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What are trace inequalities and why we should care
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1. Main difference between classical and quantum world are
complementarity and entanglement
» Quantum mechanical observables may not be simultaneously
measurable (complementarity)
» Mathematically this means that operators do not need to

commute
» Aand B commute if [A,B] := AB—BA=0
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What are trace inequalities and why we should care

i

1. Main difference between classical and quantum world are
complementarity and entanglement
» Quantum mechanical observables may not be simultaneously
measurable (complementarity)

» Mathematically this means that operators do not need to
commute

» Aand B commute if [A,B] := AB—BA=0

To understand QM we need to comprehend the behavior of
functions involving matrices that do not commute

= Trace inequalities allow us to do that

2. Trace inequalities are powerful (mathematical) tools in proofs
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Golden-Thompson (GT) inequality (1965)

Golden-Thompson: Let H; and H, be Hermitian. Then

tretithe < tr efhett

» Not so easy to prove
If [H1, H2] = 0 then equality holds (trivial)
Incredibly useful (wherever matrix exponentials occur)

» Statistical physics (bound partition function) [Golden-65 &
Thompson-65]

» Random matrix theory (tail bounds via Laplace method)
[Ahlswede-Winter-02]

» Information theory (entropy inequalities) [Lieb-Ruskai-73]

» Control theory, dynamical systems, - - -

v

v

v

Does not extend to n matrices (at least not in an obvious way)



GT inequality for more than two matrices

trefitH < trefieh:

Extensions to three matrices are not immediate
tr eH1+H2+H3XtI“ eHigh2pHs
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GT inequality for more than two matrices

trefitH < trefieh:

Extensions to three matrices are not immediate

tr eH1+H2+H3XtI‘ eHigh2pHs
Hy Hy
treMtHetts Zir ebe2 efhe2

Lieb's triple matrix inequality (1973)

[o.9]
trefitHatts < / dX treft (e + A)_leH3 (72 + )\)_1
0

Equivalent to many other interesting statements
» Lieb's concavity theorem: A — trexp(H + log A) is concave

» Strong subadditivity of quantum entropy (SSA):
H(AB) + H(BC) — H(ABC) — H(B) > 0



GT inequality for more than two matrices

trefithe < trehigh

Extensions to three matrices are not immediate

trefitHatHs 2 oMo ot
H H
treMHetHs iy Mo oMo 2

Lieb's triple matrix inequality (1973)

oo
_ = _ -1
trefitHths < / d\ tref (e H2 )\) 1eHs (e H2 4 )\)

0
Equivalent to many other interesting statements

» Lieb’s concavity theorem: A+ trexp(H + log A) is concave

» Strong subadditivity of quantum entropy (SSA):
H(AB) + H(BC) — H(ABC) — H(B) > 0



Outline for the rest of the talk

1. Understanding GT better (intuitive proof based on pinching)

N

. Extending GT to n matrices

w

. Tightening the result (using interpolation theory)

N

. Application: entropy inequalities via extended GT
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The spectral pinching method

Any positive definite matrix A can be written (spectral

decomposition) as
A= > AP
A€spec(A)

The pinching map with respect to A is

Pa: X > PAXPy
A€spec(A)



The spectral pinching method

Any positive definite matrix A can be written (spectral

decomposition) as
A= > AP
A€spec(A)

The pinching map with respect to A is
Pa: X Z P\ X P,

A€spec(A)

Properties of pinching maps: trace is cyclic, i.e.,
1. [Pa(X),A] =0 for all X >0 tr AB = tr BA
2. tr Pa(X)A = tr AX for all X >0
3. Pa(X) > e (A)|X forall X >0



The spectral pinching method

Any positive definite matrix A can be written (spectral

decomposition) as
A= > AP
A€spec(A)

The pinching map with respect to A is
Pa: X Z P\ X P,

A€spec(A)
Properties of pinching maps: trace is cyclic, i.e.,
1. [Pa(X),A] =0 for all X >0 tr AB = tr BA
2. trPa(X)A=trAX forall X >0 . .
3. Pa(X) = 15e (A)IX for all X >0 Operator inequality

