
A parallel repetition theorem for 

all entangled games

QIP 2017

Seattle, WA

Henry Yuen
UC Berkeley 



x y CHSH game

• x, y uniform bits

Scientist

Alice Bob



a b CHSH game

• x, y uniform bits

• Players win if 
a     b = x    y.

Max classical win prob: val(CHSH) = 3/4 

Max quantum win prob: val*(CHSH) = cos2(p/8) ≈ .854…

Bell’s theorem: 

val*(CHSH) > val(CHSH)



CHSHn game

• x1,…,xn

y1,…,yn uniform bits

• Win iff ai bi = xi yi

for all i.

x1, x2, …, xn

y1, y2, …, yn

What is val(CHSHn)? What about val*(CHSHn)



Easy observation:

1. val(CHSHn) ≥ val(CHSH)n = (3/4)n

2. val*(CHSHn) ≥ val*(CHSH)n = (.854…)n

Proof: 

The players can simply play each round independently!



Exactly one of these is true:

1. val(CHSHn) = val(CHSH)n = (3/4)n

2. val*(CHSHn) = val*(CHSH)n = (.854…)n

Cleve, Slofstra, Unger, Upadhyay 2006: Entangled value of XOR 

games satisfy perfect parallel repetition:

val*(Gn) = val*(G)n

Entangled value of XOR games has an SDP characterization, and the 

SDP tensorizes under parallel repetition.

Ambainis 2014:

lim
𝑛→∞

𝑛
𝑣𝑎𝑙 𝐶𝐻𝑆𝐻𝑛 =

1 + 5

4
= 0.809…



Parallel Repetition Question

Two-player game G:

• question distribution p(x,y)

• verification predicate V(x,y,a,b)

1. val(Gn) vs. val(G)n?

2. val*(Gn) vs. val*(G)n ?

Parallel repetition is weird



(Classical) Parallel Repetition Theorem [Raz ’95]

If val(G) = 1 – e, then

val(Gn) ≤ exp(–W(e32 n/s))

s = length of players’ answers.

• For nontrivial games G (val(G) < 1), the repeated game value goes to 0 

exponentially fast.

• Influential in 

• probabilistically checkable proofs

• hardness of approximation

• communication complexity

• cryptography.

• Not an easy proof!

What about the quantum case?



Quantum parallel repetition theorems

• XOR games [Cleve, Slofstra, Unger, Upadhyay 2006]

• Unique games [Kempe, Regev, Toner 2008]

• Feige-Kilian games [Kempe, Vidick 2011]

• Free games 
– Jain, Pereszlenyi, Yao 2014

– Chailloux and Scarpa 2014

– Chung, Wu, Y. 2015

• Projection games [Dinur, Steurer, Vidick 2014]

• Anchored games [Bavarian, Vidick. Y. 2015]

• Fortified games [Bavarian, Vidick. Y. 2016]

But no proof of decay for general games!



Main Result

If val*(G) = 1 – e, then

val* 𝐺𝑛 ≤ 𝑂
𝑠 log 𝑛

𝜖17 𝑛1/4

s = length of players’ answers.

• As n goes to infinity, val*(Gn) goes to 0.

• First decay bound for general entangled games.

• Quantum analogue of Verbitsky’s theorem.



Proof sketch



Proof by contradiction

• Start by assuming there is a supergood strategy for Gn

State: 

Measurements

Alice: 𝐴𝑥1⋯𝑥𝑛 𝑎1…𝑎𝑛

Bob: 𝐵𝑦1⋯𝑦𝑛 𝑏1…𝑏𝑛

• Assumption: val*(Gn) >> poly(s,n-1,e-1)

• Goal: obtain an entangled strategy for G with success 

probability greater than val*(G). Contradiction.



x* y*

Pretend we’re playing Gn

Conditioned on xi = x* and yi = y*, and

event 𝑊𝑆.

If val*(Gn) too large, then there 

exists “nice” event 𝑊𝑆

Pr( Win i | 𝑊𝑆) > val*(G) + d

Idea: Embed the game G into the i’th round of Gn, 

conditioned on the event 𝑊𝑆, without communication.

𝑊𝑆: Winning in a set of rounds 𝑆 ⊂ 𝑛



• Classically, embedding G into Gn in the event 𝑊𝑆 requires careful 

conditioning of probability distributions.

• However, the notion of “conditioning” quantum

entanglement is risky and dangerous.

• For all (x*,y*), define an advice state

representing Gn conditioned on:

• i’th inputs are (x*,y*)

• Event 𝑊𝑆

Conditioning entangled games



x* y*

• Suppose the players, upon receiving x* 

and y*, can generate              using 

preshared entanglement and local 

operations. 

• By measuring, players get answers (a,b) 

satisfying V(x*,y*,a,b) = 1 with prob.

Pr( Win i | 𝑊𝑆, x*, y*)

• On average over (x*,y*) ~ m, this is 

approximately

Pr( Win i | 𝑊𝑆) > val*(G) + d

Strategy for G

a b

This would achieve the 

contradiction!



Sampling              without communication. 

• This is the main challenge in proving parallel repetition theorems 

for entangled games. 

• Problem: Alice does not know y* and Bob does not know x*. Thus 

neither Alice nor Bob “knows“ the full description of               .

• Solution: show there exist local unitaries Ux* and Vy* such that

for some universal state       .



Defining and analyzing               in 3 easy steps.

x1, x2, …, xn y1, y2, …, yn

𝜓 ∈ 𝐸𝐴 ⊗𝐸𝐵Imagine Alice and Bob

play Gn using supergood

strategy. 

