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A quantum impurity model describes a free fermion bath coupled to a small but strongly 

interacting impurity.
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“The resistance curve of  the gold wires 

measured (not very pure) has a minimum”   

W.J de Haas, J. de Boer, and G.J van den Berg

Physica 1, 1115 (1933)

Quantum impurity models were introduced to study the Kondo effect:

[Anderson 1961, Kondo 1964, Wilson 1975]



Dynamical Mean Field Theory (DMFT): A quantum many-body system on a lattice is 

simulated by a quantum impurity model. 

A time consuming step in DMFT simulation is solving for the Green’s function of  the 

quantum impurity model.

Image source: http://physics.aalto.fi/en/groups/qd/research/
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Bauer et al. suggest speeding up DMFT using quantum computers:

From Bauer et al.

arXiv:1510.03859

The first step is to prepare the ground state of  a quantum impurity model.  They propose 

using quantum adiabatic evolution (efficiency is unknown). 

The Green’s function is computed by an efficient quantum computation starting from the 

ground state.



What can we prove about quantum impurity models in the general case?

In this talk we will discuss the computational complexity of  approximating the ground energy 

and computing low energy states…
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Fermionic Hilbert space

Hilbert space of  𝑛 fermionic modes is spanned by Fock basis states
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Here 𝑎𝑗 , 𝑎𝑗
†

are annihilation/creation operators for the 𝑗th mode.
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𝑥 = 𝑎1
†𝑥1 𝑎2

†𝑥2 …𝑎𝑛
†𝑥𝑛 𝑣𝑎𝑐 𝑥 ∈ {0,1}𝑛

Here 𝑎𝑗 , 𝑎𝑗
†

are annihilation/creation operators for the 𝑗th mode.

Define Majorana operators

𝑐2𝑗−1 = 𝑎𝑗 + 𝑎𝑗
†

𝑐2𝑗 = −𝑖 (𝑎𝑗 − 𝑎𝑗
†
) 

They are Hermitian and satisfy  𝑐𝑗𝑐𝑘 + 𝑐𝑘𝑐𝑗 = 2𝛿𝑗𝑘 . 

𝑗 = 1,2, … , 𝑛

The Fock basis is naturally 

represented as the computational

basis of  𝑛 qubits

Majoranas are represented 

as 𝑛-qubit Pauli operators:

If  you prefer qubits…

𝑐2𝑗−1 = 𝑍⊗ 𝑍⊗⋯𝑍⊗𝑋⊗ 𝐼𝑛−𝑗

𝑐2𝑗 = 𝑍⊗ 𝑍⊗⋯𝑍⊗ 𝑌⊗ 𝐼𝑛−𝑗

𝑗 − 1
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Gaussian unitaries and states

A unitary is Gaussian if  it maps each Majorana to a linear superposition of  Majoranas:

A fermionic Gaussian state is of  the form

Useful fact #1: Gaussian unitaries diagonalize free fermion Hamiltonians. 

Useful fact #2: Gaussian states are fermionic analogues of  stabilizer states. We can represent 

and manipulate them efficiently.

𝑈𝑐𝑗𝑈
† = ෍

𝑘=1

2𝑛

𝑅𝑗𝑘𝑐𝑘 𝑅𝑅𝑇 = 𝐼

𝜙 = 𝑈|0𝑛〉

Gaussian unitary Vacuum state
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Quantum impurity model Hamiltonian

𝐻 = 𝐻𝑏𝑎𝑡ℎ + 𝐻𝑖𝑚𝑝

ℎ = a real antisymmetric matrix

WLOG take ℎ ≤ 1

The bath Hamiltonian is a completely general free fermion Hamiltonian

The impurity Hamiltonian acts only on Majoranas 𝑐1, 𝑐2, … 𝑐𝑚 but is otherwise unrestricted

𝐻𝑖𝑚𝑝 = ෍

𝑥∈ 0,1 𝑚

𝑥 𝑒𝑣𝑒𝑛

𝑔𝑥 𝑐1
𝑥1𝑐2

𝑥2 …𝑐𝑚
𝑥𝑚
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WLOG Set to 0 for remainder of  talk
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For any ground state 𝜓 of  an impurity model, define an 𝑛 × 𝑛 covariance matrix

Numerical observation: Eigenvalues of  𝑪 decay rapidly

𝐶𝑝𝑞 = 〈𝜓 𝑏𝑝
†𝑏𝑞 𝜓〉

Ground state covariance matrix

𝜎𝑗

𝑗

𝑛 = 11
𝑚 = 4

How general is this? 

