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What are trace inequalities and why we should care

1. Main difference between classical and quantum world are
complementarity and entanglement

I Quantum mechanical observables may not be simultaneously
measurable (complementarity)

I Mathematically this means that operators do not need to
commute

I A and B commute if [A,B] := AB − BA = 0

To understand QM we need to comprehend the behavior of
functions involving matrices that do not commute

⇒ Trace inequalities allow us to do that

2. Trace inequalities are powerful (mathematical) tools in proofs
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Golden-Thompson (GT) inequality (1965)

Golden-Thompson: Let H1 and H2 be Hermitian. Then

tr eH1+H2 ≤ tr eH1eH2

I Not so easy to prove

I If [H1,H2] = 0 then equality holds (trivial)
I Incredibly useful (wherever matrix exponentials occur)

I Statistical physics (bound partition function) [Golden-65 &
Thompson-65]

I Random matrix theory (tail bounds via Laplace method)
[Ahlswede-Winter-02]

I Information theory (entropy inequalities) [Lieb-Ruskai-73]
I Control theory, dynamical systems, · · ·

I Does not extend to n matrices (at least not in an obvious way)
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GT inequality for more than two matrices

tr eH1+H2 ≤ tr eH1eH2

Extensions to three matrices are not immediate
tr eH1+H2+H3

��≤tr eH1eH2eH3

tr eH1+H2+H3
��≤tr eH1e

H2
2 eH3e

H2
2

Lieb’s triple matrix inequality (1973)

tr eH1+H2+H3 ≤
∫ ∞
0
dλ tr eH1

(
e−H2 + λ

)−1
eH3
(
e−H2 + λ

)−1
Equivalent to many other interesting statements

I Lieb’s concavity theorem: A 7→ tr exp(H + logA) is concave

I Strong subadditivity of quantum entropy (SSA):
H(AB) + H(BC )− H(ABC )− H(B) ≥ 0

Open problem: ∃ extensions of GT for more than 3 matrices?
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Outline for the rest of the talk

1. Understanding GT better (intuitive proof based on pinching)

2. Extending GT to n matrices

3. Tightening the result (using interpolation theory)

4. Application: entropy inequalities via extended GT



The spectral pinching method

Question: How do we force matrices to commute, changing them
as little as possible?

Any positive definite matrix A can be written (spectral
decomposition) as

A =
∑

λ∈spec(A)

λPλ

The pinching map with respect to A is

PA : X 7→
∑

λ∈spec(A)

Pλ X Pλ

Properties of pinching maps:

1. [PA(X ),A] = 0 for all X ≥ 0

2. trPA(X )A = trAX for all X ≥ 0

3. PA(X ) ≥ 1
|spec(A)|X for all X ≥ 0

trace is cyclic, i.e.,

trAB = trBA

Operator inequality

A ≥ B ⇐⇒ A− B ≥ 0
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An intuitive proof of the GT inequality

Golden-Thompson: Let H1 and H2 be Hermitian. Then

tr eH1+H2 ≤ tr eH1eH2

Any Hermitian matrix H can be written as logA for some positive
definite matrix A

Let Hk := logAk ⇐⇒ Ak = eHk for k ∈ {1, 2}

Let A1 and A2 be positive definite matrices. Then

tr exp(logA1 + logA2) ≤ trA1A2
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An intuitive proof of the GT inequality (con’t)

To show: tr exp(logA1 + logA2) ≤ trA1A2

log tr exp(logA1 + logA2)

1

m
log tr exp(logA⊗m1 + logA⊗m2 )

1

m
log tr exp

(
logA⊗m1 + logPA⊗m

1
(A⊗m2 )

)
+

log poly(m)

m

1

m
log trA⊗m1 PA⊗m

1
(A⊗m2 ) +

log poly(m)

m

1

m
log trA⊗m1 A⊗m2 +

log poly(m)

m

log trA1A2 +
log poly(m)

m

log trA1A2
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• trace is multiplicative under tensor products, i.e.,

trB⊗m = (trB)m
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• Pinching property 3: PA(X ) ≥ 1
|spec(A)|X

• |spec(A⊗m)| =
(
m+d−1
d−1

)
= poly(m)

• log(·) is operator monotone, i.e. X ≥ Y ⇒ logX ≥ logY

• tr exp(·) is operator monotone

If spec(A) = {λ1, λ2} then spec(A⊗2) = {λ21, λ1λ2, λ2λ1, λ22}
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An intuitive proof of the GT inequality (con’t)
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Why should this be intuitive?