A>B <— A—-B>0



An intuitive proof of the GT inequality
Golden-Thompson: Let H; and H> be Hermitian. Then

tr efitHe < tr efhett

Any Hermitian matrix H can be written as log A for some positive
definite matrix A

Let Hy :=log Ay <= A, = el for k € {1,2}



An intuitive proof of the GT inequality
Golden-Thompson: Let H; and H> be Hermitian. Then

tr efitHe < tr efhett

Any Hermitian matrix H can be written as log A for some positive
definite matrix A

Let Hy :=log Ay <= A, = el for k € {1,2}

Let A; and A, be positive definite matrices. Then

trexp(log A1 + log Az) < trA; As



An intuitive proof of the GT inequality (con't)




An intuitive proof of the GT inequality (con't)

To show: trexp(log A; + log Az) < trA1As

log tr exp(log A1 + log Az)

1
= log tr exp(log AY™ + log AS™)

e trace is multiplicative under tensor products, i.e.,
tr B®™ = (tr B)™



An intuitive proof of the GT inequality (con't)

To show: trexp(log A; + log A2) < trA;Ax

log tr exp(log A1 + log Az)
1
=— log tr exp(log AY™ + log AS™)

1 I 1
<= logtrexp (log AP + log PAi@m(Agi’m)) + log poly(m)
m m
e Pinching property 3: P4(X) > mX
o [spec(A®™)| = (M3 t) = poly(m)
e log(-) is operator monotone, i.e. X > Y = logX > logY
e trexp(-) is operator monotone

If spec(A) = {A1, A2} then spec(A®2) = {3 A1)\, \aA1, A3}



An intuitive proof of the GT inequality (con't)

To show: trexp(log A; + log Az) < trA; Az

log tr exp(log A1 + log Az)
1
=— log tr exp(log AY™ + log AS™)

1 log pol
< —logtrexp (log AT + log P yom(A5"™)) + ogm,)ny(m)
(agm) . o8 poly(m)

1
_ ®
=—logtr Aj mPAf@'”

e Pinching property 1: [Pa(X), Al =0
e logA+logB =logAB if [A,B] =0



An intuitive proof of the GT inequality (con't)

To show: trexp(log A; + log Az) < trA; Ay

log tr exp(log A1 + log Az)
1
= — log trexp(log AT + log AS™)
m

1 log poly(m)
< —logt log AY™ + | m(AS™ —
< —logtrexp (log AT + log Pyem(A3™)) + ——

1 log poly(m
3 e a4 PR

1 I 1
== logtr APMAS™ + 8 POyAM) y(m)

m m

e Pinching property 2: tr Pa(X)A = tr AX



An intuitive proof of the GT inequality (con't)

To show: trexp(log A; + log Az) < trA; Ay

log tr exp(log A1 + log Az)
1
= — log trexp(log AT + log AS™)
m

1 log pol
< — log tr exp (log AT + log PA?"’(A?'")) " ng(,)nY(m)
log poly(m
(A?m) + LY()
m
log poly(m)
m

1
= E IOg tr A?mPAi@m
1
= ; IOg tr A(]?mA?m +
| 1
g tr AyA, 4 (08P (M)
m

e trace is multiplicative under tensor products



An intuitive proof of the GT inequality (con't)

To show: trexp(log A; + log Az) < trA; Ay

log tr exp(log A1 + log Az)
1
= — log trexp(log AT + log AS™)
m

1 log pol
< — log tr exp (log AT + log PA?"’(A?'")) " Og1i>(,>ny(m)
log poly(m
(Ag@m) + LY()
m
log poly(m)
m

1

= E IOg tr A?mPAi@m
1

= — log tr AP AS™ +

I 1
= logtr AjAs + ogpcr)ny(m)

=logtr Aj A log poly(m) _

m

e |im
m—o0



An intuitive proof of the GT inequality (con't)

To show: trexp(log A; + log Az) < trA; Ay

log tr exp(log A1 + log Az)
1
= — log trexp(log AT + log AS™)
m

1 log pol
< — log tr exp (log AT + log PA?"’(A?'")) " Og1i>(,>ny(m)
log poly(m
(Ag@m) + LY()
m
log poly(m)
m

1

= E IOg tr A?mPAi@m
1

= — log tr AP AS™ +

I 1
= logtr AjAs + ogpcr)ny(m)

= logtr A1 As
Why should this be intuitive?



