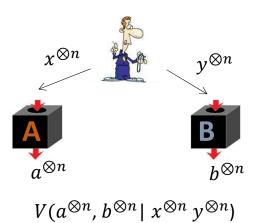
Concluding remark

- Note that there is a natural isomorphism between states of n pairs of qubits and states of a single pair of qu-Dits, for $D = 2^n$.
- If we are able to self-test $|\psi\rangle = \bigotimes_{i=1}^n \left(\cos\theta_i \left|00\right\rangle + \sin\theta_i \left|11\right\rangle\right)$, then we can also self-test some state of a single pair of qu-Dits.
- Hence, as a corollary of our result, we deduce that we can self-test an n dimensional subfamily of the family of all partially entangled states of two qu-Dits, for $D = 2^n$.
- With a different approach, C. & Goh & Scarani show that all pure bipartite entangled states can be self-tested⁸.

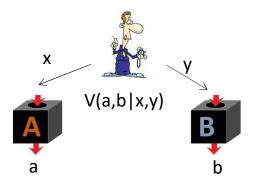
THANK YOU!

⁸A. Coladangelo, K. T. Goh and V. Scarani (2016). All pure bipartite entangled states can be self-tested.

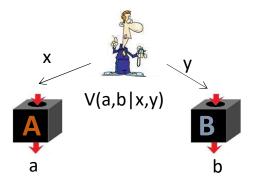
Rigidity of The Parallel Repeated Magic Square Game



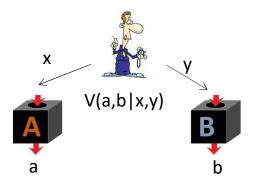
Matthew Coudron, Anand Natarajan MIT EECS/CSAIL, MIT CTP QIP '17



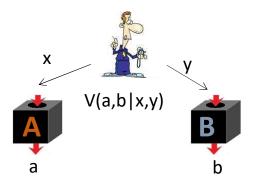
	Column 1	Column 2	Column3
Row 1			
Row 2			
Row3			



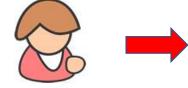
	Column 1	Column 2	Column3
Row 1			
Row 2			
Row3			

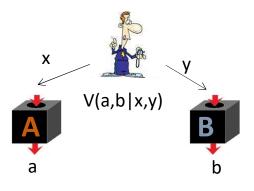


	Column 1	Column 2	Column3
Row 1			
Row 2			
Row3			



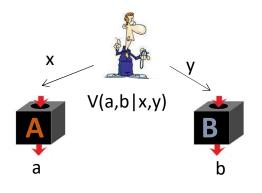
	Column 1	Column 2	Column3
Row 1			
Row 2			
Row3	1	1	-1





	Column 1	Column 2	Column3
Row 1			-1
Row 2			1
Row3	1	1	-1

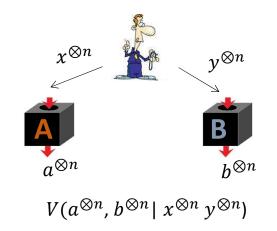




The Magic Square Game: The Ideal Strategy

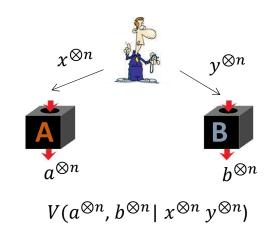
	Column 1	Column 2	Column3
Row 1	$I\otimes\sigma_Z$	$\sigma_Z \otimes I$	$-\sigma_Z\otimes\sigma_Z$
Row 2	$\sigma_X \otimes I$	$I\otimes\sigma_X$	$-\sigma_X\otimes\sigma_X$
Row3	$\sigma_X\otimes\sigma_Z$	$\sigma_Z\otimes\sigma_X$	$-\sigma_Y\otimes\sigma_Y$

Main Theorem



Rigidity of the n-round parallel repetition of the Magic Square game:

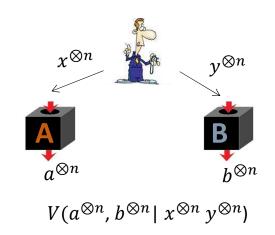
Main Theorem



Rigidity of the n-round parallel repetition of the Magic Square game:

• For any entangled strategy succeeding with probability $1 - \varepsilon$, the players' shared state is $O(poly(n\varepsilon))$ -close to 2n EPR pairs under a local isometry.

Main Theorem



Rigidity of the n-round parallel repetition of the Magic Square game:

- For any entangled strategy succeeding with probability 1ε , the players' shared state is $O(poly(n\varepsilon))$ -close to 2n EPR pairs under a local isometry.
- Furthermore, under local isometry, the players' measurements must be $O(poly(n\epsilon))$ -close to the "ideal" measurements when acting on the shared state.

