
On preparing ground states of gapped Hamiltonians:
An efficient Quantum Lovász Local Lemma

András Gilyén
QuSoft, CWI, Amsterdam, Netherlands

Joint work with:
Or Sattath

Hebrew University and MIT

QIP, Seattle, January 19, 2017

1 / 20



Ground states and frustration

I Understanding ground states is important, e.g., in quantum chemistry

2 / 20



Ground states and frustration

I Understanding ground states is important, e.g., in quantum chemistry
I Local Hamiltonians can describe various many-body quantum systems

2 / 20



Ground states and frustration

I Understanding ground states is important, e.g., in quantum chemistry
I Local Hamiltonians can describe various many-body quantum systems

k-local Hamiltonians

H =
∑m

i=1 Hi is k -local: each term Hi acts non-trivially on k qudits (or qudits)

2 / 20



Ground states and frustration

I Understanding ground states is important, e.g., in quantum chemistry
I Local Hamiltonians can describe various many-body quantum systems

k-local Hamiltonians

H =
∑m

i=1 Hi is k -local: each term Hi acts non-trivially on k qudits (or qudits)

I Local Hamiltonians can have interesting ground state structures

2 / 20



Ground states and frustration

I Understanding ground states is important, e.g., in quantum chemistry
I Local Hamiltonians can describe various many-body quantum systems

k-local Hamiltonians

H =
∑m

i=1 Hi is k -local: each term Hi acts non-trivially on k qudits (or qudits)

I Local Hamiltonians can have interesting ground state structures

Frustration-freeness

H =
∑m

i=1 Hi is frustration-free, iff ∃ |ψ〉 s.t. 〈ψ|Hi |ψ〉 is minimal ∀i ∈ [m]

2 / 20



Ground states and frustration

I Understanding ground states is important, e.g., in quantum chemistry
I Local Hamiltonians can describe various many-body quantum systems

k-local Hamiltonians

H =
∑m

i=1 Hi is k -local: each term Hi acts non-trivially on k qudits (or qudits)

I Local Hamiltonians can have interesting ground state structures

Frustration-freeness

H =
∑m

i=1 Hi is frustration-free, iff ∃ |ψ〉 s.t. 〈ψ|Hi |ψ〉 is minimal ∀i ∈ [m]

E.g.: Kitaev’s Toric Code
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Frustration-freeness and quantum satisfiability (QSAT)

Projector description

Πi : orthogonal projector to the subspace of excited states of Hi .
The frustration-free states of H =

∑m
i=1 Hi and H′ =

∑m
i=1 Πi are the same.
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Projector description

Πi : orthogonal projector to the subspace of excited states of Hi .
The frustration-free states of H =

∑m
i=1 Hi and H′ =

∑m
i=1 Πi are the same.

The decision problem k-QSAT

Input: orthogonal projectors (Πi)i∈[m], s.t. each Πi acts on k qubits
Task: decide if

∑m
i=1 Πi is frustration-free, i.e., ∃?|ψ〉 : |ψ〉 ∈

⋂
i∈[m] ker(Πi)

This is a generalisation of classical satisfiability (SAT)

SAT ⇒ QSAT

(x1 ∨ x2 ∨ x3)︸           ︷︷           ︸
C1

∧ (x1 ∨ x3 ∨ x4)︸           ︷︷           ︸
C2

⇒
Π1 := |000〉〈000|123
Π2 := |101〉〈101|134
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Hardness of deciding frustration-freeness

The complexity of SAT and QSAT

I 2-SAT and 2-QSAT are easy to decide (they are in P (Bravyi ’06))
I 3-SAT and 3-QSAT are very hard to decide

(NP-complete and QMA1-complete (Kitaev; Gosset & Nagaj ’13),
respectively)
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The complexity of SAT and QSAT

I 2-SAT and 2-QSAT are easy to decide (they are in P (Bravyi ’06))
I 3-SAT and 3-QSAT are very hard to decide

(NP-complete and QMA1-complete (Kitaev; Gosset & Nagaj ’13),
respectively)

I The Lovász Local Lemma (LLL) provides a sufficient condition for the
satisfiability of k -SAT

I The Quantum LLL is a generalisation by Ambainis et al. for k -QSAT
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The Lovász Local Lemma (LLL)

Application to k -SAT

–
{
Ci : i ∈ [m]

}
are clauses of a k -SAT formula

– Each having at most d neighbours
If p·d·e ≤ 1 (p = 2−k , e = 2.71 . . .), then the formula is satisfiable.
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Ci : i ∈ [m]

}
are clauses of a k -SAT formula

– Each having at most d neighbours
If p·d·e ≤ 1 (p = 2−k , e = 2.71 . . .), then the formula is satisfiable.

