughly $2^{0.23t}$ stabilizer states

Implementation and benchmarking

How to choose benchmark circuits?

Desiderata:

1. Deterministic output:

$$U|0^n\rangle = |s_1, s_2, \dots, s_n\rangle$$

2. Small T-count ($t \le 50$)

3. Large number of qubits $(n \ge 40)$

$$f: \{0,1\}^n \to \{+1,-1\}$$

$$f: \{0,1\}^n \to \{+1,-1\}$$

Reminder: f is a bent function if both f and the Hadamard transform of f take values ± 1

$$f: \{0,1\}^n \to \{+1,-1\}$$

 $s \in \{0,1\}^n$ hidden shift string

$$f: \{0,1\}^n \to \{+1,-1\}$$

$$s \in \{0,1\}^n$$
 hidden shift string

Oracles:

$$x \longrightarrow O \longrightarrow f(x)$$

$$x \longrightarrow O_s \longrightarrow \hat{f}(x \oplus s)$$

$$f: \{0,1\}^n \to \{+1,-1\}$$

$$s \in \{0,1\}^n$$
 hidden shift string

Oracles:

$$x \longrightarrow O \longrightarrow f(x)$$
$$x \longrightarrow O_s \longrightarrow \hat{f}(x \oplus s)$$

Promise:

f is a bent function

$$f: \{0,1\}^n \to \{+1,-1\}$$

$$s \in \{0,1\}^n \quad \text{hidden shift string}$$

Oracles:

Problem: find s by making as few queries to the oracles as possible

Promise:

f is a bent function

$$f: \{0,1\}^n \to \{+1,-1\}$$

$$s \in \{0,1\}^n \quad \text{hidden shift string}$$

Oracles:

Promise:

f is a bent function

Problem: find s by making as few queries to the oracles as possible

Quantum algorithm: two queries

$$|s\rangle = H^{\otimes n} O_s H^{\otimes n} O H^{\otimes n} |0^n\rangle$$

Classical algorithms: $\Omega(n)$ queries

Example for n = 8

Hidden shift string: s = 10011101

Example for n = 8

Numerical results

$$n = 40, \quad t = 40, \quad c \sim 10^3$$

Numerical results

$$n = 40, \quad t = 48, \quad c \sim 10^3$$

Summary

New algorithmic tools for stabilizer-based simulators:

- > Random gadgetized circuits
- > Low-rank stabilizer approximations of magic states
- > Fast norm estimation

Open problems and future work

- > More efficient (parallel) implementation
- > Better upper/lower bounds on the stabilizer rank
- > Stabilizer rank reduction algorithms

