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Bipartite Entanglement Resource Theory

e States are bipartite density matrices p8

e States are manipulated using
Local Operations and Classical Communication (LOCC)
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operation {An, }ar,—1...
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Bipartite Secrecy Resource Theory (Classical)

e “States” are random variables X, Y., Z held by three parties.

e States are manipulated using
Local Operations and Public Communication (LOPC)
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LOPC transformation: PXYZ _y pXY(ZM--M,)




Entanglement and Secrecy: Similar Structures
T Tt casseal

Resource Entanglement Secrecy



Entanglement and Secrecy: Similar Structures
T Tt casseal

Resource Entanglement Secrecy
Free Operations LOCC LOPC



Entanglement and Secrecy: Similar Structures
T Tt casseal

Resource Entanglement Secrecy
Free Operations LOCC LOPC
Resource Unit Entangled bit (ebit): Secret bit (sbit):

B+) = (0048 + [11)48) @+ = §((0,01XY +[1,1XY) ® P7



Entanglement and Secrecy: Similar Structures
T Tt casseal

Resource Entanglement Secrecy
Free Operations LOCC LOPC
Resource Unit Entangled bit (ebit): Secret bit (sbit):

B+) = (0048 + [11)48) @+ = §((0,01XY +[1,1XY) ® P7

Free Operations + Resource = Teleportation One-Time Pad
Universal Operations



Entanglement and Secrecy: Similar Structures
T Tt casseal

Resource Entanglement Secrecy
Free Operations LOCC LOPC
Resource Unit Entangled bit (ebit): Secret bit (sbit):
[@F) = J5(100)4F + [11)47) &+ = 2([0,0]*Y 4+ [1,1]*Y) ® P?
Free Operations + Resource = Teleportation One-Time Pad
Universal Operations
Single Copy Resource Conversion Convertibility of Pure States Convertibility of “Pure States”
Governed by Majorization Governed by Majorization?

! Collins and Popescu — PRA 2002



Entanglement and Secrecy: Similar Structures
T Tt casseal

Resource Entanglement Secrecy
Free Operations LOCC LOPC
Resource Unit Entangled bit (ebit): Secret bit (sbit):

B+) = (0048 + [11)48) @+ = §((0,01XY +[1,1XY) ® P7

Free Operations + Resource = Teleportation One-Time Pad

Universal Operations

Single Copy Resource Conversion Convertibility of Pure States Convertibility of “Pure States”
Governed by Majorization Governed by Majorization?

Asymptotic Resource Conversion Entanglement Formation/ Secrecy Formation/
Entanglement Distillation Secrecy Distillation?

! Collins and Popescu — PRA 2002
2 Renner and Wolf — EUROCRYPT 2003



Entanglement and Secrecy: Similar Structures
T Tt casseal

Resource Entanglement Secrecy
Free Operations LOCC LOPC
Resource Unit Entangled bit (ebit): Secret bit (sbit):

B+) = (0048 + [11)48) @+ = §((0,01XY +[1,1XY) ® P7

Free Operations + Resource = Teleportation One-Time Pad

Universal Operations

Single Copy Resource Conversion Convertibility of Pure States Convertibility of “Pure States”
Governed by Majorization Governed by Majorization?

Asymptotic Resource Conversion Entanglement Formation/ Secrecy Formation/
Entanglement Distillation Secrecy Distillation?

Bound Resource Yes P73

! Collins and Popescu — PRA 2002 3 Gisin and Wolf — CRYPTO 2000

2 Renner and Wolf — EUROCRYPT 2003



Entanglement and Secrecy: Similar Structures
T Tt casseal

Resource Entanglement Secrecy
Free Operations LOCC LOPC
Resource Unit Entangled bit (ebit): Secret bit (sbit):

[®F) = —5(100)47 + [11)4F) ®T = 2([0,01XY +[1,1]XY) @ P

Free Operations + Resource = Teleportation One-Time Pad

Universal Operations

Single Copy Resource Conversion Convertibility of Pure States Convertibility of “Pure States”
Governed by Majorization Governed by Majorization?

Asymptotic Resource Conversion Entanglement Formation/ Secrecy Formation/
Entanglement Distillation Secrecy Distillation?

Bound Resource Yes P73

Asymptotic Reversible Resource - “Flagged” Pure States - Classical “Flagged Pure States”4
- 7977 - ?97?