Extension of GT to n matrices
Same proof technique can be applied (pinch iteratively)

Fact: For any A > 0 3 a probability measure iz on R such that

Pa(X) = / - p(dt) Al XA

—00

» Note that Al is a unitary that commutes with A
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—00

» Note that Al is a unitary that commutes with A
» For three matrices we find
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teR
» Same is true for n matrices (each additional matrix gives an
additional pair of unitaries)



Extension of GT to n matrices
Same proof technique can be applied (pinch iteratively)

Fact: For any A > 0 3 a probability measure iz on R such that

Pa(X) = / - p(dt) Al XA

—00

» Note that Al is a unitary that commutes with A
» For three matrices we find

1+it 1—it
trefitHtHs SsuptreHle 2 Meehsg=3 1t
teR
» Same is true for n matrices (each additional matrix gives an
additional pair of unitaries)
Example: n=14
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t1,tER



Extension of GT to n matrices
Same proof technique can be applied (pinch iteratively)

Fact: For any A > 0 3 a probability measure iz on R such that

Pa(X) = / p(dt) Al XA

» Note that Al is a unitary that commutes with A
» For three matrices we find

1+it 1—it
trefitHtHs §suptreH1e 2 Meehsg=3 1t
teR
» Same is true for n matrices (each additional matrix gives an

additional pair of unitaries) 5, we replace the supremum
Example: n=4 by something independent of H?

. . 1 »
treMHetHstHe < sup tr eMe o Hz 22 HagHag 22 H3e1 2t Ha
t1,tER



Extension of GT to n matrices (con't)

n matrix extension of GT: Let p > 1, n € N and consider a
collection {Hx}7_, of Hermitian matrices. Then

oo ()

k=1

[T exe (@ +it)He)

k=1

log

< /oo dt Bo(t) log

—00
p

p

where
Bol(t) = %(cosh(ﬂt) +1)”

0.8

0.6




Extension of GT to n matrices (con't)

n matrix extension of GT: Let p > 1, n € N and consider a
collection {Hx}7_, of Hermitian matrices. Then

(5

» letn=3and p=2

o
1+it 1—it
tr eMiHHatHs </ dtﬁo(t)treHle 3 thotse = Ha

—00

— / d) treM (e*H2 + A)fleH3 (e*H2 + )\)71
0

[T exe (@ +it)Hy)

k=1

< /oo dt Bo(t) log

log

p p

» Reproduces Lieb's triple matrix inequality

» Proof uses complex interpolation theory (Stein-Hirschman —
see [Junge-Renner-S-Wilde-Winter-15])

» Complex interpolation theory has been used in QIT recently,
e.g., [Beigi-13], [Dupuis-14], [Wilde-15]



Applications

Approximate quantum Markov chains

Strengthened strong subadditivity of entropy



Approximate quantum Markov chains

Definition: A density matrix pagc is a quantum Markov chain
(QMCQ) if there exists a recovery map Rp_,gc such that

paBc = (Za ® Re—sc)(paB)



Approximate quantum Markov chains

Definition: A density matrix pagc is a quantum Markov chain
(QMC) if there exists a recovery map Rp_,gc such that

pasc = (Za ® Rp—6c)(pas)
Theorem [Petz-88]: papc is a QMC iff /(A : C|B) = 0 with
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Approximate quantum Markov chains

Definition: A density matrix pagc is a quantum Markov chain
(QMCQ) if there exists a recovery map Rp_,gc such that

pasc = (Za ® Rp—6c)(pas)
Theorem [Petz-88]: papc is a QMC iff /(A : C|B) = 0 with

11 11
Rp—gc : Xg — péc(pB2XBsz ® 'dC)péC

Question: What about states such that ISA : C B! <e?

