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X y CHSH game
* X,y uniform bits

Scientist



Bell’s theorem:
val*(CHSH) > val(CHSH)

CHSH game

* X,y uniform bits
* Players win if
awb=xAYy.

Max classical win prob: val(CHSH) = 3/4
Max quantum win prob: val*(CHSH) = cos?(n/8) ~ .854...



A

CHSH" game

* XX,

Y1,---,Y,, Uniform bits
* Winiffa,®b;=x;AYy;
for all i.

What is val(CHSH")? What about val*(CHSH")



Easy observation:

1. val(CHSH") = val(CHSH)" = (3/4)"

2. val*(CHSH") > val*(CHSH)" = (.854...)"

Proof:

The players can simply play each round independently!



Exactly one of these is true:

1. val(CHSH") = val(CHSH)" = (3/4)" x

Ambainis 2014:

1++/5
4

lim Y/val(CHSH™) = ( ) = 0.809 ...
n—-oo

2. val*(CHSH") = val*(CHSH)" = (.854...)" /

Cleve, Slofstra, Unger, Upadhyay 2006: Entangled value of XOR
games satisfy perfect parallel repetition:

val*(G") = val*(G)"

Entangled value of XOR games has an SDP characterization, and the
SDP tensorizes under parallel repetition.



Parallel Repetition Question

Two-player game G:
* question distribution m(x,y)
» verification predicate V(x,y,a,b)

1. val(G") vs. val(G)"?
2. val*(G") vs. val*(G)" ?

Parallel repetition is weird




(Classical) Parallel Repetition Theorem [Raz '95]

If val(G) = 1 - g, then
val(G") < exp(-Q(&32 n/s))

s = length of players’ answers.

* For nontrivial games G (val(G) < 1), the repeated game value goesto O
exponentially fast.
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. : What about the quantum case?
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e cryptography.

* Not an easy proof!



Quantum parallel repetition theorems

XOR games [Cleve, Slofstra, Unger, Upadhyay 2006]
Unique games [Kempe, Regev, Toner 2008]
Feige-Kilian games [Kempe, Vidick 2011]

Free games

— Jain, Pereszlenyi, Yao 2014
— Chailloux and Scarpa 2014
— Chung, Wu, Y. 2015

Projection games [Dinur, Steurer, Vidick 2014]
Anchored games [Bavarian, Vidick. Y. 2015]
Fortified games [Bavarian, Vidick. Y. 2016]

But no proof of decay for general games!



Main Result

If val*(G) = 1 - ¢, then
val*(G™) < 0 ( slogn )

17 n1/4

s = length of players’ answers.

* As n goes to infinity, val*(G") goes to O.

* First decay bound for general entangled games.

 Quantum analogue of Verbitsky’'s theorem.



Proof sketch




Proof by contradiction

« Start by assuming there is a supergood strategy for G"

State: |¥)

Measurements
Alice: Ay, ..., (ay ...ap)

Bob: B, ..., (b1 ...by)

—

p(@, 0|, ) = (Y| Az(@) @ By(b)|v)

¢ Assumption: val*(G") >> poly(s,n3,e?)
* Goal: obtain an entangled strategy for G with success
probability greater than val*(G). Contradiction.



e

Pretend we’re playing G"
Conditioned on x; = x* and y; = y*, and
event Ws.

If val*(G") too large, then there
exists “nice” event W

Pr( Win i | Ws) > val*(G) + o

Ws: Winning in a set of rounds S c [n]

Idea: Embed the game G into the i'th round of G,
conditioned on the event Ws, without communication.



Conditioning entangled games

Classically, embedding G into G" in the event Ws requires careful
conditioning of probability distributions.

However, the notion of “conditioning” quantum
entanglement is risky and dangerous.

For all (x*,y*), define an advice state
|(I)x*y*>
representing G" conditioned on:

e {'thinputs are (x*,y*)
 Event WS




Strategy for G

* Suppose the players, upon receiving x*
and y*, can generate | P+, « ) using
preshared entanglement and local
operations.

By measuring, players get answers (a,b)
satisfying V(x*,y*,a,b) = 1 with prob.