Why should we care?

(𝑗th eigenvalue)
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An important corollary is that a ground state has a concise classical representation…
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Choose a Gaussian unitary which transforms to this new set of  fermi modes.  
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The results discussed so far are not algorithmic.
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Scaling with 𝑚 is close to optimal.

The algorithm produces a classical description of a state with energy at most 𝜖. This state is a 

superposition of 𝜒 Gaussian states, with

𝜒 = exp[𝑂(𝑚 log3(𝑚𝜖−1))]
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If the bath Hamiltonian has 𝐷 distinct single-particle energies then we apply a Gaussian 

unitary transformation which decouples all except 𝐷𝑚 modes from the impurity.

“Few excitation subspace”: [Consequence of  exponential decay theorem]

To approximate ground energy with precision 𝜖 we can restrict our attention to the 

subspace with at most 𝑂 𝑚𝑙𝑜𝑔2 𝑚𝜖−1 bath excitations. 

The algorithm uses the following two facts…
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𝜖𝑗 𝑏𝑗
†𝑏𝑗

Step 1:  Diagonalize the free fermion Hamiltonian 𝑯𝒃𝒂𝒕𝒉

Computing all canonical modes and excitation energies takes time 𝑂 𝑛3 using linear algebra.
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It works because 𝑯− ෩𝑯 has norm 𝑶(𝝐) 

when restricted to the few excitation 

subspace.
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dimension at most
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𝑗=0

𝑁𝑒𝑥𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑠
𝑁𝑚𝑜𝑑𝑒𝑠

𝑗
= exp[𝑂(𝑚 log3(𝑚𝜖−1))]
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𝑛3exp[𝑂(𝑚 log3(𝑚𝜖−1))]

Answer #2:   For any 𝜖 there exists a state with energy ≤ 𝜖 and 

Gaussian rank 𝜒 = 𝑒𝑥𝑝[𝑂(𝑚 𝑙𝑜𝑔3(𝑚𝜖−1))]. 



Extensions and open questions

Can the quasipolynomial scaling with 𝝐 be improved? 

What is the complexity of  approximating the ground energy with precision 𝜖 = 𝑝𝑜𝑙𝑦 𝑛 −1? 

We prove that (a decision version of) this problem is contained in the complexity class QCMA.



Extensions and open questions

Can the quasipolynomial scaling with 𝝐 be improved? 

What is the complexity of  approximating the ground energy with precision 𝜖 = 𝑝𝑜𝑙𝑦 𝑛 −1? 

We prove that (a decision version of) this problem is contained in the complexity class QCMA.

Is the algorithm practical? 

We give a simplified algorithm based on using the set of  low rank Gaussian states as a variational ansatz.



Extensions and open questions

Can the quasipolynomial scaling with 𝝐 be improved? 

What is the complexity of  approximating the ground energy with precision 𝜖 = 𝑝𝑜𝑙𝑦 𝑛 −1? 

We prove that (a decision version of) this problem is contained in the complexity class QCMA.

Is the algorithm practical? 

We give a simplified algorithm based on using the set of  low rank Gaussian states as a variational ansatz.

What about the complexity of  simulating the time evolution of  quantum impurity models?

A result of  Brod and Childs establishes that evolution with a time-dependent impurity model 

Hamiltonian cannot be efficiently simulated on a classical computer (unless BPP=BQP). 



Extensions and open questions
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What is the complexity of  approximating the ground energy with precision 𝜖 = 𝑝𝑜𝑙𝑦 𝑛 −1? 

We prove that (a decision version of) this problem is contained in the complexity class QCMA.

Is the algorithm practical? 

We give a simplified algorithm based on using the set of  low rank Gaussian states as a variational ansatz.

What about the complexity of  simulating the time evolution of  quantum impurity models?

A result of  Brod and Childs establishes that evolution with a time-dependent impurity model 

Hamiltonian cannot be efficiently simulated on a classical computer (unless BPP=BQP). 

Further applications of  low rank Gaussian states? Analogs between Gaussian/stabilizer states?

We provide some new technical tools in this direction. For example, a condition under which an 

ensemble of  Gaussian states forms an analog of  a 2-design. 



Thanks!