Theorem [Fawzi-Renner-14]: For any pagc there exists Rg_.5c
such that

I(A: C|B), > —2log F(pasc, Re—Bc(pag)) =0



Why the classical case is easy

Theorem [Fawzi-Renner-14]: For any pagc there exists Rg_pc
such that

I(A: C|B), > —2log F(pasc, Re—sc(pag)) >0

Suppose A, B, and C are classical (i.e., pag, pc, and pg are
diagonal)

I(A: C|B), = D(pasc|lexp(log pas + log pac — log pg))

1 _1 _1 1
= D(pascllppc(pg?raspg® @idc)pgc)
= D(pABCHRBaBC(PAB))

If [X, Y] := XY — YX = 0, then log XY = log X + log Y



Why the classical case is easy

Theorem [Fawzi-Renner-14]: For any pagc there exists Rg_.gc
such that

I(A: C|B), > —2log F(papc, Re—Bc(pag)) >0

Suppose A, B, and C are classical (i.e., pag, psc, and pg are
diagonal)

I(A: C|B), = D(pascll exp(log pas + log psc — log ps))

11 Y
= D(pascllpic(pg?raspg? ®idc)pkc)
= D(pacllRe—sc(pas))

If A, B, and C are quantum, the density matrices pag, psc, and
pp are not diagonal and do not commute



Why the classical case is easy

Theorem [Fawzi-Renner-14]: For any pagc there exists Rg_.gc
such that

I(A: C|B), > —2log F(papc, Re—Bc(pag)) >0

Suppose A, B, and C are classical (i.e., pag, psc, and pg are
diagonal)

I(A: C|B), = D(pascll exp(log pas + log psc — log ps))

11 Y
= D(pascllpic(pg?raspg? ®idc)pkc)
= D(pacllRe—sc(pas))

If A, B, and C are quantum, the density matrices pag, psc, and
pp are not diagonal and do not commute

D(pllo) > —2log F(p, o)



Details about Fawzi-Renner-14

Theorem [Fawzi-Renner-14]: For any pagc there exists Rg_.gc
such that

I(A: C|B), > —2log F(pasc, Re—pc(pag)) >0

Measured relative entropy: Du(p||o) := supy D(M(p)[|M(c))

L. Du(pllo) = —2log F(p,0)
2. Du(plle) = D(pl|o) iff [p,0] =0

There are several generalizations and improvements of the
Fawzi-Renner bound (see QIP 2016)



Application: Strenghtened strong subadditivity
Variational formula for relative entropy [Petz-88]:
D(pl|lo) = sup trplogw + 1 — trexp(log o + logw)
w>0

Variational formula for measured relative entropy
[Berta-Fawzi- Tomamichel-15]:

Dyi(pl|lo) = suptrplogw + 1 — trow
w>0



Application: Strenghtened strong subadditivity
Variational formula for relative entropy [Petz-88]:
D(p||lo) = sup trplogw + 1 — trexp(log o + log w)
w>0

Variational formula for measured relative entropy
[Berta-Fawzi- Tomamichel-15]:

Dyi(p|lo) = suptrplogw + 1 — trow
w>0

I(A: C|B),
= D(pasc|| exp(log pas + log psc — log pg))

Follows by definition
D(pl|lo) :=trplogp — trplogo



Application: Strenghtened strong subadditivity
Variational formula for relative entropy [Petz-88]:
D(p||lo) = sup trplogw + 1 — trexp(log o + log w)
w>0

Variational formula for measured relative entropy
[Berta-Fawzi- Tomamichel-15]:

Dyi(p|lo) = suptrplogw + 1 — trow
w>0

I(A: C|B),
= D(pascl|exp(log pas + log pac — log pg))

= sup trpapc logw + 1 — trexp(log pag + log psc — log pg + logw)
w>0

Variational formula for relative entropy



Application: Strenghtened strong subadditivity
Variational formula for relative entropy [Petz-88]:
D(p||lo) = sup trplogw + 1 — trexp(log o + log w)
w>0

