On preparing ground states of gapped Hamiltonians: An efficient Quantum Lovász Local Lemma

András Gilyén QuSoft, CWI, Amsterdam, Netherlands

Joint work with:
Or Sattath
Hebrew University and MIT

► Understanding ground states is important, e.g., in quantum chemistry

- ► Understanding ground states is important, e.g., in quantum chemistry
- ► Local Hamiltonians can describe various many-body quantum systems

- ► Understanding ground states is important, e.g., in quantum chemistry
- ► Local Hamiltonians can describe various many-body quantum systems

k-local Hamiltonians

 $H = \sum_{i=1}^{m} H_i$ is k-local: each term H_i acts non-trivially on k qudits (or qudits)

- ► Understanding ground states is important, e.g., in quantum chemistry
- ► Local Hamiltonians can describe various many-body quantum systems

k-local Hamiltonians

 $H = \sum_{i=1}^{m} H_i$ is k-local: each term H_i acts non-trivially on k qudits (or qudits)

► Local Hamiltonians can have interesting ground state structures

- ► Understanding ground states is important, e.g., in quantum chemistry
- ► Local Hamiltonians can describe various many-body quantum systems

k-local Hamiltonians

 $H = \sum_{i=1}^{m} H_i$ is k-local: each term H_i acts non-trivially on k qudits (or qudits)

► Local Hamiltonians can have interesting ground state structures

Frustration-freeness

 $H = \sum_{i=1}^{m} H_i$ is frustration-free, iff $\exists |\psi\rangle$ s.t. $\langle \psi | H_i | \psi \rangle$ is minimal $\forall i \in [m]$

- ► Understanding ground states is important, e.g., in quantum chemistry
- ► Local Hamiltonians can describe various many-body quantum systems

k-local Hamiltonians

 $H = \sum_{i=1}^{m} H_i$ is k-local: each term H_i acts non-trivially on k qudits (or qudits)

► Local Hamiltonians can have interesting ground state structures

Frustration-freeness

 $H = \sum_{i=1}^{m} H_i$ is frustration-free, iff $\exists |\psi\rangle$ s.t. $\langle \psi | H_i | \psi \rangle$ is minimal $\forall i \in [m]$

E.g.: Kitaev's Toric Code

Frustration-freeness and quantum satisfiability (QSAT)

Projector description

 Π_i : orthogonal projector to the subspace of excited states of H_i . The frustration-free states of $H = \sum_{i=1}^m H_i$ and $H' = \sum_{i=1}^m \Pi_i$ are the same.

Frustration-freeness and quantum satisfiability (QSAT)

Projector description

 Π_i : orthogonal projector to the subspace of excited states of H_i . The frustration-free states of $H = \sum_{i=1}^m H_i$ and $H' = \sum_{i=1}^m \Pi_i$ are the same.

The decision problem k-QSAT

Input: orthogonal projectors $(\Pi_i)_{i \in [m]}$, s.t. each Π_i acts on k qubits Task: decide if $\sum_{i=1}^m \Pi_i$ is frustration-free, i.e., $\exists ? |\psi\rangle : |\psi\rangle \in \bigcap_{i \in [m]} \ker(\Pi_i)$

Frustration-freeness and quantum satisfiability (QSAT)

Projector description

 Π_i : orthogonal projector to the subspace of excited states of H_i . The frustration-free states of $H = \sum_{i=1}^m H_i$ and $H' = \sum_{i=1}^m \Pi_i$ are the same.

The decision problem k-QSAT

Input: orthogonal projectors $(\Pi_i)_{i \in [m]}$, s.t. each Π_i acts on k qubits Task: decide if $\sum_{i=1}^m \Pi_i$ is frustration-free, i.e., $\exists ? |\psi\rangle : |\psi\rangle \in \bigcap_{i \in [m]} \ker(\Pi_i)$

This is a generalisation of classical satisfiability (SAT)

$$(x_1 \lor x_2 \lor x_3) \land (\overline{x_1} \lor x_3 \lor \overline{x_4}) \Rightarrow \begin{array}{c} \text{QSAT} \\ \Pi_1 := |000\rangle\langle 000|_{123} \\ \Pi_2 := |101\rangle\langle 101|_{134} \end{array}$$