Generalisation to k -QSAT
–

{
Πi : i ∈ [m]

}
are k -local rank-r orthogonal projectors

– Each having at most d neighbours
If p·d·e ≤ 1 (p = r · 2−k , e = 2.71 . . .), then

∑m
i=1 Πi is frustration-free.
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Overview of results

Classical Quantum

∃
Orig. Lovász & Erdős (’75) Ambainis et al. (’09)
Best Shearer (’85) Sattath et al. (’16)

Orig. Moser & Tardos (’09)
Schwarz et al.; Arad et al. (’13)
(only for commutative case)

Best Kolipaka & Szegedy (’12)

No constructive version was known for non-commuting projectors
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Orig. Moser & Tardos (’09)
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Finding happiness: Classical
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Classical: finding a “happy" assignment

The Moser-Tardos resampling algorithm (2009)

init uniform random assignment
for all i ∈ [m] :

fix(Ci)

fix(Ci):
check Ci

if it was “unhappy"
resample the bits of Ci

for all neighbours Cj of Ci

fix(Cj)
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Commutative quantum: finding a “happy" state

The commutative quantum resampling algorithm

init uniform random qubits
for all i ∈ [m] :

fix(Πi)

fix(Πi):
measure Πi

if it was “unhappy"
resample the qubits of Πi

for all neighbours Πj of Πi

fix(Πj)

Schwarz et al.; Arad et al. (2013)
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Our simplified analysis

Our key lemma

Probability of doing a specific length-` resample sequence is ≤ p` (p = r/2k )
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Our simplified analysis

Our key lemma

Probability of doing a specific length-` resample sequence is ≤ p` (p = r/2k )

When does this algorithm terminate quickly?

I The number of length-3m resample sequences is� (ed)3m (easy)

⇒ The probability of seeing a length-3m resample seq. � (p ·d ·e)3m

If p ·d ·e ≤ 1 then w.h.p. the alg. performs < 3m resamplings
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Finding happiness: Quantum

“About your cat, Mr. Schrödinger – I have good news and bad news."
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Issues with non-commutativity

Becoming “unhappy" after seeing others “happy"
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Non-commutative quantum: finding a “happy" state

The quantum resampling algorithm

init uniform random qubits
for all i ∈ [m] :

fix(Πi)

fix(Πi):
measure Πi

if it was “unhappy"
resample the qubits of Πi

for all neighbours Πj of Πi

fix(Πj)

Our key lemma

Probability of doing a
specific length-` resample
sequence is ≤ p`
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Measuring joint happiness

Perfect ground space projections of subsystems

F : set of already fixed projectors.
Define ΠF via ker(ΠF ) =

⋂
j∈F ker(Πj).

(In the commuting case ΠF =
∏

j∈F Πj .)
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Measuring joint happiness

Perfect ground space projections of subsystems

F : set of already fixed projectors.
Define ΠF via ker(ΠF ) =

⋂
j∈F ker(Πj).

(In the commuting case ΠF =
∏

j∈F Πj .)

Generalised measurement procedureM – for our key lemma

If ΠF |ψ〉 = 0 (i.e. F is “happy") and we measure it usingMF ,i returning result
I “happy", then

ΠF∪{i}MF ,i(|ψ〉) = 0
I “unhappy", then

ΠiMF ,i(|ψ〉) =MF ,i(|ψ〉)

(while preserving “happiness" of non-neighbour projectors.)
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Weak measurement

Weak measurement of Πi

To weakly measure {Πi , Id − Πi} use an ancilla and a Πi-controlled rotation:

Πθ
i = Πi ⊗ Rθ + (Id − Πi) ⊗ Id , where Rθ =

( √
1 − θ −

√
θ

√
θ

√
1 − θ

)
.

Apply Πθ
i on |ψ〉 ⊗ |0〉 and measure the ancilla qubit (in the |0〉, |1〉 basis).
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Πθ
i = Πi ⊗ Rθ + (Id − Πi) ⊗ Id , where Rθ =

( √
1 − θ −

√
θ

√
θ

√
1 − θ

)
.

Apply Πθ
i on |ψ〉 ⊗ |0〉 and measure the ancilla qubit (in the |0〉, |1〉 basis).