Pr( Wini | Ws, x*, y*)

* On average over (x*,y*) ~ u, this is
approximately

Pr( Win i | W) > val*(G) + & This would achieve the

contradiction!



Sampling | P+~ ) without communication.

* This is the main challenge in proving parallel repetition theorems
for entangled games.

*  Problem: Alice does not know y* and Bob does not know x*. Thus
neither Alice nor Bob “knows” the full description of |(I):13y>

* Solution: show there exist local unitaries U,« and V, . such that

Ups @ Ve | ey ) ~ T

for some universal state ‘F>



Defining and analyzing |®.+y+) in 3 easy steps.

Imagine Alice and Bob
play G" using supergood
strategy.

...but only Alice measures,

and outputs answers in S. Xy Xop o X,
Step 1: Global state: pXY4sEaEs

I(X;: Eg|lAsXs), < ISloglZal | 1. X,Y,As classical
i 2. EjEp quantum post-measurement state

for avg. coordinate i € [n] \ S




Defining and analyzing |®.+y+) in 3 easy steps.

Step 1 :
S| log|Z,]
[(X;: EglAsXs)p < ——— <

for avg. coordinate i € [n]\ S

Step 2:

For every x there exists a purification
|A,) € E; ® Eg of p£B conditioned on |
AsXs and X; = x
s.t for most x, x’,
|Ax> =5 |Axl>

Our advice state*:

b
D, ) \/IEByf...yn|Ax>
A

\

Expectation over all y's with y; =y
and some fixing of Y.




Defining and analyzing |®.+y+) in 3 easy steps.

Step 1.
S| log|Z4|
1(X;: EglAsXs)p < ——

for avg. coordinate i € [n]\ S

Step 2:

For every x there exists a purification
|A,) € E; ® Eg of p£B conditioned on |

AsXs and X; = x
s.t for most x, x’,

Step 3:
For most x, x/,

”lq)x,y> - |q)x',y>“ = S/Pr(WS)

]

|Ax> ~s |Axl>

Our advice state*:

b
0,y)  [BBS., 18)
A

\

Expectation over all y's with y; =y
and some fixing of Y.




Step 3:

For most x, x', y,

@y = [@aiy)]| < 5/Pr(W5)

1. Pr(W,) = Pr(W)
15| log|z 4]\ 1/#
2. [ @x3) = [@ary)| < ey < (SLEE) T

3. Since strategy was supergood, this distance is at most V6.



Step 3:

For most x,x’,y,y’,
”lq)x,y) o |¢x',y)” <Vé

”lq)x,y) — |¢x,y')” = \/5

1. Pr(W,) = Pr(W)
15| log|z 4]\ 1/#
2. [ @x3) = [@ary)| < ey < (SLEE) T

3. Since strategy was supergood, this distance is at most V6.

Quantum Correlated Sampling (Dinur, Steurer, Vidick 2014)
Step 3 implies for most x, y, there exist local unitaries Uy, V, such that

Uy @ V,IT) =s1/6 |Dry) @ ly)

where |T'), |y) are embezzlement states.




Strategy for G

* Suppose the players, upon receiving x*
and y*, can generate | P+, « ) using
preshared entanglement and local
operations.

By measuring, players get answers (a,b)
satisfying V(x*,y*,a,b) = 1 with prob.

Pr( Wini | Ws, x*, y*)

* On average over (x*,y*) ~ u, this is
approximately

Pr( Win i *(G) + &1/6 _—
"(Win 7| Ws) > val*(G) + o Contradiction!



Summary and open questions

 Main Result: A quantum analogue of Raz’s parallel repetition theorem
holds with polynomial decay.

* If one is willing to tweak the game slightly, we can obtain exponential
decay parallel repetition theorems for general games with entangled
players. (joint work with Bavarian and Vidick)

* Open questions

1.

2.
3.
4

Quantum parallel repetition with exponential decay

Classical parallel repetition of games with more than two players

Direct product theorems for quantum communication complexity

Is entanglement useful in the quantum communication complexity context?

Thanks! Any questions?

If | don’t get to your question, please ask Zhengfeng.