Extension of GT to n matrices
Same proof technique can be applied (pinch iteratively)

Fact: For any A > 0 ∃ a probability measure µ on R such that

PA(X ) =

∫ ∞
−∞

µ(dt)AitXA−it

I Note that Ait is a unitary that commutes with A

I For three matrices we find

tr eH1+H2+H3 ≤ sup
t∈R

tr eH1e
1+it
2

H2eH3e
1−it
2

H2

I Same is true for n matrices (each additional matrix gives an
additional pair of unitaries)
Example: n = 4

tr eH1+H2+H3+H4 ≤ sup
t1,t2∈R

tr eH1e
1+it1

2
H2e

1+it2
2

H3eH4e
1−it2

2
H3e

1−it1
2

H2

Can we replace the supremum
by something independent of Hk?
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Extension of GT to n matrices (con’t)

n matrix extension of GT: Let p ≥ 1, n ∈ N and consider a
collection {Hk}nk=1 of Hermitian matrices. Then

log

∥∥∥∥∥exp

(
n∑

k=1

Hk

)∥∥∥∥∥
p

≤
∫ ∞
−∞

dt β0(t) log

∥∥∥∥∥
n∏

k=1

exp
(
(1 + it)Hk

)∥∥∥∥∥
p

where

β0(t) :=
π

2

(
cosh(πt) + 1

)−1

−3 −2 −1 0 1 2 3

0.8

0.6

0.4

0.2

0

t

β0(t)

I Let n = 3 and p = 2

tr eH1+H2+H3 ≤
∫ ∞
−∞

dt β0(t) tr eH1e
1+it
2

H2eH3e
1−it
2

H2

=

∫ ∞
0
dλ tr eH1

(
e−H2 + λ

)−1
eH3
(
e−H2 + λ

)−1
I Reproduces Lieb’s triple matrix inequality
I Proof uses complex interpolation theory (Stein-Hirschman —

see [Junge-Renner-S-Wilde-Winter-15])
I Complex interpolation theory has been used in QIT recently,

e.g., [Beigi-13], [Dupuis-14], [Wilde-15]
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Applications
Approximate quantum Markov chains

Strengthened strong subadditivity of entropy



Approximate quantum Markov chains

A B C

Definition: A density matrix ρABC is a quantum Markov chain
(QMC) if there exists a recovery map RB→BC such that

ρABC = (IA ⊗RB→BC )(ρAB)

Theorem [Petz-88]: ρABC is a QMC iff I (A : C |B) = 0 with

RB→BC : XB 7→ ρ
1
2
BC (ρ

− 1
2

B XBρ
− 1

2
B ⊗ idC )ρ

1
2
BC

Question: What about states such that I (A : C |B) ≤ ε ?

Theorem [Fawzi-Renner-14]: For any ρABC there exists RB→BC

such that

I (A : C |B)ρ ≥ −2 log F
(
ρABC ,RB→BC (ρAB)

)
≥ 0
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Why the classical case is easy

Theorem [Fawzi-Renner-14]: For any ρABC there exists RB→BC

such that

I (A : C |B)ρ ≥ −2 log F
(
ρABC ,RB→BC (ρAB)

)
≥ 0

Suppose A, B, and C are classical (i.e., ρAB , ρBC , and ρB are
diagonal)

I (A : C |B)ρ = D
(
ρABC‖ exp(log ρAB + log ρBC − log ρB)

