Fault-tolerant error correction for non-abelian anyons¹

Guillaume Dauphinais and David Poulin

Institut quantique & département de physique, Université de Sherbrooke

QIP January 18, 2017

Outline

- 1 Non-abelian anyons and quantum information
- 2 Error correction for abelian anyons
- 3 Error correction for non-abelian anyons

What are anyons¹?

■ Localized gapped excitations living on a 2-dimensional surface

- Localized gapped excitations living on a 2-dimensional surface
- Each excitation is described by a unique label, called its topological charge from a finite set $\{a, b, c, \dots\}$

¹A. Kitaev, Annals Phys. **321**, 2-111 (2006)

What are anyons¹?

- Localized gapped excitations living on a 2-dimensional surface
- Each excitation is described by a unique label, called its topological charge from a finite set $\{a, b, c, ...\}$
- We can imagine bringing 2 excitation together (a and b), and ask what is their total charge c.

What are anyons¹?

- Localized gapped excitations living on a 2-dimensional surface
- Each excitation is described by a unique label, called its topological charge from a finite set $\{a, b, c, ...\}$
- We can imagine bringing 2 excitation together (a and b), and ask what is their total charge c.
- The possible outcomes are given by the fusion rules:

$$a \times b = \sum_{c} N_{ab}^{c} c$$

¹A. Kitaev, Annals Phys. **321**, 2-111 (2006)

Abelian vs non-abelian anyons

■ The fusion rules for abelian anyons are deterministic and unique, as for excitations in the toric code:

 $e \times e = 1$, $m \times m = 1$, $e \times m = em$, ...

■ The fusion rules for abelian anyons are deterministic and unique, as for excitations in the toric code:

$$e \times e = 1$$
, $m \times m = 1$, $e \times m = em$, ...

Whereas for non-abelian anyons, the fusion rules are in general probabilistic, for example with Fibonacci anyons: $\tau \times \tau = 1 + \tau$

Abelian vs non-abelian anyons

The fusion rules for abelian anyons are deterministic and unique, as for excitations in the toric code:

$$e \times e = 1$$
, $m \times m = 1$, $e \times m = em$, ...

- Whereas for non-abelian anyons, the fusion rules are in general probabilistic, for example with Fibonacci anyons: $\tau \times \tau = 1 + \tau$.
- A Hilbert space is associated to each fusion/splitting process.

Abelian vs non-abelian anyons

The fusion rules for abelian anyons are deterministic and unique, as for excitations in the toric code:

$$e \times e = 1$$
, $m \times m = 1$, $e \times m = em$, ...

- Whereas for non-abelian anyons, the fusion rules are in general probabilistic, for example with Fibonacci anyons: $\tau \times \tau = 1 + \tau$.
- A Hilbert space is associated to each fusion/splitting process.
- Fusing two anyons a_1 and a_2 collapses the wavefunction into a definite super-selection sector, with probability given by Born's rule:

$$P(c) = \langle \psi | \Pi_c^{a_1 a_2} | \psi \rangle. \tag{1}$$

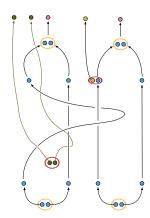
Quantum computation with non-abelian anyons¹

Measurement Applying gates Initialization

¹M. H. Freedman et al., Commun. Math. Phys. **227**, 605-622 (2002)

Thermal processes can corrupt the information¹

- At T > 0, thermal excitations are present in finite density.
- Thermal excitations can diffuse at no energy cost.
- It really is a scalibility issue: for large systems, such processes are bound to happen.



¹F. L. Pedrocchi *et al.*, arXiv:1505.03712

 Our goal is to find an error correction procedure for systems of non-abelian anyons

¹Dennis *et al.*, J. Math. Phys. **43**, 4452 (2002)

Fault-tolerant error correction for non-abelian anyons

- Our goal is to find an error correction procedure for systems of non-abelian anyons
- We want to include measurement errors

¹Dennis et al., J. Math. Phys. **43**, 4452 (2002) ←□→←□→←□→←□→ □→←□→

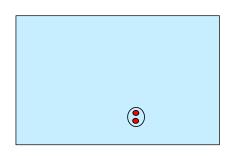
Fault-tolerant error correction for non-abelian anyons

- Our goal is to find an error correction procedure for systems of non-abelian anyons
- We want to include measurement errors
- Fault-tolerant error correction for topologically ordered systems giving rise to abelian anyons have been studied extensively.¹

¹Dennis *et al.*. J. Math. Phys. **43**, 4452 (2002)

Anyons appear as excitations in topologically ordered systems¹. The ground space is degenerate and quantum information can be encoded in such states.

