
Concluding remark

Note that there is a natural isomorphism between states of n
pairs of qubits and states of a single pair of qu-D its, for
D = 2n.
If we are able to self-test
|ψ〉 =

⊗n
i=1
(
cos θi |00〉+ sin θi |11〉

)
, then we can also

self-test some state of a single pair of qu-Dits.
Hence, as a corollary of our result, we deduce that we can
self-test an n dimensional subfamily of the family of all
partially entangled states of two qu-D its, for D = 2n.
With a different approach, C. & Goh & Scarani show that all
pure bipartite entangled states can be self-tested8.

THANK YOU!

8A. Coladangelo, K. T. Goh and V. Scarani (2016). All pure bipartite
entangled states can be self-tested.

Andrea Coladangelo Parallel Self-Testing of (tilted) EPR Pairs via Copies of (tilted) CHSH
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Rigidity of the n-round parallel repetition of the Magic Square game:
• For any entangled strategy succeeding with probability 1 − ε, the players’ 

shared state is O(poly(nε))-close to 2n EPR pairs under a local isometry. 
• Furthermore, under local isometry, the players’ measurements must be 

O(poly(nε))-close to the “ideal” measurements when acting on the shared 
state.
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the             and           respectively
• And, there exists and isometry                                                                 and 
such that:

• This type of isometry was pioneered in works of McKague [McKague16], [Wu, 
Bancal, McKague, Scarani 16]  

• This theorem overlaps with [Chao, Reichardt, Sutherland, Vidick 16]
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Conclusion

• Rigidity theorem for the parallel repeated magic square game which:
• Self-tests n EPR pairs with polynomial error dependence
• Certifies Pauli-product measurements with polynomial 
error dependence

• Open Problems:
• Reduce error dependence – [NV16]
• Reduce input size –[CRSV16]
• Do both at the same time --- OPEN
• More applications to delegated quantum computation or interactive proofs 

for local Hamiltonian, randomness expansion.
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