)
=

��ZZ=

D
(
ρABC‖ρ

1
2
BC (ρ

− 1
2
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Details about Fawzi-Renner-14

Theorem [Fawzi-Renner-14]: For any ρABC there exists RB→BC

such that

I (A : C |B)ρ ≥ −2 log F
(
ρABC ,RB→BC (ρAB)

)
≥ 0

Measured relative entropy: DM(ρ‖σ) := supMD
(
M(ρ)‖M(σ)

)
1. DM(ρ‖σ) ≥ −2 log F (ρ, σ)

2. DM(ρ‖σ) = D(ρ‖σ) iff [ρ, σ] = 0

There are several generalizations and improvements of the
Fawzi-Renner bound (see QIP 2016)

Open question: ∃ a bound that is tight in the classical case with
an explicit and universal recovery map?



Application: Strenghtened strong subadditivity
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Follows by definition

D(ρ‖σ) := trρ log ρ− trρ log σ
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Strenghtened strong subadditivity (con’t)

We just saw that

Theorem: I (A : C |B)ρ ≥ DM
(
ρABC‖RB→BC (ρAB)

)
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I Tight for commutative case

I Explicit recovery map that is universal (only depends on ρBC )

I Proof based (only) on 4 matrix extension of GT

I Can be generalized to monotonicity of relative entropy

I Improves Fawzi-Renner and its follow up papers
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Conclusions

I If matrices do not commute things get complicated

I Trace inequalities are powerful tools expressing relations
between matrices that do not commute

I Spectral pinching method is an intuitive approach to prove
matrix (trace) inequalities

I Applications:
I Strengthening of strong subadditivity (FR bound)
I Hopefully many more (random matrix theory? other entropy

inequalities?, ...)
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More trace inequalities
Let A and B be positive definite matrices and q ∈ R+

Aq := exp(q logA) is well-defined

Araki-Lieb-Thirring: Let r ∈ [0, 1]

tr(B r/2ArB r/2)
q
r ≤ tr(B1/2AB1/2)q

I If r ≥ 1 the inequality holds in the opposite direction

I Implies the GT inequality via Lie-Trotter formula

lim
r↘0

(
n∏

k=1

C r
k

) 1
r

= exp

(
n∑

k=1

logCk

)

For q = 1 this gives tr exp(logA + logB) ≤ trAB

Exercise: Prove ALT via the spectral pinching method

I We can prove extensions to n matrices via pinching or/and
interpolation theory
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Summary of results

n matrix extension of ALT: Let p ≥ 1, r ∈ (0, 1], n ∈ N, and
consider a collection {Ak}nk=1 of positive semi-definite matrices.
Then
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I βr (t) = sin(πr)
2r(cosh(πt)+cos(πr)) is a probability distribution on R
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I Proof uses Stein-Hirschman interpolation theorem

I Using Lie-Trotter (i.e. r → 0) we get as a corollary

n matrix extension of GT: Let p ≥ 1, n ∈ N and consider a
collection {Hk}nk=1 of Hermitian matrices. Then
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Stein-Hirschman operator interpolation theorem
Strengthening of the Hadamard three lines theorem
see [Junge-Renner-S-Wilde-Winter-15]

I S := {z ∈ C : 0 < Re(z) < 1}
I L (H) is the space of bounded linear operators acting on H
I Let G : S → L(H) be

I uniformly bounded on S
I holomorphic on S
I continuous on the boundary ∂S

I Let θ ∈ (0, 1) and 1
pθ

= 1−θ
p0

+ θ
p1

where p0, p1 ∈ [1,∞]

log ‖G (θ)‖pθ ≤∫
R
dt
(
β1−θ(t) log ‖G (it)‖1−θp0

+ βθ(t) log ‖G (1 + it)‖θp1
)

with
βθ(t) :=

sin(πθ)

2θ [cosh(πt) + cos(πθ)]



Proof of n matrix extension of ALT

I Choose G (z) =
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Now we apply Stein-Hirschman
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