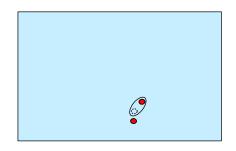
- Logical operations consist of creating a pair of excitations, performing non-trivial loop, and fuse the excitations back to the vacuum.
- World lines with the same topology have the same effect on the ground space.



Anyons and topological order

Anyons appear as excitations in topologically ordered systems¹. The ground space is degenerate and quantum information can be encoded in such states.

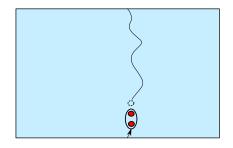
- Logical operations consist of creating a pair of excitations, performing non-trivial loop, and fuse the excitations back to the vacuum.
- World lines with the same topology have the same effect on the ground space.



Anyons and topological order

Anyons appear as excitations in topologically ordered systems¹. The ground space is degenerate and quantum information can be encoded in such states.

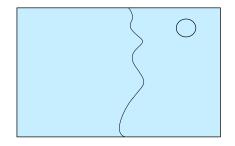
- Logical operations consist of creating a pair of excitations, performing non-trivial loop, and fuse the excitations back to the vacuum.
- World lines with the same topology have the same effect on the ground space.



Anyons and topological order

Anyons appear as excitations in topologically ordered systems¹. The ground space is degenerate and quantum information can be encoded in such states.

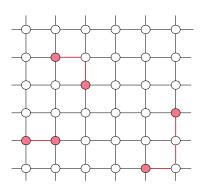
- Logical operations consist of creating a pair of excitations, performing non-trivial loop, and fuse the excitations back to the vacuum.
- World lines with the same topology have the same effect on the ground space.



Error correction for abelian anyons

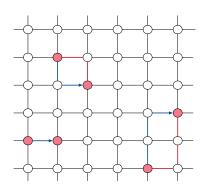
Topological quantum error correction for abelian anyons have been extensively studied (*i.e.* the toric code)

 Thermal processes are modelled probabilistically.



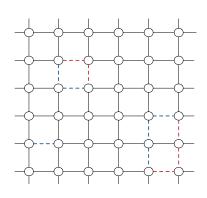
Topological quantum error correction for abelian anyons have been extensively studied (*i.e.* the toric code)

- Thermal processes are modelled probabilistically.
- A decoding algorithm is used to find a correction procedure.



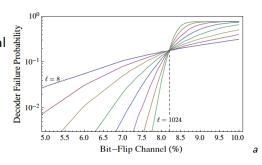
Topological quantum error correction for abelian anyons have been extensively studied (*i.e.* the toric code)

- Thermal processes are modelled probabilistically.
- A decoding algorithm is used to find a correction procedure.
- The correction operations are performed.



Various families of decoding algorithms

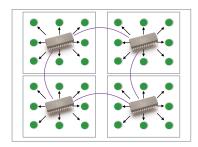
- Perfect matching
- Mapping to statistical physics problems
- Clustering methods
- Cellular automaton
- Renormalization methods



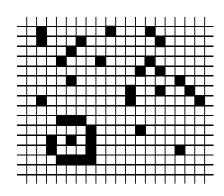
^aG. Duclos-Cianci et al., PRL **104**, 050504 (2010)

Cellular Automata

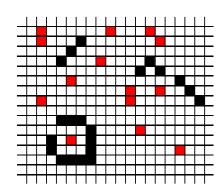
- Classical device acting on a small neighborhood
- Apply predetermined local operations depending on the state of the sites in the neighborhood
- Can communicate with neighboring automata
- Can have a memory and instruction of a programs



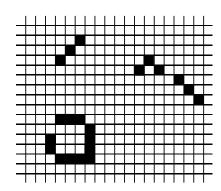
- Each actual error is characterize by a level n.
- If fits in a box of size $Q^n \times Q^n \times U^n$ and is separated by at least aQ^n sites (bU^n time steps) from other actual errors
- The notion of actual error is recursively defined over the level.



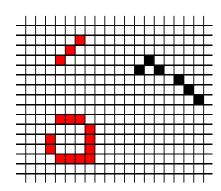
- Each actual error is characterize by a level n.
- If fits in a box of size $Q^n \times Q^n \times U^n$ and is separated by at least aQ^n sites (bU^n time steps) from other actual errors.
- The notion of actual *error* is recursively defined over the level.



