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Query Complexity

There is a known function f:{0,1}"-> {0,1}

Given oracle access to a string x in {0,1}", compute f(x)

Cost: number of queries to the bits of x
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Query Complexity

The complexity of f is the worst-case number of queries for
the best algorithm

> D(f) = deterministic algorithms

° Ry(f) = zero-error randomized algorithms (Las Vegas)
° R(f) = bounded-error randomized algorithms (Monte Carlo)
> Q(f) = bounded-error quantum algorithms

> Q(f) < R(f) < Ry(f) < D(f)



Previously, on QUANTUM
QUERY COMPLEXITY

Beals, Buhrman, Cleve, Mosca, de Wolf ("98):
o All these query measures are polynomially related for total
functions

Ambainis, Balodis, Belovs, Lee, Santha, Smotrovs (2015):
> Some surprising polynomial separations for total functions

Aaronson, B., Kothari (2015):

> Even more quibbling over polynomial factors

Real complexity theorists don’t care about polynomial factors



Can we get exponential
speedups?

Beals, Buhrman, Cleve, Mosca, de Wolf ("98):
> Not for total functions

Simon ('94), Shor (‘94):
o Exponential quantum speedups are possible if there is a promise
on the input

° Example promise: the input string is periodic




When are exponential
guantum speedups possible?

Again:
° for total functions, exponential speedups are not possible

° If there is a promise, exponential speedups are possible

But when? What kinds of functions? What kinds of promises?

Given a total function f, is there a promise such that there is an
exponential qguantum speedup when f is restricted to the promise?

Sculpting problem



Sculpting Question

Given a total function f, is there a promise such that there is an
exponential qguantum speedup when f is restricted to it?

In other words: there is probably no quantum speedup for 3-SAT. But is
there a set of instances of 3-SAT that are particularly quantum-friendly?

Want to say: “ There is an exponential guantum speedup for 3-SAT* ”
*If we restrict the instances to a sufficiently artificial set

We give a characterization of when such speedups are possible



Example: OR

Can we restrict OR to a promise such that on inputs from
that promise, there is an exponential quantum speedup?

Aaronson ‘04: No. Quadratic speedup on all promises




Example: parity

Can we restrict parity to a promise such that on inputs from
that promise, there is an exponential quantum speedup?

I I
Simon’s problem Promise: input here makes the

total parity equal to the value of
Simon’s problem



H Index

Used to measure research output

Maximum number k such that you have at least k
publications with at least k citations each

H Index variant: maximum number k such that you have at
least 2* publications with at least k citations each
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A OR

N
Publications Citations Most cited n
(inputs) WEIVE B (= e diiE = B | (certificate complexity)

| 00...0000 0 n h-index 1
00...0001 1 1
00...0010 1 1
00...0011 1 1
2"~ 1 00...0100 1 1
00...0101 1 1
00...0110 1 1
| 11...1111 1 1




PARITY.

Publications Citations Most cited n
(inputs) WEIVE B (= e diiE = B | (certificate complexity)
| 00...0000 0 n h-index n
00...0001 1 n
00...0010 1 n
00...0011 0 n
2" 00..0100 1 n
00...0101 0 n
00...0110 0 n
i 11...1111 ? n




Characterization Result

H(C;) is the H-index of the vector of certificate sizes for f

“Sculpting is possible iff H(C;) is large”

H [{__“rfjl."rﬁ
11*.:|g3 i)

%3 R(fle) = ( ). @Ulr) = otog! 1(Cy)

Ve R(flp) = O(Q(f|p)*H(Cy)?)



Other sculpting results

D vs. Ry: same H(C;) characterization (somewhat better
bounds)

R, vs. R: it is always possible to sculpt

Intuition: OR function
° |s there a promise we can place on OR to get an R, speedup vs. D?

° |s there a promise we can place on OR to get an R speedup vs. R,?



Why Certificates?

Actually, the sculpting construction uses H(bs;) instead of H(C;)

The two are quadratically related

Intuitively, these measure whether the function is difficult in
only one spot (like OR), or everywhere (like parity)




Proof sketch: sculpting
impossibility

Want to show R(f| ,)=0(Q(f]| »)2H(C;)?)

“If there are few large certificates, R and Q are quadratically
related”

Step 1: use the standard D < C? algorithm to kill small
certificates

we have few 1-inputs left

Step 2: show that R < Q? on any function with few 1-inputs



Side Result

Example: OR

Proof idea: generalize RC<QC?, and show C=RC when the
domain is small



Proof sketch: sculpting
existence

Given f, want P such that
R(f|p) 2 poly(H(Cy)), Q(f|;) < polylog H(C)

“If there are many hard inputs, there is a promise P with
exponential quantum speedup for f|,”

Step 1: replace H(C;) with H(bs)
Step 2: Sauer’s lemma

Step 3: reduce to communication



Step 2: Sauer’s lemma

For any SE{0,1}", there is a set of bits of size ~ log |S|/log n
with all possible actions

001000
101111
110001
101110
101010

|



Step 2: Sauer’s lemma

Hard inputs look like:

X ‘ s(x)

The x part can be any string
Since there are many hard inputs, the x part is large

We define a promise problem on the x part that has a
guantum speedup

What if the s(x) part lets the classical algorithm cheat?

Is it possible for s(x) to contain the answers to all possible
problems that give a quantum speedup?



Step 3: reducing to
communication

Hard inputs look like:

X ‘ s(x)

Take a communication task that can be solved quantumly but not
randomly (Klartag and Regev 2011)

Give x to Bob
Give a different string y to Alice so that (x,y) satisfies the promise

Consider strategies in which Alice sends Bob randomized queries
to x or s(x) (log n bits each)

This strategy must fail for some y; this y defines the desired
function



Sculpting in the Turing
machine model

In the Turing machine model, we say a language is
sculptable if it can be restricted to a promise problem inside
promiseBQP but outside promiseBPP

To be sculptable, a language must be outside BPP




Paddable languages

A language is paddable if it’s possible to add irrelevant junk
to its strings

Formally: L is paddable if there exists poly-time invertible
f(x,y) such that

xinL iff f(x,y)inlL
Example: 3-SAT

If promiseBQP is hard on average for P/poly, every paddable
language outside BPP is sculptable

Idea: use the promise to ecode the hard problem in
promiseBQP inside the padding



Sculpting all languages?

A language is called BPP-immune if no infinite subset of it is
in BPP

A language is called BPP-bi-immune if it is BPP-immune and
its complement is also BPP-immune

Theorem: if there is a BPP-bi-immune language in BQP, then
all languages outside BPP can be sculpted

Idea: If H is BPP-bi-immune and we want to sculpt L,
consider the intersection of L with H and with the
complement of H



Conclusions

A full characterization of sculpting: which problems can be restricted to a
promise that gives rise to an exponential quantum speedup

“Quantum computers give an exponential speedup for some 3-SAT instances”
v Complexity Theorist Approved

Most Boolean functions are sculptable

“Quantum speedups are not about the function, they are about the promise”

Next question: which promises give rise to exponential speedups?






