A parallel repetition theorem for all entangled games

Henry Yuen
UC Berkeley

QIP 2017 Seattle, WA

Bell's theorem:

val*(CHSH) > val(CHSH)

CHSH game

- x, y uniform bits
- Players win if $a \oplus b = x \wedge y$.

Max classical win prob: val(CHSH) = 3/4

Max quantum win prob: $val*(CHSH) = cos^2(\pi/8) \approx .854...$

What is val(CHSHⁿ)? What about val*(CHSHⁿ)

Easy observation:

1.
$$val(CHSH^n) \ge val(CHSH)^n = (3/4)^n$$

2.
$$val*(CHSH^n) \ge val*(CHSH)^n = (.854...)^n$$

Proof:

The players can simply play each round independently!

Exactly one of these is true:

1. $val(CHSH^n) = val(CHSH)^n = (3/4)^n$ Ambainis 2014:

$$\lim_{n\to\infty} \sqrt[n]{val(CHSH^n)} = \left(\frac{1+\sqrt{5}}{4}\right) = 0.809 \dots$$

2. $val*(CHSH^n) = val*(CHSH)^n = (.854...)^n$

Cleve, Slofstra, Unger, Upadhyay 2006: Entangled value of XOR games satisfy perfect parallel repetition:

$$val*(G^n) = val*(G)^n$$

Entangled value of XOR games has an SDP characterization, and the SDP tensorizes under parallel repetition.

Parallel Repetition Question

Two-player game G:

- question distribution $\pi(x,y)$
- verification predicate V(x,y,a,b)
- 1. val(Gⁿ) vs. val(G)ⁿ?
- 2. $val*(G^n) vs. val*(G)^n$?

Parallel repetition is weird

(Classical) Parallel Repetition Theorem [Raz '95]

If $val(G) = 1 - \epsilon$, then $val(G^n) \le \exp(-\Omega(\epsilon^{32} \, n/s))$

s = length of players' answers.

- For nontrivial games G (val(G) < 1), the repeated game value goes to 0 exponentially fast.
- Influ
 - What about the quantum case?
 - •

 - cryptography.
- Not an easy proof!

Quantum parallel repetition theorems

- XOR games [Cleve, Slofstra, Unger, Upadhyay 2006]
- Unique games [Kempe, Regev, Toner 2008]
- Feige-Kilian games [Kempe, Vidick 2011]
- Free games
 - Jain, Pereszlenyi, Yao 2014
 - Chailloux and Scarpa 2014
 - Chung, Wu, Y. 2015
- Projection games [Dinur, Steurer, Vidick 2014]
- Anchored games [Bavarian, Vidick. Y. 2015]
- Fortified games [Bavarian, Vidick. Y. 2016]

But no proof of decay for general games!

Main Result

If
$$val*(G) = 1 - \varepsilon$$
, then
$$val*(G^n) \le O\left(\frac{s \log n}{\varepsilon^{17} n^{1/4}}\right)$$

s = length of players' answers.

- As n goes to infinity, val*(Gⁿ) goes to 0.
- First decay bound for general entangled games.
- Quantum analogue of Verbitsky's theorem.

Proof sketch

Proof by contradiction

Start by assuming there is a supergood strategy for Gⁿ

```
State: |\psi\rangle Measurements Alice: A_{x_1...x_n}(a_1 ... a_n) Bob: B_{y_1...y_n}(b_1 ... b_n) p(\vec{a}, \vec{b}|\vec{x}, \vec{y}) = \langle \psi | A_{\vec{x}}(\vec{a}) \otimes B_{\vec{y}}(\vec{b}) | \psi \rangle
```

- Assumption: val*(G^n) >> poly($s, n^{-1}, \varepsilon^{-1}$)
- Goal: obtain an entangled strategy for G with success probability greater than val*(G). Contradiction.

Pretend we're playing G^n Conditioned on $x_i = x^*$ and $y_i = y^*$, and event W_S .

If $val^*(G^n)$ too large, then there exists "nice" event W_S

Pr(Win
$$i \mid W_S$$
) > val*(G) + δ

 W_S : Winning in a set of rounds $S \subset [n]$

Idea: Embed the game G into the *i*'th round of G^n , conditioned on the event W_S , without communication.

$$(x^*, y^*) \sim \pi$$

*x**

Conditioning entangled games

- Classically, embedding G into G^n in the event W_S requires careful conditioning of probability distributions.
- However, the notion of "conditioning" quantum entanglement is risky and dangerous.
- For all (x^*,y^*) , define an advice state

$$|\Phi_{x^*y^*}\rangle$$

representing Gⁿ conditioned on:

- i'th inputs are (x^*,y^*)
- Event W_S

Strategy for G

- Suppose the players, upon receiving x^* and y^* , can generate $|\Phi_{x^*y^*}\rangle$ using preshared entanglement and local operations.
- By measuring, players get answers (a,b) satisfying $V(x^*,y^*,a,b) = 1$ with prob.

$$Pr(Win i | W_S, x^*, y^*)$$

• On average over $(x^*,y^*) \sim \mu$, this is approximately

Pr(Win
$$i \mid W_S$$
) > val*(G) + δ

This would achieve the contradiction!

Sampling $|\Phi_{x^*y^*}\rangle$ without communication.

- This is the main challenge in proving parallel repetition theorems for entangled games.
- Problem: Alice does not know y^* and Bob does not know x^* . Thus neither Alice nor Bob "knows" the full description of $|\Phi_{x^*y^*}\rangle$.
- Solution: show there exist local unitaries U_{x^*} and V_{y^*} such that

$$U_{x^*} \otimes V_{y^*} | \Phi_{x^*y^*} \rangle \approx | \Gamma \rangle$$

for some universal state $|\Gamma\rangle$.

