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Brief introduction to 
Device-independent 

Cryptography



The concept of DI
• Alice and Bob share an uncharacterised device

• They interact with it according to some known 
protocol (e.g., DI quantum key distribution protocol)

• They either abort or accomplish their task 
(e.g., output a good key)



Bell inequality / game

Alice

Bob



Bell inequality / game

Winning condition:

No communication



Bell inequality / game

• Winning prob. of the device:

• Bell inequality:

• Quantum advantage (violation):

•      some secret randomness in the outputs  
with respect to an adversary holding a purification 
of 



Example: the CHSH game

• Best classical strategy: 75% winning

• Best quantum strategy: ~85% winning

• Quantum advantage

Input

Output

Input

Output

Alice:

Bob:

Win:



Example: the CHSH game
• Quantum advantage implies secret randomness:

[Pironio, Acìn, Brunner et al., 09]
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The Difficulty of Proving Security



The difficulty of proving security

???

???



The IID assumption
• Play the game many times independently and identically

• Estimate the winning probability in one device

• The total amount of entropy is roughly the  
number of games      entropy in one game

Simple!  ✔



The IID assumption

• IID is a strong assumption! (e.g., no memory at all)

• Cannot use de Finetti theorems (in contrast to 
standard QKD for example)



The general case
• One component to each party

• Sequential interaction with Alice and Bob’s components



 Previous DIQKD works

[Pironio, Acìn, Brunner et al., 09]
IID + asymptotic

General security
[Reichardt, Unger, and Vazirani, 13]

[Vazirani and Vidick, 14] 
[Miller and Shi, 14]

[Ekert, 91] 
[Mayers and Yao, 98]

[Barrett, Hardy, and Kent, 05]
Proof of concept

Optimal rates!  ✔



Overview



Overview

IID

New!

Sequential



Outline of the rest of talk
4. Security under the IID assumption

5. General security proof

•New tool: the Entropy Accumulation Theorem

•Application: new results for DI cryptography 

6. Summary and open questions



Security Proof under the 
IID Assumption



Proving security

• Main task: lower-bounding the smooth min-entropy 
 
 
where      is the raw data,      the quantum side-
information belonging to the adversary, and    a  
security parameter

• Tightly determines the maximal length of an 
extractable secret key 



Security — IID

•                          IID random variables

•                          IID quantum side-information

• For the von-Neumann entropy: 
 
 
 



Security — IID

•                          IID random variables

•                          IID quantum side-information

• For the smooth min-entropy: 
 
 
Quantum Asymptotic Equipartition Property  
[Tomamichel, Colbeck, and Renner, 09]



Security — IID

1. Play the game many times and calculate the 
average winning probability 

2. Use the single-round relation  
between the winning probability  
and the von-Neumann entropy

3. Plug into the quantum AEP: total smooth min-
entropy is                    in first order

0.76 0.78 0.8 0.82 0.84
0

0.2

0.4

0.6

0.8

1

!

H
(A

|X
Y
E
)



Security — IID (remarks)

• Need to understand only the physics of a single-
round 
 
 

• The von-Neumann entropy is the relevant single-
round quantity

Simple!  ✔

Tight!  ✔



Security — IID

1. Play the game many times and calculate the 
average winning probability 

2. Use the single-round relation  
between the winning probability  
and the von-Neumann entropy

3. Plug into the quantum AEP: total smooth min-
entropy is                    in first order
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General Security Proof



General security

• Still need to lower-bound

• Instead of IID behaviour of the device, consider 
more general sequential processes 

• “Extend” the quantum AEP to the sequential 
scenario The Entropy Accumulation Theorem



The EAT



Sequential process
• Model of a sequential process:



EAT channels

• Assumptions on the channels:

1.      finite dimensional with dimension     

2.      is a classical register that can be measured from         
without changing the state

3. For any initial state, the final state fulfils the Markov-chain 
condition: 



Empirical statistics

• Frequencies from the observed data:  
 

•                     is a probability distribution over



Min-tradeoff function

• Min-tradeoff function         — worst-case von-
Neumann entropy in a single-round 
 