Rigidity Theorems and self-testing results are a critical component of many results in Quantum Information:

Rigidity Theorems and self-testing results are a critical component of many results in Quantum Information:

 Device independent protocols: QKD and randomness expansion ([VV12, CY13])

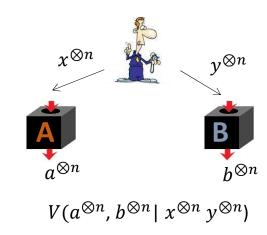
Rigidity Theorems and self-testing results are a critical component of many results in Quantum Information:

- Device independent protocols: QKD and randomness expansion ([VV12, CY13])
- Interactive proofs for the local Hamiltonian problem ([FV14, NV16])

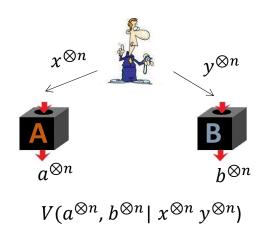
Rigidity Theorems and self-testing results are a critical component of many results in Quantum Information:

- Device independent protocols: QKD and randomness expansion ([VV12, CY13])
- Interactive proofs for the local Hamiltonian problem ([FV14, NV16])
- Delegating Quantum Computation for a classical verifier ([RUV12, NV16])

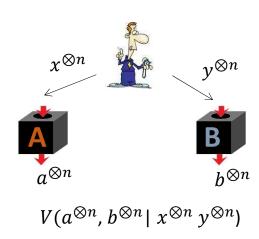
 Self-testing results for large games established in by McKague [McK15- "Self-testing in Parallel"]



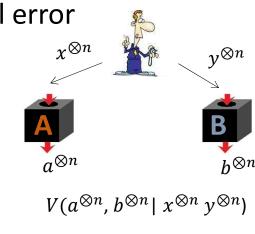
- Self-testing results for large games established in by McKague [McK15- "Self-testing in Parallel"]
 - Gives a self-test for n EPR pairs, with polynomial error dependence



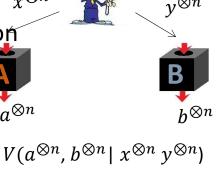
- Self-testing results for large games established in by McKague [McK15- "Self-testing in Parallel"]
 - Gives a self-test for n EPR pairs, with polynomial error dependence
 - Gives a result for verifying n-qubit Pauli measurements, with exponential error dependence



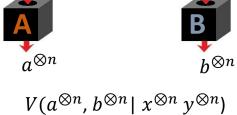
- Self-testing results for large games established in by McKague [McK15- "Self-testing in Parallel"]
 - Gives a self-test for n EPR pairs, with polynomial error dependence
 - Gives a result for verifying n-qubit Pauli measurements, with exponential error dependence
- Improvement of classical verifier result to polynomial error dependence is prerequisite for applications in: $x^{\otimes n}$



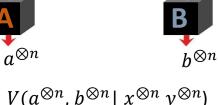
- Self-testing results for large games established in by McKague [McK15- "Self-testing in Parallel"]
 - Gives a self-test for n EPR pairs, with polynomial error dependence
 - Gives a result for verifying n-qubit Pauli measurements, with exponential error dependence
- Improvement of classical verifier result to polynomial error dependence is prerequisite for applications in: $\chi^{\otimes n}$
 - Device independent protocols: QKD and randomness expansion



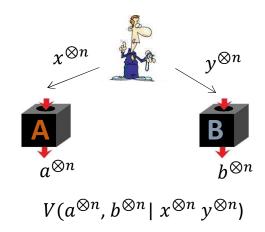
- Self-testing results for large games established in by McKague [McK15- "Self-testing in Parallel"]
 - Gives a self-test for n EPR pairs, with polynomial error dependence
 - Gives a result for verifying n-qubit Pauli measurements, with exponential error dependence
- Improvement of classical verifier result to polynomial error dependence is prerequisite for applications in: $\chi^{\otimes n}$
 - Device independent protocols: QKD and randomness expansion
 - Interactive proofs for the local Hamiltonian problem



- Self-testing results for large games established in by McKague [McK15- "Self-testing in Parallel"]
 - Gives a self-test for n EPR pairs, with polynomial error dependence
 - Gives a result for verifying n-qubit Pauli measurements, with exponential error dependence
- Improvement of classical verifier result to polynomial error dependence is prerequisite for applications in: $\chi^{\otimes n}$
 - Device independent protocols: QKD and randomness expansion
 - Interactive proofs for the local Hamiltonian problem
 - Delegating Quantum Computation for a classical verifier

