Concluding remark

@ Note that there is a natural isomorphism between states of n
pairs of qubits and states of a single pair of qu-Dits, for
D =2".

o If we are able to self-test
[y = @7, (cosb;|00) +sinb;|11)), then we can also
self-test some state of a single pair of qu-Dits.

@ Hence, as a corollary of our result, we deduce that we can
self-test an n dimensional subfamily of the family of all
partially entangled states of two qu-Dits, for D = 2".

e With a different approach, C. & Goh & Scarani show that all
pure bipartite entangled states can be self-tested®.

8A. Coladangelo, K. T. Goh and V. Scarani (2016). All pure bipartite
entangled states can be self-tested.
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shared state is O(poly(ne))-close to 2n EPR pairs under a local isometry.
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Rigidity of the n-round parallel repetition of the Magic Square game:
* For any entangled strategy succeeding with probability 1 - €, the players’
shared state is O(poly(ne))-close to 2n EPR pairs under a local isometry.

* Furthermore, under local isometry, the players’ measurements must be
O(poly(ne))-close to the “ideal” measurements when acting on the shared

state.
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Proof Structure

Theorem A: Commutation and Anti-Commutation

There exists a method for assembling Alice’s projectors into unitaries AC
(resp. B¢ - 1), for k € [n] such that:

dyr (A7 A5 s ()T AL AT L) < O(Ve)

and ﬁ
®n
dwl (AC kAC/ k’ AC/ k'A ) S O(\/E)
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Theorem B: The Isometry V(a®n, bEn| xBn y@n)
* There exist unltary operators WA, W¥#,, constructed from
the Ack and B¢ - respectively
 And, there exists and isometry V : % — H ® C?" @ C2" @ C2" @ C2* and |¢) = V(|¢))
such that:

[{dlog (s)o7(t)o % (w)o7 (V)[6) — (YW WP uvl)| < O(n*Ve).

* This type of isometry was pioneered in works of McKague [McKaguel6], [Wu,
Bancal, McKague, Scarani 16]

* This theorem overlaps with [Chao, Reichardt, Sutherland, Vidick 16]
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Conclusion

* Rigidity theorem for the parallel repeated magic square game which:
 Self-tests n EPR pairs with polynomial error dependence
* Certifies Pauli-product measurements with polynomial
error dependence

* Open Problems:
* Reduce error dependence — [NV16]
 Reduce input size —[CRSV16] V(a®", b®"| x®" yOn)
* Do both at the same time --- OPEN

* More applications to delegated quantum computation or interactive proofs
for local Hamiltonian, randomness expansion.