Hardness of deciding frustration-freeness

The complexity of SAT and QSAT

- ► 2-SAT and 2-QSAT are easy to decide (they are in P (Bravyi '06))
- → 3-SAT and 3-QSAT are very hard to decide (NP-complete and QMA₁-complete (Kitaev; Gosset & Nagaj '13), respectively)

Hardness of deciding frustration-freeness

The complexity of SAT and QSAT

- ► 2-SAT and 2-QSAT are easy to decide (they are in P (Bravyi '06))
- 3-SAT and 3-QSAT are very hard to decide (NP-complete and QMA₁-complete (Kitaev; Gosset & Nagaj '13), respectively)
- ► The Lovász Local Lemma (LLL) provides a sufficient condition for the satisfiability of *k*-SAT
- ► The Quantum LLL is a generalisation by Ambainis et al. for *k*-QSAT

The Lovász Local Lemma (LLL)

Application to *k***-SAT**

- $-\{C_i: i \in [m]\}$ are clauses of a k-SAT formula
- Each having at most d neighbours

If $p \cdot d \cdot e \le 1$ ($p = 2^{-k}$, e = 2.71...), then the formula is satisfiable.

The Lovász Local Lemma (LLL)

Application to k-SAT

- $-\{C_i: i \in [m]\}$ are clauses of a k-SAT formula
- Each having at most d neighbours

If $p \cdot d \cdot e \le 1$ ($p = 2^{-k}$, e = 2.71...), then the formula is satisfiable.

Generalisation to *k***-QSAT**

- $-\{\Pi_i: i \in [m]\}$ are **k**-local rank-**r** orthogonal projectors
- Each having at most d neighbours

If $p \cdot d \cdot e \le 1$ ($p = r \cdot 2^{-k}$, e = 2.71...), then $\sum_{i=1}^{m} \Pi_i$ is frustration-free.

Constraints are too interdependent

Constraints are too interdependent

Constraints are too interdependent

Constraints are too restrictive

The system is always frustration-free

Overview of results

		Classical	Quantum
3	Orig.	Lovász & Erdős ('75)	Ambainis et al. ('09)
	Best	Shearer ('85)	Sattath et al. ('16)
- Je	Orig.	Moser & Tardos ('09)	Schwarz et al.; Arad et al. ('13) (only for commutative case)
	Best	Kolipaka & Szegedy ('12)	

No constructive version was known for non-commuting projectors

Overview of results

		Classical	Quantum
	Orig.	Lovász & Erdős ('75)	Ambainis et al. ('09)
□ B	3est	Shearer ('85)	Sattath et al. ('16)
	Oria	Moser & Tardos ('09)	Schwarz et al.; Arad et al. ('13)
AF C	, Orig.		(only for commutative case)
В	3est	Kolipaka & Szegedy ('12)	This talk: Best generality + non-comm. !!!

No constructive version was known for non-commuting projectors

Finding happiness: Classical

Classical: finding a "happy" assignment

```
The Moser-Tardos resampling algorithm (2009)
    init uniform random assignment
    for all i \in [m]:
      fix(C_i)
    fix(C_i):
      check Ci
      if it was "unhappy"
        resample the bits of C_i
        for all neighbours C_i of C_i
          fix(C_i)
```



```
The Moser-Tardos resampling algorithm (2009)
    init uniform random assignment
    for all i \in [m]:
      fix(C_i)
    fix(C_i):
      check Ci
      if it was "unhappy"
                                                                             X_{4}
        resample the bits of C_i
        for all neighbours C_i of C_i
          fix(C_i)
```



```
The Moser-Tardos resampling algorithm (2009)
    init uniform random assignment
    for all i \in [m]:
      fix(C_i)
    fix(C_i):
      check Ci
      if it was "unhappy"
        resample the bits of C_i
        for all neighbours C_i of C_i
          fix(C_i)
```

 X_{4}

Classical: finding a "happy" assignment

```
The Moser-Tardos resampling algorithm (2009)
    init uniform random assignment
    for all i \in [m]:
      fix(C_i)
    fix(C_i):
      check Ci
      if it was "unhappy"
        resample the bits of C_i
        for all neighbours C_i of C_i
          fix(C_i)
```



```
The Moser-Tardos resampling algorithm (2009)
```

```
init uniform random assignment
for all i \in [m]:
  fix(C_i)
fix(C_i):
  check Ci
  if it was "unhappy"
    resample the bits of C_i
    for all neighbours C_i of C_i
      fix(C_i)
```



```
The Moser-Tardos resampling algorithm (2009)
    init uniform random assignment
    for all i \in [m]:
      fix(C_i)
    fix(C_i):
      check Ci
      if it was "unhappy"
        resample the bits of C_i
        for all neighbours C_i of C_i
          fix(C_i)
```