! Collins and Popescu — PRA 2002 3 Gisin and Wolf — CRYPTO 2000

2 Renner and Wolf — EUROCRYPT 2003 4 C. and Hsieh — PRL 2016



Round Complexity in LOCC and LOPC

How does increased rounds of interactive classical /pubic communication
enhance the ability to process quantum /secret information?

- Previous and related work -

Bounded-round communication complexity

e Braverman et al. (2015): Quantum Disjointness Problem -

(QIP 2016) _
QCC.(DISJ,,1/3) > Q(%)

e Klauck et al. (2007): For any r, there is a problem S, such that

QCCr—l(Sr, E) > Q(nl/T)
QCC,(Sy,€) = O(logn)

-

r-round
quantum
communication



Some Previous Results in LOCC Round Separation

- Asymptotic Entanglement Distillation

—

e LOCC, > LOCC, | (Bennett, DiVincenzo, Smolin, Wootters - PRA 1996)
(Leditzky, Datta, Smith - QIP 2017)

_——

- State Discrimination (Peres and Wootters - PRL 1991)
(Owari and Hayashi - NJP 2008)

e LOCC, > LOCC;, B (Leung and Winter - 2011)

(Nathanson - PRA 2013)

(C. and Hsieh - JMP 2014)
(Croke and Barnett - QIP 2017)

e LOCC, > LOCC,_; (Xin and Duan - PRA 2008)
- Multipartite LOCC State Transformation

e LOCC, > LOCC, (C.-PRL 2011)



An Example that Fails to Separate the Rounds
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An Example that Fails to Separate the Rounds

4 N

If [)AP — 4B in r rounds of LOCC,
then the transformation can be achieved

using a one-round LOCC protocol.”

This round compression holds for arbitrary dimensions!

K > Lo and Popescu — PRA 2001 /




Round Separation in State Transformations

o [1)4B 255 648 requires only one round of LOCC.

AB LOCC AB

e Does p™*” — 0" require only one round of LOCC?

Theorem:

. . LOCC
For every r, there exists a state transformation pAB — |¢>AB

needing r rounds of LOCC to achieve.
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Construction of States

e Step 1: Define a tripartite probability distribution b(V.

This is the event

X =2
Y =1 b1 (2,1,1) =1/8
Z =1
N J
Y

Consists of
8 equiprobable events



Construction of States

e Step 1: Define a tripartite probability distribution b(V.

X Key Property:
2

e Given Z, Alice and Bob have
one bit of perfectly shared
randomness.

e If they can determine Z using
public communication (without
revealing the value of X or Y),
then they will have one bit of
secret correlations.




Construction of States

e Step 1: Define a tripartite probability distribution b(V.

X One-Way Protocol:

e Bob announces whether
Y belongs to {0,1} or {2, 3}.

e Eve learns nothing new with this
annoucement.

e Alice learns exactly the value
of Y.



Construction of States

e Step 2: Embed the distribution into a tripartite quantum state
and trace out E.

X
0151 bWYABE = 37 /b (a, y, 2)|a) Aly) B|2) 7
% 11- 01 - Pbm—\/—zwz %‘AB
2123 - -
31. .32 Z 8 :;\/b“) (2, y|2)[x)|y)

~ @) = 25(/00) + [11))



Construction of States

e Step 2: Embed the distribution into a tripartite quantum state
and trace out E.

Pbm

Bob
projects
10,1}
Alice
projects
{0,1} {2,3} {0, 3}

o) D)

LOCC
B ety




Construction of States

e Step 3: Permute and reiterate.

X X
0123 01234567
(1) _ ojo - -1 b2 — O0J0- - 114. .5
b 1]-01 1l-01-{--76
Y 2123 . . Y 2123 167 - -
3 32 z 3]- -32l.45. Z
b1 pO
X
01 2 3 4567
olo - - 14 . . 5
1]- 0 1 .- 76
b®— 223 - - 67 - - b )
3l._-32 - 45 - -
Y 418 1312 - - 9
5 914 - 815 - -
61015 - - 1411 - - - b(2)
71 - 12 11 - . 1310 Z|

— Bach level is obtained from the last by
doubling Eve’s alphabet and either Alice
or Bob’s.