The outcomes of a weak measurement

Outcome 1 :
∣∣∣ψθ1〉 =

√
θΠi |ψ〉 (unnormalised)

Outcome 0 :
∣∣∣ψθ0〉 = (Id − Πi)|ψ〉+

√
1 − θΠi |ψ〉 ≈ |ψ〉 − (θ/2)Πi |ψ〉
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Weak measurement + quantum Zeno effect

∈ ker(ΠF )

∈ im(ΠF )

∈ ker(Πi)

∈ im(Πi)

|ψ〉

|ψ0〉

|ψ1〉

−
√
θ|ψ1〉−

√
θΠF |ψ1〉
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Implementation ofM
Generalised measurementMF ,i

repeat T times do
measure Πi weakly if Πi was detected then return i is “unhappy"
measure ΠF (for quantum Zeno effect)

end repeat and return F ∪ {i} is “happy"
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repeat T times do
measure Πi weakly if Πi was detected then return i is “unhappy"
measure ΠF (for quantum Zeno effect)

end repeat and return F ∪ {i} is “happy"

I If |ψ〉 was “happy" w.r.t. F ∪ {i}, thenM always returns F ∪ {i} is “happy"

Let γ be the energy gap (smallest non-zero. energy) of HF∪{i} = Πi +
∑

j∈F Πj .

I If |ψ〉 was “unhappy" w.r.t. F ∪ {i}: T ≈ 1
θγ suffices to find it “unhappy"

We “know in advance" the outcome of all ΠF measurement!

⇒ ΠF can be simulated by meas. ∼ |F |γ times a randomly chosen (Πj)j∈F
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Runtime
The uniform gap

For H =
∑

i∈[m] Πi we define the uniform gap of H as

γ(H) := min
F⊆[m]

gap

∑
i∈F

Πi

 .
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Runtime
The uniform gap

For H =
∑

i∈[m] Πi we define the uniform gap of H as

γ(H) := min
F⊆[m]

gap

∑
i∈F

Πi

 .
The overall runtime of the quantum algorithm usingM

total number of measurements = Õ

(
m3 · d
γ2

· log2
(
1
δ

))
I m: number of projectors
I d: maximum number of neighbours of a projector
I γ: uniform gap
I δ: maximum trace distance of the output from a density operator

supported on the ground space
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Discussion

Benefits of the algorithm

I The algorithm only uses local (weak and strong) measurements
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Discussion

Benefits of the algorithm

I The algorithm only uses local (weak and strong) measurements
I Can prepare the ground state of a 50 qubit system using 51 qubits!
I Due to quantum Zeno effect it probably does not need error correction

Open questions

I Is there a variant which can prepare low-energy states without gap
promise?

I Physically motivated examples? (quantum chemistry, spin systems, ...)
I Getting speed ups for some interesting classical problem?
I Can this result be used for showing quantum supremacy?
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Without a promise on the gap

What can we do without knowing the size of the gap?

For any input (Πi)i∈[m] satisfying the Lovász (or Shearer) condition and ε ∈ R+

we can do one of the following:
I Prepare a quantum state supported on energy eigenstates with energy

below ε.

Or Conclude that the uniform gap is below ε.
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Preparing low-energy quantum states
Let Πδ

S denote the projection to the subspace of energy eigenstates with
energy at least δ, with respect to HS =

∑
i∈S Πi .

Generalising the two main properties to low energy subspaces

Suppose |ψ〉 is such that Πδ
S |ψ〉 = 0. We need a quantum channelMS,i with

two possible (probabilistic) outcomes:
I “happy": Πδ+ε

S∪{i}MS,i(|ψ〉) = 0

I “unhappy":
(
Πδ+ε

S\Γ(i) � Πδ
S ⊗ (Id − Πi)

)
MS,i(|ψ〉) = 0.

Main issue

Πδ+ε
S\Γ(i) � Πδ

S does not always hold! (Only if δ = 0.)
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Simulation results for the non-commuting case
I Various topologies tested up to 21 qubits, including

cycles, grids, octahedron, dodecahedron
I Poor performance even for cycles? 2-SAT easy even classically!

Output of the LIQUi|〉 simulation, on C10

0:0000.0/Classical upper bound on the expected number of resamplings : 45.0
0:0003.0/Projectors constructed
0:0003.3/Singular values found: 1022, smallest: 0.039998
0:0003.3/Hamiltoninan constructed
0:0003.7/Kernel Gate constructed
0:0003.7/Run quantum test on a fixed random projector set
0:0017.2/Average resamplings in 100 simulation runs:
0: M: 0 R: 0 E: 2.6074 P: 0.0010
1: M: 22.1 R: 4.0 E: 0.4994 P: 0.0204
2: M: 14.4 R: 1.5 E: 0.1820 P: 0.0364
3: M: 12.2 R: 0.7 E: 0.1082 P: 0.0413
4: M: 12.3 R: 0.8 E: 0.1177 P: 0.0516
5: M: 11.3 R: 0.4 E: 0.0774 P: 0.0514
10: M: 10.6 R: 0.2 E: 0.0406 P: 0.0701
15: M: 10.7 R: 0.2 E: 0.0370 P: 0.0740
20: M: 10.6 R: 0.2 E: 0.0264 P: 0.0716
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