 $\tilde{\chi}_{4}$

Classical: finding a "happy" assignment

```
The Moser-Tardos resampling algorithm (2009)
    init uniform random assignment
    for all i \in [m]:
      fix(C_i)
    fix(C_i):
      check Ci
      if it was "unhappy"
        resample the bits of C_i
        for all neighbours C_i of C_i
          fix(C_i)
```


Classical: finding a "happy" assignment

```
The Moser-Tardos resampling algorithm (2009)
```

```
init uniform random assignment
for all i \in [m]:
  fix(C_i)
fix(C_i):
  check Ci
  if it was "unhappy"
    resample the bits of C_i
    for all neighbours C_i of C_i
      fix(C_i)
```


The commutative quantum resampling algorithm

```
init uniform random gubits
for all i \in [m]:
  fix(\Pi_i)
fix(\Pi_i):
  measure ∏i
  if it was "unhappy"
     resample the qubits of \Pi_i
     for all neighbours \Pi_i of \Pi_i
       fix(\Pi_i)
```

Schwarz et al.; Arad et al. (2013)

Our simplified analysis

Our key lemma

Probability of doing a specific length- ℓ resample sequence is $\leq p^{\ell}$ ($p = r/2^k$)

Our simplified analysis

Our key lemma

Probability of doing a specific length- ℓ resample sequence is $\leq p^{\ell}$ ($p=r/2^k$)

When does this algorithm terminate quickly?

- ► The number of length-3*m* resample sequences is $\ll (ed)^{3m}$ (easy)
- \Rightarrow The probability of seeing a length-3*m* resample seq. $\ll (p \cdot d \cdot e)^{3m}$

If $p \cdot d \cdot e \le 1$ then w.h.p. the alg. performs < 3m resamplings

Finding happiness: Quantum

"About your cat, Mr. Schrödinger – I have good news and bad news."

Issues with non-commutativity

Issues with non-commutativity

Issues with non-commutativity

Becoming "unhappy" after seeing others "happy"

x1
x2

x3
x4

Issues with non-commutativity


```
The quantum resampling algorithm
    init uniform random gubits
    for all i \in [m]:
      fix(\Pi_i)
    fix(\Pi_i):
       measure ∏i
      if it was "unhappy"
         resample the qubits of \Pi_i
         for all neighbours \Pi_i of \Pi_i
           fix(\Pi_i)
```

Our key lemma

Probability of doing a specific length- ℓ resample sequence is $\leq p^{\ell}$

Measuring joint happiness

Perfect ground space projections of subsystems

F: set of already fixed projectors. Define Π_F via $\ker(\Pi_F) = \bigcap_{j \in F} \ker(\Pi_j)$. (In the commuting case $\Pi_F = \prod_{j \in F} \Pi_j$.)

Measuring joint happiness

Perfect ground space projections of subsystems

F: set of already fixed projectors. Define Π_F via $\ker(\Pi_F) = \bigcap_{j \in F} \ker(\Pi_j)$. (In the commuting case $\Pi_F = \prod_{i \in F} \Pi_i$.)

Generalised measurement procedure \mathcal{M} – for our key lemma

If $\Pi_F|\psi
angle=0$ (i.e. F is "happy") and we measure it using $\mathcal{M}_{F,i}$ returning result

► "happy", then

$$\Pi_{F\cup\{i\}}\mathcal{M}_{F,i}(\ket{\psi})=0$$

▶ "unhappy", then

$$\Pi_i \mathcal{M}_{F,i}(\ket{\psi}) = \mathcal{M}_{F,i}(\ket{\psi})$$

(while preserving "happiness" of non-neighbour projectors.)