• The infimum is over  
states               such that



Entropy accumulation theorem

• Event depending on the frequencies

•       the final state conditioned on

•           such that                                     
for all



Entropy accumulation theorem
•                                        for all

• EAT: 
 
 
where     depends on                        

• Similar statement for the smooth max-entropy 



Main ingredients in the proof

• Heavily relies on the sandwiched relative Rényi 
entropies introduced in [Wilde, Winter, and Yang, 14] 
and [Müller-Lennert, Dupuis, Szehr, et al., 13]

• A new chain rule for the sandwiched relative 
Rényi entropies was developed to prove the EAT



Main ingredients in the proof
• “Classical version of the min-tradeoff function”: 

Seq. proc. creates            
How much can we extract from      after  
we use     ?

                  

 
 

Too optimistic

Too pessimistic



• “Classical version of the min-tradeoff function”: 
Seq. proc. creates            
How much can we extract from      after  
we use     ?

                  

 
 

Main ingredients in the proof

Intermediate:

the min-tradeoff function  
is the “quantum version”

of this

Too optimistic

Too pessimistic



Finally, we are ready!
Applying the EAT to

DI Cryptography



DI entropy accumulation pro.

• Main building block in DI cryptographic protocols 
DI Entropy Accumulation Protocol

Arguments:
G – two-player non-local game

X ,Y – possible inputs for Alice Bob

D – untrusted device of two components that can play G repeatedly

n 2 N
+

– number of rounds

!
exp

– expected winning prob. for an honest (noisy) implementation

�
est

2 (0, 1) – width of the statistical confidence interval

1: For every round i 2 [n] do Steps 2-4:

2: Alice and Bob choose inputs Xi 2 X and Yi 2 Y respectively.

3: They use D with Xi, Yi and record the outputs Ai and Bi respectively.

4: They set Ci = w (Ai, Bi, Xi, Yi).

5: Alice and Bob abort if

P
j Cj < (!

exp

� �
est

) · n .



DI entropy accumulation pro.
• Channels — the behaviour of Alice and Bob + 

uncharacterised device in each round

•     — win or lose in game 

• Event      — the protocol not aborting 

•       — final state conditioned on not aborting

• We lower-bound   



Min-tradeoff function
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Entropy rate (CHSH)
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DIQKD

• Based on the Entropy Accumulation protocol

• Classical-post processing on top:

• Error correction

• Privacy amplification



DIQKD — The setting 

• Standard assumptions:

• Alice and Bob’s physical locations are secure (unwanted information cannot leak outside to Eve 
or between their devices)

• Trusted random number generator 

• Trusted classical post-processing units 

• Authenticated, but public, classical channel

• Quantum physics is correct (and complete)

• Communication is allowed between Alice and Bob, and from Eve to Alice and 
Bob, between the rounds of the game (can create “entanglement on the fly”)



DIQKD
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DIQKD
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General security (remarks)
• Need to understand only the physics of a single-

round 
 
 

• The von-Neumann entropy is the relevant single-
round quantity

• The optimal attack is the IID attack in first order

Simple!  ✔

Tight!  ✔



Summary



Summary
1. New information-theoretic tool: the EAT

• Describes how entropy accumulates in sequential quantum processes 

• The von-Neumann entropy is the relevant single-round quantity

2. New framework to prove security of DI protocols

• Modular, simple, and tight security proof

• Concrete examples: DIQKD and randomness expansion based on CHSH

• In essence, the best adversarial attack is the IID attack also in the DI 
scenario



What’s next?
1. Apply the EAT and our framework to other protocols and scenarios

• Example: two-party DI crypto [Ribeiro, Murta, and Wehner, 16]

• Also relevant for device dependent cryptography, instead of de Finetti thm.

2. DIQKD: 

• Apply with different Bell inequalities & classical post-processing 

• Experiment: detection efficiencies should be relatively high for a positive key 
rate with the current protocol

3. Is there a general technique to bound the conditional von-Neumann  
entropy                  given the Bell violation?



Rotem Arnon-Friedman, Frédéric Dupuis, Omar Fawzi, Renato Renner, & Thomas Vidick

Thank you! 

Entropy Accumulation in Device-independent Protocols
arXiv:  1607.01796 & 1607.01797
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