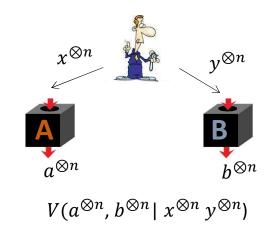


Theorem A: Commutation and Anti-Commutation



Theorem A: Commutation and Anti-Commutation

There exists a method for assembling Alice's projectors into unitaries $\tilde{A}^c_{r,k}$ (resp. $\tilde{B}^c_{r,k}$), for $k \in [n]$ such that:

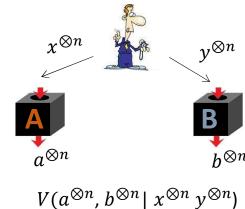


Theorem A: Commutation and Anti-Commutation

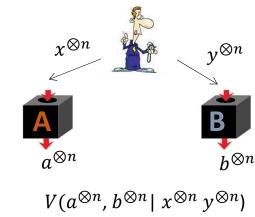
There exists a method for assembling Alice's projectors into unitaries $\tilde{A}^c_{r,k}$ (resp. $\tilde{B}^c_{r,k}$), for $k \in [n]$ such that:

$$d_{\psi'}(\tilde{A}_{r,k}^{c}\tilde{A}_{r',k}^{c'}, (-1)^{f(r,r',c,c')}\tilde{A}_{r',k}^{c'}\tilde{A}_{r,k}^{c}) \leq O(\sqrt{\epsilon})$$
 and

$$d_{\psi'}(\tilde{A}_{r,k}^c \tilde{A}_{r',k'}^{c'}, \tilde{A}_{r',k'}^{c'}, \tilde{A}_{r,k}^{c'}) \le O(\sqrt{\epsilon})$$



Theorem B: The Isometry

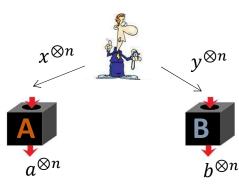


\mathbf{A} $a^{\otimes n}$ $b^{\otimes n}$

Theorem B: The Isometry

• There exist unitary operators $W^A{}_{{f s},{f t}},\,W^B{}_{{f u},{f v}}$ constructed from the $\tilde{A}^c_{r,k}$ and $\tilde{B}^c_{r,k}$ respectively

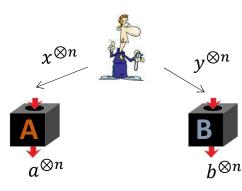
$$V(a^{\otimes n}, b^{\otimes n} | x^{\otimes n} y^{\otimes n})$$



Theorem B: The Isometry

- $V(a^{\otimes n}, b^{\otimes n} | x^{\otimes n} y^{\otimes n})$
- There exist unitary operators $W^A{}_{{f s},{f t}},\,W^B{}_{{f u},{f v}}$ constructed from the $\tilde{A}^c_{r,k}$ and $\tilde{B}^c_{r,k}$ respectively
- And, there exists and isometry $V: \mathcal{H} \to \mathcal{H} \otimes \mathbb{C}^{2n} \otimes \mathbb{C}^{2n} \otimes \mathbb{C}^{2n} \otimes \mathbb{C}^{2n}$ and $|\phi\rangle \equiv V(|\psi\rangle)$ such that:

$$\left| \langle \phi | \sigma_X^A(\mathbf{s}) \sigma_Z^A(\mathbf{t}) \sigma_X^B(\mathbf{u}) \sigma_Z^B(\mathbf{v}) | \phi \rangle - \langle \psi | W^A_{\mathbf{s}, \mathbf{t}} W^B_{\mathbf{u}, \mathbf{v}} | \psi \rangle \right| \le O(n^2 \sqrt{\varepsilon}),$$

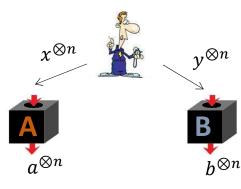


Theorem B: The Isometry

- $V(a^{\otimes n}, b^{\otimes n} | x^{\otimes n} y^{\otimes n})$
- There exist unitary operators $W^A{}_{{f s},{f t}},\,W^B{}_{{f u},{f v}}$ constructed from the $\tilde{A}^c_{r,k}$ and $\tilde{B}^c_{r,k}$ respectively
- And, there exists and isometry $V: \mathcal{H} \to \mathcal{H} \otimes \mathbb{C}^{2n} \otimes \mathbb{C}^{2n} \otimes \mathbb{C}^{2n} \otimes \mathbb{C}^{2n}$ and $|\phi\rangle \equiv V(|\psi\rangle)$ such that:

$$\left| \langle \phi | \sigma_X^A(\mathbf{s}) \sigma_Z^A(\mathbf{t}) \sigma_X^B(\mathbf{u}) \sigma_Z^B(\mathbf{v}) | \phi \rangle - \langle \psi | W^A_{\mathbf{s}, \mathbf{t}} W^B_{\mathbf{u}, \mathbf{v}} | \psi \rangle \right| \le O(n^2 \sqrt{\varepsilon}),$$