Weak measurement

Weak measurement of Π_i

To weakly measure $\{\Pi_i, \operatorname{Id} - \Pi_i\}$ use an ancilla and a Π_i -controlled rotation:

$$\Pi_i^{ heta} = \Pi_i \otimes R^{ heta} + (\operatorname{Id} - \Pi_i) \otimes \operatorname{Id}$$
, where $R^{ heta} = \begin{pmatrix} \sqrt{1- heta} & -\sqrt{ heta} \\ \sqrt{ heta} & \sqrt{1- heta} \end{pmatrix}$.

Apply Π_i^{θ} on $|\psi\rangle \otimes |0\rangle$ and measure the ancilla qubit (in the $|0\rangle, |1\rangle$ basis).

Weak measurement

Weak measurement of Π_i

To weakly measure $\{\Pi_i, \operatorname{Id} - \Pi_i\}$ use an ancilla and a Π_i -controlled rotation:

$$\Pi_i^{ heta} = \Pi_i \otimes R^{ heta} + (\operatorname{Id} - \Pi_i) \otimes \operatorname{Id}$$
, where $R^{ heta} = \begin{pmatrix} \sqrt{1- heta} & -\sqrt{ heta} \\ \sqrt{ heta} & \sqrt{1- heta} \end{pmatrix}$.

Apply Π_i^{θ} on $|\psi\rangle \otimes |0\rangle$ and measure the ancilla qubit (in the $|0\rangle, |1\rangle$ basis).

The outcomes of a weak measurement

Outcome 1 :
$$\left|\psi_{1}^{\theta}\right\rangle = \sqrt{\theta}\Pi_{i}|\psi\rangle$$
 (unnormalised)

Outcome 0 :
$$\left|\psi_0^{\theta}\right> = (\mathrm{Id} - \Pi_i) \left|\psi\right> + \sqrt{1-\theta} \Pi_i \left|\psi\right> \approx \left|\psi\right> - (\theta/2) \Pi_i \left|\psi\right>$$

Weak measurement + quantum Zeno effect

Weak measurement + quantum Zeno effect

Weak measurement + quantum Zeno effect

Implementation of \mathcal{M}

Generalised measurement $\mathcal{M}_{F,i}$

repeat T times do measure Π_i weakly if Π_i was detected then return i is "unhappy" measure Π_F (for quantum Zeno effect) end repeat and return $F \cup \{i\}$ is "happy"

Implementation of ${\cal M}$

Generalised measurement $\mathcal{M}_{F,i}$

```
repeat T times do
measure \Pi_i weakly if \Pi_i was detected then return i is "unhappy"
measure \Pi_F (for quantum Zeno effect)
end repeat and return F \cup \{i\} is "happy"
```

▶ If $|\psi\rangle$ was "happy" w.r.t. $F \cup \{i\}$, then $\mathcal M$ always returns $F \cup \{i\}$ is "happy"

Implementation of ${\cal M}$

Generalised measurement $\mathcal{M}_{F,i}$

```
repeat T times do measure \Pi_i weakly if \Pi_i was detected then return i is "unhappy" measure \Pi_F (for quantum Zeno effect) end repeat and return F \cup \{i\} is "happy"
```

- ▶ If $|\psi\rangle$ was "happy" w.r.t. $F \cup \{i\}$, then $\mathcal M$ always returns $F \cup \{i\}$ is "happy"
- Let γ be the energy gap (smallest non-zero. energy) of $H_{F \cup \{i\}} = \Pi_i + \sum_{j \in F} \Pi_j$.
 - ▶ If $|\psi\rangle$ was "unhappy" w.r.t. $F \cup \{i\}$: $T \approx \frac{1}{\theta y}$ suffices to find it "unhappy"

Implementation of ${\mathcal M}$

Generalised measurement $\mathcal{M}_{F,i}$

repeat T times **do**measure Π_i weakly **if** Π_i was detected **then return** i is "unhappy" measure Π_F (for quantum Zeno effect)

end repeat and return $F \cup \{i\}$ is "happy"

- ▶ If $|\psi\rangle$ was "happy" w.r.t. $F \cup \{i\}$, then $\mathcal M$ always returns $F \cup \{i\}$ is "happy"
- Let γ be the energy gap (smallest non-zero. energy) of $H_{F \cup \{i\}} = \Pi_i + \sum_{j \in F} \Pi_j$.
- ▶ If $|\psi\rangle$ was "unhappy" w.r.t. $F \cup \{i\}$: $T \approx \frac{1}{\theta y}$ suffices to find it "unhappy"

We "know in advance" the outcome of all Π_F measurement!