Defining and analyzing $|\Phi_{x^*y^*}\rangle$ in 3 easy steps.

Imagine Alice and Bob play Gⁿ using **supergood** strategy.

...but only **Alice** measures, and outputs answers in S.

Step 1:

$$I(X_i: E_B | A_S X_S)_{\rho} \le \frac{|S| \log |\Sigma_A|}{n}$$

for avg. coordinate $i \in [n] \setminus S$

Global state: $\rho^{XYA_SE_AE_B}$

1. X, Y, A_S classical 2. $E_A E_B$ quantum post-measurement state

Defining and analyzing $|\Phi_{x^*y^*}\rangle$ in 3 easy steps.

<u>Step 1</u>:

$$I(X_i: E_B | A_S X_S)_{\rho} \le \frac{|S| \log |\Sigma_A|}{n}$$

for avg. coordinate $i \in [n] \setminus S$

 $b_{\mathcal{S}}$

<u>Step 2</u>:

For every x there exists a purification $|\Delta_x\rangle \in E_A \otimes E_B$ of ρ^{E_B} conditioned on

$$A_S X_S$$
 and $X_i = x$

s.t for most x, x',

$$|\Delta_{x}\rangle \approx_{\delta} |\Delta_{x'}\rangle$$

Our advice state*:

 $a_{\mathcal{S}}$

$$|\Phi_{x,y}\rangle \propto \sqrt{\mathbb{E}B_{y_1\cdots y_n}^{b_S}}|\Delta_x\rangle$$

Expectation over all y's with $y_i = y$ and some fixing of Y_S .

Defining and analyzing $|\Phi_{x^*y^*}\rangle$ in 3 easy steps.

Step 1:

$$I(X_i : E_B | A_S X_S)_{\rho} \le \frac{|S| \log |\Sigma_A|}{n}$$

for avg. coordinate $i \in [n] \setminus S$

Step 3:

For most x, x',

$$\||\Phi_{x,y}\rangle - |\Phi_{x',y}\rangle\| \leq \delta/\Pr(W_s)$$

<u>Step 2</u>:

For every x there exists a purification $|\Delta_x\rangle \in E_A \otimes E_B$ of ρ^{E_B} conditioned on

$$A_S X_S$$
 and $X_i = x$

s.t for most x, x',

$$|\Delta_{x}\rangle \approx_{\delta} |\Delta_{x}\rangle$$

Our advice state*:

$$|\Phi_{x,y}\rangle \propto \sqrt{\mathbb{E}B_{y_1\cdots y_n}^{b_S}}|\Delta_x\rangle$$

Expectation over all y's with $y_i = y$ and some fixing of Y_S .

<u>Step 3</u>:

For most
$$x, x', y$$
,
$$\||\Phi_{x,y}\rangle - |\Phi_{x',y}\rangle\| \le \frac{\delta}{\Pr(W_s)}$$

1.
$$Pr(W_s) \ge Pr(W)$$

2.
$$\||\Phi_{x,y}\rangle - |\Phi_{x',y}\rangle\| \le \delta/\Pr(W) \le \left(\frac{|S|\log|\Sigma_A|}{n}\right)^{1/4} \frac{1}{\Pr(W)}$$

Since strategy was **supergood**, this distance is at most $\sqrt{\delta}$. 3.

Step 3:

For most x, x', y, y',

$$\||\Phi_{x,y}\rangle - |\Phi_{x',y}\rangle\| \le \sqrt{\delta}$$

$$\||\Phi_{x,y}\rangle - |\Phi_{x,y'}\rangle\| \le \sqrt{\delta}$$

- 1. $Pr(W_s) \ge Pr(W)$
- 2. $\||\Phi_{x,y}\rangle |\Phi_{x',y}\rangle\| \le \delta/\Pr(W) \le \left(\frac{|S|\log|\Sigma_A|}{n}\right)^{1/4} \frac{1}{\Pr(W)}$
- 3. Since strategy was **supergood**, this distance is at most $\sqrt{\delta}$.

Quantum Correlated Sampling (Dinur, Steurer, Vidick 2014)

Step 3 implies for most x, y, there exist local unitaries U_x , V_y such that

$$U_x \otimes V_y | \Gamma \rangle \approx_{\delta^{1/6}} | \Phi_{x,y} \rangle \otimes | \gamma \rangle$$

where $|\Gamma\rangle$, $|\gamma\rangle$ are embezzlement states.

Strategy for G

- Suppose the players, upon receiving x^* and y^* , can generate $|\Phi_{x^*y^*}\rangle$ using preshared entanglement and local operations.
- By measuring, players get answers (a,b) satisfying $V(x^*,y^*,a,b) = 1$ with prob.

$$Pr(Win i | W_S, x^*, y^*)$$

• On average over $(x^*,y^*) \sim \mu$, this is approximately

Pr(Win
$$i | W_S$$
) > val*(G) + $\delta^{1/6}$

Contradiction!

Summary and open questions

- Main Result: A quantum analogue of Raz's parallel repetition theorem holds with polynomial decay.
- If one is willing to tweak the game slightly, we can obtain exponential decay parallel repetition theorems for general games with entangled players. (joint work with Bavarian and Vidick)

Open questions

- 1. Quantum parallel repetition with exponential decay
- Classical parallel repetition of games with more than two players
- 3. Direct product theorems for quantum communication complexity
- 4. Is entanglement useful in the quantum communication complexity context?

Thanks! Any questions?