— “Origami” distributions

X
0123456718 9101112131415
ojo - - 14 . . 516 - -1720 - - 21
1l- 01 . - . 76} 2530 - 2431
2123 - - 67 - -11819 - . 2223 - -
3]- - 32 - 45 .1.2827. . . 2926
48 - - 1312 - - 9124 - . 2928 - . 25
50 - 914 - 815 -1- 1617 - . 2322
61015 - - 6 11 - -12631 - - 3027 - -
71 - 12 11 . 13101 - 1918 - 2021 - Z
b®) b3



Construction of States

e Step 3: Permute and reiterate.

X X
0123 01234567
b _ 0J0- -1 p2 — OJ0- - 1M4..5
1]1-01 - 1l-01-{--76
Y 2123 - - Y223 -|67 :
3] - 32 7 3. -32l.45.
N¢Y NG
X
0123456 7
olo - - 14 .- . 5
1l- 01 - .- . 76
b3 212 3 - - 6 7 - - - b
332 - 4.5 -,
Y 418 1312 - - 9
5 914 - 815 - .
611015 - - 1411 - - [ b®
7l - 1211 - . 1310 Z

in r rounds by different sequences of local projections

1
Pp(r) — \/ﬁ ; Wz><¢z‘
7 .) = 3 /b0) (2, yl2) ) ly)
z,y
P — | D)

e What about fewer than » rounds?



Lower Bounding the Round Number

e Key observation:

1
Pb(r) = WZWJWA — ‘(I)_|—>

i |v.) — |‘I)+> for all z.

e Every [¢,) has Schmidt rank 2.
e Schmidt rank is an SLOCC monotone.

e Therefore in each round of measurement, |¢,) must either be
eliminated or its Schmidt rank remains the same.



Lower Bounding the Round Number

e In each round of measurement, |¢,) must either be eliminated or its
Schmidt rank remains the same.

B _ X e This rank constraint forces Alice and Bob
xample:
01234567 to perform the correct measurement sequences.
010 - ﬁ 4 - . 5
11- 0 © - - 76 e For example, suppose that Alice
b® = % 2 3 2 6 Z 5 ' wishes to eliminate |¢1).
Y A8 - . 1312 - . 9. Then she must eliminate her local
2 1-0 , 9 14 1-4 181 15 - subspace spanned by {[2),[3)}.
7] - 1211 - - - 1310 Z
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Lower Bounding the Round Number

e In each round of measurement, |¢,) must either be eliminated or its
Schmidt rank remains the same.

Examble: X e The rank constraint forces Alice and Bob
P O 1 2845 67 to perform the correct measurement sequences.
11
é£ . 1 ! e For example, suppose that Alice
b® = : wishes to eliminate [11).

Then she must eliminate her local
subspace spanned by {[2),[3)}.

>-<
No gk~ o

Z This would decrase the rank of
|1/)2>9 |¢3>7 |w9>a |¢11>7 |w13>: and |¢14>-

Alice cannot eliminate e So to prevent the decrease in ranks, she would
any states in the mixture < Impossible!! also have to eliminate her local subspace spanned by

if she were to measure. {10),11),14),15),16),17)}-




Lower Bounding the Round Number

e This scenario is avoided only if Bob measures and eliminates either the
{10),11),12),[3)} subspace or the {[4),[5),[6),|7)} subspace.

X X

012 3 45 6 7 01 2 3 45 6 7
H 14 —5 0jo0 - 1 4 -5
H—a— : 7 1l 01 - 7 6

b3 — 212—3— —7F—— 212 3 6 7 - -
1 S S S 3._-32 . 45 -
Y A8 T T3 S0 Y 3 PN W——

5 - 914 - 8 15 . S99t —815
611015 - - 1411 - - 611015 H11—
71 - 1211 - - - 1310 Z 1211 : 1316

e In either case, what remains is a state SLOCC equivalent to py ).



Lower Bounding the Round Number

e At the end of r — 1 rounds: %
0123
SLOCC
Ppr) — = Ppa) b= 1l 01
Y 2123 . .
31- - 32 Z

Impossible to convert to a
pure entangled state without
additional communication

v

o)

LOCC

e Thus, ppmy — |®T) is possible only under r rounds of LOCC.



The Analogous Classical Problem

e In the classical resource theory of secrecy, Alice and Bob

want to obtain secret key

ot = 3([0,01" +[1,1]*7) @ P~.