 \Rightarrow Π_F can be simulated by meas. $\sim \frac{|F|}{\gamma}$ times a randomly chosen $(\Pi_j)_{j\in F}$

Runtime

The uniform gap

For $H = \sum_{i \in [m]} \Pi_i$ we define the uniform gap of H as

$$\gamma(H) := \min_{F \subseteq [m]} \operatorname{gap} \left(\sum_{i \in F} \Pi_i \right).$$

Runtime

The uniform gap

For $H = \sum_{i \in [m]} \Pi_i$ we define the uniform gap of H as

$$\gamma(H) := \min_{F \subseteq [m]} \operatorname{gap}\left(\sum_{i \in F} \Pi_i\right).$$

The overall runtime of the quantum algorithm using ${\mathcal M}$

total number of measurements
$$= \tilde{O}\!\left(\!\frac{m^3 \cdot d}{\gamma^2} \cdot \log^2\!\left(\!\frac{1}{\delta}\!\right)\!\right)$$

- ► m: number of projectors
- ► d: maximum number of neighbours of a projector
- γ: uniform gap
- \blacktriangleright δ : maximum trace distance of the output from a density operator supported on the ground space

Discussion

Benefits of the algorithm

► The algorithm only uses local (weak and strong) measurements

Discussion

Benefits of the algorithm

- ► The algorithm only uses local (weak and strong) measurements
- ► Can prepare the ground state of a 50 qubit system using 51 qubits!

Discussion

Benefits of the algorithm

- ► The algorithm only uses local (weak and strong) measurements
- Can prepare the ground state of a 50 qubit system using 51 qubits!
- ► Due to quantum Zeno effect it probably does not need error correction

Open questions

- ► Is there a variant which can prepare low-energy states without gap promise?
- ► Physically motivated examples? (quantum chemistry, spin systems, ...)
- Getting speed ups for some interesting classical problem?
- Can this result be used for showing quantum supremacy?

Without a promise on the gap

What can we do without knowing the size of the gap?

For any input $(\Pi_i)_{i \in [m]}$ satisfying the Lovász (or Shearer) condition and $\epsilon \in \mathbb{R}_+$ we can do one of the following:

ightharpoonup Prepare a quantum state supported on energy eigenstates with energy below ϵ .

Or Conclude that the uniform gap is below ϵ .

Preparing low-energy quantum states

Let Π_S^{δ} denote the projection to the subspace of energy eigenstates with energy at least δ , with respect to $H_S = \sum_{i \in S} \Pi_i$.

Generalising the two main properties to low energy subspaces

Suppose $|\psi\rangle$ is such that $\Pi_S^{\delta}|\psi\rangle=0$. We need a quantum channel $\mathcal{M}_{S,i}$ with two possible (probabilistic) outcomes:

- lacktriangle "happy": $\Pi^{\delta+arepsilon}_{S\cup\{i\}}\mathcal{M}_{S,i}(\ket{\psi})=0$
- "unhappy": $\left(\Pi_{S\setminus\Gamma(i)}^{\delta+\varepsilon} \leq \Pi_S^{\delta}\otimes (\operatorname{Id}-\Pi_i)\right)\mathcal{M}_{S,i}(|\psi\rangle)=0.$

Main issue

 $\Pi^{\delta+\varepsilon}_{S\setminus\Gamma(i)}\leq\Pi^{\delta}_{S}$ does not always hold! (Only if $\delta=0$.)

Simulation results for the non-commuting case

- Various topologies tested up to 21 qubits, including cycles, grids, octahedron, dodecahedron
- ► Poor performance even for cycles? 2-SAT easy even classically!

Output of the LIQ $Ui|\rangle$ simulation, on C_{10}

```
0:0000.0/Classical upper bound on the expected number of resamplings : 45.0
0:0003.7/Run quantum test on a fixed random projector set
                   E: 2.6074 P: 0.0010
   M: 22.1 R: 4.0
                  E: 0.4994 P: 0.0204
                             P: 0.0364
                     0.1082 P: 0.0413
               0.8 E:
                      0.1177 P: 0.0516
                     0.0774 P: 0.0514
                             P: 0.0701
15: M: 10.7 R: 0.2 E:
                             P: 0.0740
                     0.0264 P: 0.0716
```