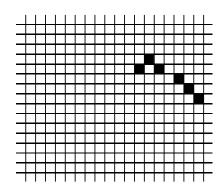
- Each actual error is characterize by a level n.
- If fits in a box of size $Q^n \times Q^n \times U^n$ and is separated by at least aQ^n sites (bU^n time steps) from other actual errors.
- The notion of actual *error* is recursively defined over the level.



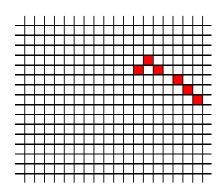
- Each actual error is characterize by a level n.
- If fits in a box of size $Q^n \times Q^n \times U^n$ and is separated by at least aQ^n sites (bU^n time steps) from other actual errors
- The notion of actual error is recursively defined over the level.



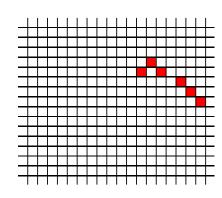
- Each actual error is characterize by a level n.
- If fits in a box of size $Q^n \times Q^n \times U^n$ and is separated by at least aQ^n sites (bU^n time steps) from other actual errors.
- The notion of actual *error* is recursively defined over the level.



- Each actual error is characterize by a level n.
- If fits in a box of size $Q^n \times Q^n \times U^n$ and is separated by at least aQ^n sites (bU^n time steps) from other actual errors.
- The notion of actual *error* is recursively defined over the level.



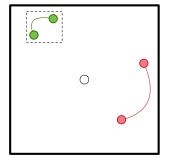
- Each actual error is characterize by a level n.
- If fits in a box of size $Q^n \times Q^n \times U^n$ and is separated by at least aQ^n sites (bU^n time steps) from other actual errors
- The notion of actual error is recursively defined over the level.



The rate of apperance of a level-n actual errors goes as $\epsilon_n \sim e^{-2^n}$

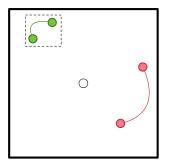
The idea behind Harrington's algorithm

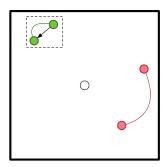
Cellular automata periodically measure topological charges.



The idea behind Harrington's algorithm

- Cellular automata periodically measure topological charges.
- If 2 excitations are close, they will be fused together.

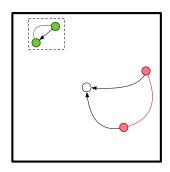




The idea behind Harrington's algorithm

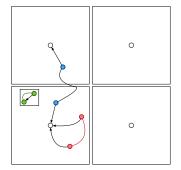
- Cellular automata periodically measure topological charges.
- If 2 excitations are close, they will be fused together.
- If an excitation is isolated, it is displaced to the colony center.





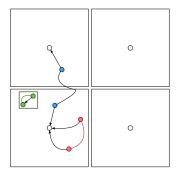
The need for renormalization

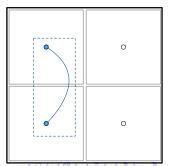
An error chain extending over 2 or more colonies cannot get corrected using such simple local rules.



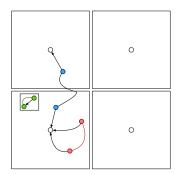
The need for renormalization

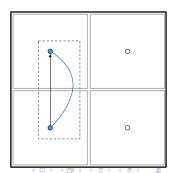
- An error chain extending over 2 or more colonies cannot get corrected using such simple local rules.
- Colonies are periodically grouped into renormalized colonies.





- An error chain extending over 2 or more colonies cannot get corrected using such simple local rules.
- Colonies are periodically grouped into renormalized colonies.
- Renormalized transition rules are periodically applied.





Existence of a threshold

■ Harrington showed that a level-*n* actual error stays local at the n^{th} renormalization level.

Existence of a threshold

- Harrington showed that a level-n actual error stays local at the n^{th} renormalization level.
- \blacksquare A level-*n* actual errors gets corrected by the n^{th} level transition rules.

Existence of a threshold

- Harrington showed that a level-n actual error stays local at the n^{th} renormalization level
- \blacksquare A level-*n* actual errors gets corrected by the n^{th} level transition rules.
- Actual errors stay well-separated from each other in time.

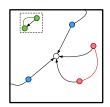
■ Harrington showed that a level-n actual error stays local at the n^{th} renormalization level.

- \blacksquare A level-*n* actual errors gets corrected by the n^{th} level transition rules.
- Actual errors stay well-separated from each other in time.

The properties above combined with the fact that $\epsilon_n \sim e^{-2^n}$ leads to the existence of a threshold.