Variational formula for measured relative entropy

[Berta-Fawzi- Tomamichel-15]:
Dyi(p|lo) = suptrplogw + 1 — trow
w>0

I(A: C|B),
D(pasc|| exp(log pas + log pac — log pg))
sup trpagc logw + 1 — trexp(log pag + log psc — log ps + logw)

w>0
o 14+it , _ 1+it _1l-it 1—it
Zsup())trpABC Iogw—l—l—/dtﬁo(t)trpB% (pB 2pasPp ®|dc>p32C w
w> —00

4 matrix extension of GT (n =4 and p = 2)



Application: Strenghtened strong subadditivity
Variational formula for relative entropy [Petz-88]:
D(p||lo) = sup trplogw + 1 — trexp(log o + log w)
w>0

Variational formula for measured relative entropy
[Berta-Fawzi- Tomamichel-15]:
Dyi(p|lo) = suptrplogw + 1 — trow
w>0

I(A: C|B),
= D(pascl|exp(log pas + log pac — log pg))
= sup trpapc logw + 1 — trexp(log pag + log psc — log pg + log w)

w>0
1+it 1+1t _1- it . 1—it
>sup trpagc logw+1 /dtﬁo( Mtrpge (pB PABPg ®|dc>pB2Cw
w>0 o)

= Dy(pasclRe—Bc(paB)); Variational formula for meas. rel. entropy
1—it

14it ,  1+it _loit
with Rg_pc() f dtBo(t)pge (PB 2 ()pp ? ®'dC)P32c




Application: Strenghtened strong subadditivity
Variational formula for relative entropy [Petz-88]:
D(pl|lo) = sup trplogw + 1 — trexp(log o + logw)
w>0

Variational formula for measured relative entropy
[Berta-Fawzi- Tomamichel-15]:

Dyi(pl|lo) = suptrplogw + 1 — trow
w>0

I(A: C|B),
= D(papcll exp(log pas + log ppc — log pg))
= sup trpapc logw + 1 — trexp(log pag + log psc — log ps + logw)

w>0
00 1+it , _ 1+it _l-it 1—it
Zsu%trpABc |0gw+1—/dtﬁo(t)tr/)32c (/)B 2paBpg > ®Idc)p32c w
w> —00

= Dm(pascl|Re=8c(paB)),

1—it

14it , _ 1+it 1t
with Re—pc() = [, dtBo(t)pge (pB > (og ? ®idc)ﬂg2c




Strenghtened strong subadditivity (con't)

We just saw that




Strenghtened strong subadditivity (con't)

We just saw that

Theorem: /(A : C|B), > Dvi(pascl|Re—sc(pas))

for

S5 1+it o 1+it 1ot 1-it
Re-c(+) :/ dtBo(t)pge (pB 2 ()pg 2 ®'dC>pB2C

—00

v

Tight for commutative case

v

Explicit recovery map that is universal (only depends on pgc)

v

Proof based (only) on 4 matrix extension of GT

v

Can be generalized to monotonicity of relative entropy

v

Improves Fawzi-Renner and its follow up papers



Conclusions arXiv:1604.03023
Commun. Math. Phys. 2016

If matrices do not commute things get complicated

v

» Trace inequalities are powerful tools expressing relations
between matrices that do not commute

v

Spectral pinching method is an intuitive approach to prove
matrix (trace) inequalities

v

Applications:
» Strengthening of strong subadditivity (FR bound)
» Hopefully many more (random matrix theory? other entropy
inequalities?, ...)



Conclusions arXiv:1604.03023
Commun. Math. Phys. 2016

If matrices do not commute things get complicated

v

» Trace inequalities are powerful tools expressing relations
between matrices that do not commute

v

Spectral pinching method is an intuitive approach to prove
matrix (trace) inequalities

v

Applications:

» Strengthening of strong subadditivity (FR bound)
» Hopefully many more (random matrix theory? other entropy
inequalities?, ...)