• This type of isometry was pioneered in works of McKague [McKague16], [Wu, Bancal, McKague, Scarani 16]



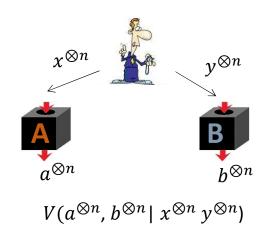
Theorem B: The Isometry

- $V(a^{\otimes n}, b^{\otimes n} | x^{\otimes n} y^{\otimes n})$
- There exist unitary operators $W^A{}_{{f s},{f t}},\,W^B{}_{{f u},{f v}}$ constructed from the $\tilde{A}^c_{r,k}$ and $\tilde{B}^c_{r,k}$ respectively
- And, there exists and isometry $V: \mathcal{H} \to \mathcal{H} \otimes \mathbb{C}^{2n} \otimes \mathbb{C}^{2n} \otimes \mathbb{C}^{2n} \otimes \mathbb{C}^{2n}$ and $|\phi\rangle \equiv V(|\psi\rangle)$ such that:

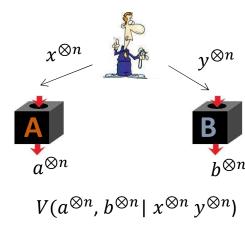
$$\left| \langle \phi | \sigma_X^A(\mathbf{s}) \sigma_Z^A(\mathbf{t}) \sigma_X^B(\mathbf{u}) \sigma_Z^B(\mathbf{v}) | \phi \rangle - \langle \psi | W^A_{\mathbf{s}, \mathbf{t}} W^B_{\mathbf{u}, \mathbf{v}} | \psi \rangle \right| \le O(n^2 \sqrt{\varepsilon}),$$

- This type of isometry was pioneered in works of McKague [McKague16], [Wu, Bancal, McKague, Scarani 16]
- This theorem overlaps with [Chao, Reichardt, Sutherland, Vidick 16]

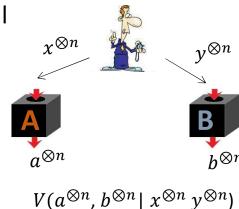
• Rigidity theorem for the parallel repeated magic square game which:



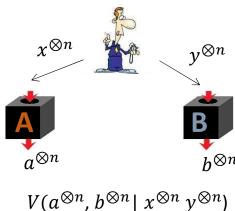
- Rigidity theorem for the parallel repeated magic square game which:
 - Self-tests n EPR pairs with polynomial error dependence



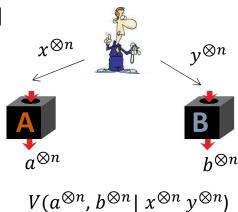
- Rigidity theorem for the parallel repeated magic square game which:
 - Self-tests n EPR pairs with polynomial error dependence
 - Certifies Pauli-product measurements with polynomial error dependence



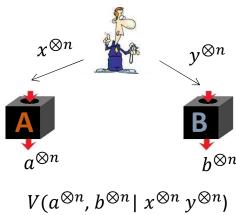
- Rigidity theorem for the parallel repeated magic square game which:
 - Self-tests n EPR pairs with polynomial error dependence
 - Certifies Pauli-product measurements with polynomial error dependence
- Open Problems:



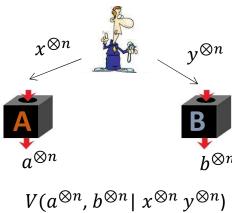
- Rigidity theorem for the parallel repeated magic square game which:
 - Self-tests n EPR pairs with polynomial error dependence
 - Certifies Pauli-product measurements with polynomial error dependence
- Open Problems:
 - Reduce error dependence [NV16]



- Rigidity theorem for the parallel repeated magic square game which:
 - Self-tests n EPR pairs with polynomial error dependence
 - Certifies Pauli-product measurements with polynomial error dependence
- Open Problems:
 - Reduce error dependence [NV16]
 - Reduce input size –[CRSV16]



- Rigidity theorem for the parallel repeated magic square game which:
 - Self-tests n EPR pairs with polynomial error dependence
 - Certifies Pauli-product measurements with polynomial error dependence
- Open Problems:
 - Reduce error dependence [NV16]
 - Reduce input size –[CRSV16]
 - Do both at the same time --- OPEN



- Rigidity theorem for the parallel repeated magic square game which:
 - Self-tests n EPR pairs with polynomial error dependence
 - Certifies Pauli-product measurements with polynomial error dependence
- Open Problems:
 - Reduce error dependence [NV16]
 - Reduce input size –[CRSV16]
 - Do both at the same time --- OPEN
 - More applications to delegated quantum computation or interactive proofs for local Hamiltonian, randomness expansion.