Complications for non-abelian anyons: probabilistic evolution

The fusion channel of 2 or more anyons is in general not deterministic:

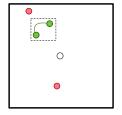


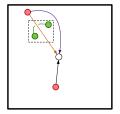
$$= c$$

We introduce the notion of a *trajectory domain* of an error. It roughly corresponds to the set of sites having a probability of becoming charged because of a given error.

Complications for non-abelian anyons: renormalized charge

The total charge present in a colony becomes path-dependent and subject to rapid fluctuations.

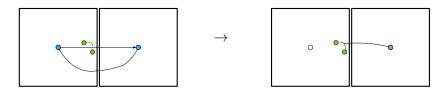




The notion of *renormalized charge* needs to be carefully defined, and must include the interactions of the errors with the transition rules

Complications for non-abelian anyons: interactions between renormalization levels

The hierarchic classification of errors does not capture the 'topological interaction' between anyons caused by different actual errors.



We introduce the notion of *causally-linked clusters* of errors, sets of actual errors which can potentially interact with each others through the application of transition rules.

Despite all the complications related to the 'non-abelianity', we show that our algorithm is such that

Despite all the complications related to the 'non-abelianity', we show that our algorithm is such that

 \blacksquare A level-n causally-linked cluster is spatially local at the n^{th} level of renormalization.

Despite all the complications related to the 'non-abelianity', we show that our algorithm is such that

- \blacksquare A level-n causally-linked cluster is spatially local at the n^{th} level of renormalization.
- The renormalized syndromes are valid (the good renormalized charge is reported).

Despite all the complications related to the 'non-abelianity', we show that our algorithm is such that

- \blacksquare A level-n causally-linked cluster is spatially local at the n^{th} level of renormalization.
- The renormalized syndromes are valid (the good renormalized charge is reported).
- Renormalized transition rules are always successful after being applied a constant number of times.

Despite all the complications related to the 'non-abelianity', we show that our algorithm is such that

- A level-n causally-linked cluster is spatially local at the nth level of renormalization.
- The renormalized syndromes are valid (the good renormalized charge is reported).
- Renormalized transition rules are always successful after being applied a constant number of times.

Non-cyclic anyons are anyons such that for any sequence of labels $\{x_0, x_1, \ldots, x_n\}$ such that $x_0 = x_n$ (and not the vacuum), then $\prod_{i=0}^n N_{x_i \bar{x}_i}^{x_{i+1}} = 0$.

A threshold for non-cyclic anyons

Despite the new failing mechanisms for non-abelian anyons, we show that our algorithm possess a threshold for non-cyclic anyons.

A threshold for non-cyclic anyons

Despite the new failing mechanisms for non-abelian anyons, we show that our algorithm possess a threshold for non-cyclic anyons.

Threshold theorem

If \mathcal{A} is non-cyclic, there exists a critical value $p_c > 0$ such that if $p+q < p_c$, for any number of time steps T and any $\epsilon > 0$, there exists a linear system size $L = Q^n \in \mathcal{O}(\log \frac{1}{\epsilon})$ such that with probability of at least $1-\epsilon$, the encoded quantum state can in principle be recovered after T time steps.

Fault-tolerant error correction for non-abelian anyons 1

A threshold for non-cyclic anyons

Despite the new failing mechanisms for non-abelian anyons, we show that our algorithm possess a threshold for non-cyclic anyons.

Threshold theorem

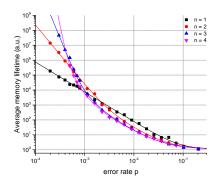
If \mathcal{A} is non-cyclic, there exists a critical value $p_c > 0$ such that if $p+q < p_c$, for any number of time steps T and any $\epsilon > 0$, there exists a linear system size $L = Q^n \in \mathcal{O}(\log \frac{1}{\epsilon})$ such that with probability of at least $1-\epsilon$, the encoded quantum state can in principle be recovered after T time steps.

The theorem provides an upper bound on the numerical value of $p_c < 2,7 \times 10^{-20} \times (3D+1)^{-4}$.

Fault-tolerant error correction for non-abelian anyons 1

Numerical simulations

We performed numerical simulations for Ising anyons. They suggest a threshold in the range of $10^{-4} \sim 10^{-3}$.



Future directions

What can we say about cyclic anyons? (ex. Fibonacci anyons)

Future directions

- What can we say about cyclic anyons? (ex. Fibonacci anyons)
- How do we modify the algorithm to the case where we have computational anyons?

Future directions

- What can we say about cyclic anyons? (ex. Fibonacci anyons)
- How do we modify the algorithm to the case where we have computational anyons?
- How about braiding in a fault-tolerant manner?

Thank you for your attention !