Thank you



More trace inequalities
Let A and B be positive definite matrices and g € R
A% :=exp(qlog A) is well-defined

Araki-Lieb-Thirring: Let r € [0,1]
tr(B"/2ATB'/?)7 < tr(BY2ABY?)4

» If r > 1 the inequality holds in the opposite direction



More trace inequalities
Let A and B be positive definite matrices and g € R
A% :=exp(qlog A) is well-defined

Araki-Lieb-Thirring: Let r € [0,1]
tr(B"/2ATB'/?)7 < tr(BY2ABY?)4

» If r > 1 the inequality holds in the opposite direction

> Implies the GT inequality via Lie-Trotter formula
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More trace inequalities
Let A and B be positive definite matrices and g € R
A% :=exp(qlog A) is well-defined

Araki-Lieb-Thirring: Let r € [0,1]
tr(B"/2ATB'/?)7 < tr(BY2ABY?)4

» If r > 1 the inequality holds in the opposite direction

> Implies the GT inequality via Lie-Trotter formula

n
li C = log C
i) -or(Eec)
For g = 1 this gives trexp(log A+ log B) < trAB

Exercise: Prove ALT via the spectral pinching method

» We can prove extensions to n matrices via pinching or/and
interpolation theory



Summary of results

n matrix extension of ALT: Let p > 1, r € (0,1], n € N, and
consider a collection {A,}}_; of positive semi-definite matrices.

Then n N
log || [T A IT A"
k=1 k=1

p

1
< [ desi(o) og
p

sin(mr)

> 5,(t) = 5r{cosh(nt) Teos(zr)) 'S @ Probability distribution on R

167 =
T — fo(t)

i T . 5, |
L2 f - 830
,"’/—\\\.\‘ ""'Bi(t)

0.8} /{ 3
0.4} .
0




Summary of results

n matrix extension of ALT: Let p > 1, r € (0,1], n € N, and
consider a collection {Ax}7_; of positive semi-definite matrices.

Then . L .
log ||| T A%| || < / dt B,(t) log || T Ak
k=1 =g k=1

p

sin(7r)

> B(t) = 5r{cosh(nt) Tcos(zr)) 'S @ Probability distribution on R

» Proof uses Stein-Hirschman interpolation theorem

» Using Lie-Trotter (i.e. r — 0) we get as a corollary

n matrix extension of GT: Let p > 1, n € N and consider a
collection {Hx};_; of Hermitian matrices. Then

log H exp((1 + it)Hi)

k=1

< /OO dt Bo(t) log

p 2



Stein-Hirschman operator interpolation theorem
Strengthening of the Hadamard three lines theorem
see [Junge-Renner-S-Wilde-Winter-15]
» S:={zeC:0<Re(z) <1}
» L(H) is the space of bounded linear operators acting on H
» Let G: S — L(H) be
» uniformly bounded on S

» holomorphic on S B
» continuous on the boundary 0S

» Let 6 € (0,1) and p—lg = 1/3;09 + % where pg, p1 € [1, 0]

08| G(O)1], <
[t (Br-o®) 0g [ 6Ge) 5, "+ ole)og |61 + 0,

itk sin(mf)

Bo(t) := 20 [cosh(mt) + cos(7d)]




Proof of n matrix extension of ALT

» Choose G(z) =[];_; A}

» is bounded on S, holomorphic on S and continuous on 9S

v

Let @ =r, pp =00 and p1 =p
log | G(1 +it)||% = rlog||TTh_; AxT|
g p1 g k=1""k p

log ||G(it) |, * = (1~ r) log [|TTi—y A¥|. =0
n r n r 1
108 | G(6) ], = log I TTj_y A¢lle = rlog || T A"

v

v

v

p



Proof of n matrix extension of ALT

» Choose G(z) =[];_; A}

» is bounded on S, holomorphic on S and continuous on 9S

v

Let @ =r, pp =00 and p1 =p
log | G(1 +it)||% = rlog||TTh_; AxT|
g p1 g k=1""k p

log || G (it) |, * = (1~ r) log | TTiy AY|. =
108 | G(6) ], = log I [Ty A¢lle = rlog || TT7_, A

v

v

v

Now we apply Stein-Hirschman

/ fr(oyog ]

log A1+1t

n
4|
k=1