…but only Alice measures,

and outputs answers in S.

𝑎𝑆

1. X, Y, AS classical

2. 𝐸𝐴𝐸𝐵 quantum post-measurement state

Global state: 𝜌𝑋𝑌𝐴𝑆𝐸𝐴𝐸𝐵Step 1:

𝐼 𝑋𝑖: 𝐸𝐵|𝐴𝑆𝑋𝑠 𝜌 ≤
𝑆 log Σ𝐴

𝑛

for avg. coordinate 𝑖 ∈ 𝑛 ∖ 𝑆



x1, x2, …, xn y1, y2, …, yn

𝑎𝑆Step 1 :

𝐼 𝑋𝑖: 𝐸𝐵|𝐴𝑆𝑋𝑠 𝜌 ≤
𝑆 log Σ𝐴

𝑛

for avg. coordinate 𝑖 ∈ 𝑛 ∖ 𝑆

Step 2:
For every x there exists a purification 

Δ𝑥 ∈ 𝐸𝐴 ⊗𝐸𝐵 of 𝜌𝐸𝐵 conditioned on 

𝐴𝑆𝑋𝑠 and 𝑋𝑖 = 𝑥
s.t for most 𝑥, 𝑥′, 

Δ𝑥 ≈𝛿 Δ𝑥′

Our advice state*:

Φ𝑥,𝑦 ∝ 𝔼𝐵𝑦1⋯𝑦𝑛
𝑏𝑆 |Δ𝑥〉

Expectation over all y’s with 𝑦𝑖 = 𝑦
and some fixing of 𝑌𝑆.

𝑏𝑆

Defining and analyzing               in 3 easy steps.



Step 1:

𝐼 𝑋𝑖: 𝐸𝐵|𝐴𝑆𝑋𝑠 𝜌 ≤
𝑆 log Σ𝐴

𝑛

for avg. coordinate 𝑖 ∈ 𝑛 ∖ 𝑆

Step 2:
For every x there exists a purification 

Δ𝑥 ∈ 𝐸𝐴 ⊗𝐸𝐵 of 𝜌𝐸𝐵 conditioned on 

𝐴𝑆𝑋𝑠 and 𝑋𝑖 = 𝑥
s.t for most 𝑥, 𝑥′, 

Δ𝑥 ≈𝛿 Δ𝑥′

Our advice state*:

Φ𝑥,𝑦 ∝ 𝔼𝐵𝑦1⋯𝑦𝑛
𝑏𝑆 |Δ𝑥〉

Expectation over all y’s with 𝑦𝑖 = 𝑦
and some fixing of 𝑌𝑆.

Step 3:
For most 𝑥, 𝑥′, 

Φ𝑥,𝑦 − Φ𝑥′,𝑦 ≤ ൗ𝛿 Pr(𝑊𝑠)

Defining and analyzing               in 3 easy steps.



Step 3:
For most 𝑥, 𝑥′, 𝑦,

Φ𝑥,𝑦 − Φ𝑥′,𝑦 ≤ ൗ𝛿 Pr(𝑊𝑠)

1. Pr(𝑊𝑠) ≥ Pr 𝑊

2. Φ𝑥,𝑦 − Φ𝑥′,𝑦 ≤ ൗ𝛿 Pr 𝑊 ≤
𝑆 log Σ𝐴

𝑛

Τ1 4 1

Pr(𝑊)

3. Since strategy was supergood, this distance is at most 𝛿.



Step 3:
For most 𝑥, 𝑥′, 𝑦, 𝑦′,  

Φ𝑥,𝑦 − Φ𝑥′,𝑦 ≤ 𝛿

Φ𝑥,𝑦 − Φ𝑥,𝑦′ ≤ 𝛿

1. Pr(𝑊𝑠) ≥ Pr 𝑊

2. Φ𝑥,𝑦 − Φ𝑥′,𝑦 ≤ ൗ𝛿 Pr 𝑊 ≤
𝑆 log Σ𝐴

𝑛

Τ1 4 1

Pr(𝑊)

3. Since strategy was supergood, this distance is at most 𝛿.

Quantum Correlated Sampling (Dinur, Steurer, Vidick 2014)
Step 3 implies for most 𝑥, 𝑦, there exist local unitaries 𝑈𝑥, 𝑉𝑦 such that

𝑈𝑥 ⊗𝑉𝑦 Γ ≈𝛿 Τ1 6 Φ𝑥,𝑦 ⊗ |𝛾〉

where Γ , |𝛾〉 are embezzlement states. 



x* y*

• Suppose the players, upon receiving x* 

and y*, can generate              using 

preshared entanglement and local 

operations. 

• By measuring, players get answers (a,b) 

satisfying V(x*,y*,a,b) = 1 with prob.

Pr( Win i | 𝑊𝑆, x*, y*)

• On average over (x*,y*) ~ m, this is 

approximately

Pr( Win i | 𝑊𝑆) > val*(G) + d1/6

Strategy for G

Contradiction!



Summary and open questions

• Main Result: A quantum analogue of Raz’s parallel repetition theorem 

holds with polynomial decay.

• If one is willing to tweak the game slightly, we can obtain exponential 

decay parallel repetition theorems for general games with entangled 

players. (joint work with Bavarian and Vidick)

• Open questions

1. Quantum parallel repetition with exponential decay

2. Classical parallel repetition of games with more than two players

3. Direct product theorems for quantum communication complexity

4. Is entanglement useful in the quantum communication complexity context?

Thanks! Any questions?

If I don’t get to your question, please ask Zhengfeng.