1
2
e How many rounds of LOPC does it take Alice and Bob to transform b(") — &+?

e In the entanglement case, the proof relies crucially on the Schmidt rank.

e What is the classical analog of Schmidt rank?




The Secrecy Rank

e Consider the Schmidt decomposition of a bipartite pure state |90)AB .

|(,0>AB _ Zi?“:/fl(lw) \/%Ww)AWw)B- Srk(|p)) is the minimum number of

product states whose span contains |p).

e When Alice and Bob measure in their Schmidt bases, they generate a

distribution:
There exists an auxiliary random variable W
XY _
P (37 / y) — pr&fﬁwéyw such that X and Y are independent given W':
w

X-W-=Y

Definition (Secrecy Rank):
For uncorrelated Eve,

XY\ .
Srk(P™7) = min _[W]| ~_

The range of W



The Secrecy Rank

e What about for correlated Eve?

e Recall the definition of Schmidt rank for bipartite mixed states®:

Srk[p?P] = min max Srk(|p;))
{pi:leid} lo:)

pAB =5, pilv;){e;l

e For tripartite distributions, we can think of P*Y¥Z as defining an
ensemble of bipartite distributions {PXY14=% PZ(2)}.

Definition (Secrecy Rank):

Srk(PXY?) = max Srk(PXY1%4=7?)

z

6 Terhal and Horodecki — PRA 2000



The Secrecy Rank

e What about for correlated Eve?

e Recall the definition of Schmidt rank for bipartite mixed states®:

Srk[p?P] = min max Srk(|p;))
{pi:leid} lo:)

pAB =5, pilv;){e;l

e For tripartite distributions, we can think of P*Y¥Z as defining an
ensemble of bipartite distributions {PXY14=% PZ(2)}.

Definition (Secrecy Rank):

S'r'k(PXYZ) = max S'r'k(PXY'Z:z) = . Ix%l? , max |W|Z:z|

6 Terhal and Horodecki — PRA 2000



The Secrecy Rank

Quantum Classical

Srk(ptP) < Srk(PXYZ)

Theorem:
The Secrecy Rank is an SLOPC monotone.

e For any sequence of messages in an LOPC protocol, Srk(P*Y#) is monotonically decreasing.

e The lower bound in rounds for py) —s |®) translates directly into the classical problem.

Theorem:

b(r) LOPC 1([0 O]XY + [1 1]XY) ®PZ

only with r rounds of LOPC.



Conclusions/Remarks

e For every r, the state transformations

LOCC
Poery — |©T)
b(r) “OCC -+

need r rounds of LOCC/LOPC to achieve.

Slight Strengthening;:

e For every r, there exists an € > 0 such that

LOCC _AB ¢
Pr(ry — O ~

+ Follows from compactness of
o) . finite-round LOCC/LOPC

—

b(M WOLC pXYZ L gt

need r rounds of LOCC/LOPC to achieve.



Conclusions/Remarks

e Since the proof is based on Schmidt/Secrecy ranks, we can generalize:
@) = VAJ00)AE + /T — N11)48 o = (A[0,01XY + (1 — \)[1,1]*Y) @ P?
e For every r and any 0 < A < 1/2, the state transformations

LOCC | 4+
P — |PY)
(r) LOPC &+
need r rounds of LOCC/LOPC to achieve.
° LOCCy, LOCCy,

)1\15%) min{k : ppy — ]@}\L)} # min{k : ppy — ‘Q)BL)}



Open Questions/Future Work

e The dimension of states scales poorly!

1 Can examples be found in bipartite

Pp(r) = \/W Z \%) <w2| systems with bounded dimension?
<

e For every r, there exists an € > 0 such that

LOCC AB f_i

o)
b(M WOLC pXYZ L gt

need r rounds of LOCC/LOPC to achieve.

Can lower bounds on € be computed?



Open Questions/Future Work

e What about asymptotic transformations?

®n LOCE O |pT\®m What is the r-round asymptotic distillation
Pp(r)
rate of py and b(r)?
(b(’r))@m LOPC; PXYZ é ((I)—I—)@)m
Can one bit of entanglement/key be
asymptotically distilled in fewer
than r rounds?

e Note:
Asymptotic entanglement reversibility

Ec(ppn) = Ep(ppw) <~ may require r-round protocols.
Entanglement Distillable . )
cost entanglement = The states with reversible entanglement
can have very complex structure.
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