Optimal Quantum Sample Complexity of Learning Algorithms

Srinivasan Arunachalam

(Joint work with Ronald de Wolf)


```
Classical machine learning
```

Classical machine learning

• Grand goal: enable AI systems to improve themselves

Classical machine learning

- Grand goal: enable AI systems to improve themselves
- Practical goal: learn "something" from given data

Classical machine learning

- Grand goal: enable AI systems to improve themselves
- Practical goal: learn "something" from given data
- Recent success: deep learning is extremely good at image recognition, natural language processing, even the game of Go

Classical machine learning

- Grand goal: enable AI systems to improve themselves
- Practical goal: learn "something" from given data
- Recent success: deep learning is extremely good at image recognition, natural language processing, even the game of Go
- Why the recent interest? Flood of available data, increasing computational power, growing progress in algorithms

Classical machine learning

- Grand goal: enable AI systems to improve themselves
- Practical goal: learn "something" from given data
- Recent success: deep learning is extremely good at image recognition, natural language processing, even the game of Go
- Why the recent interest? Flood of available data, increasing computational power, growing progress in algorithms

Quantum machine learning

• What can quantum computing do for machine learning?

Classical machine learning

- Grand goal: enable AI systems to improve themselves
- Practical goal: learn "something" from given data
- Recent success: deep learning is extremely good at image recognition, natural language processing, even the game of Go
- Why the recent interest? Flood of available data, increasing computational power, growing progress in algorithms

Quantum machine learning

- What can quantum computing do for machine learning?
- The learner will be quantum, the data may be quantum

Classical machine learning

- Grand goal: enable AI systems to improve themselves
- Practical goal: learn "something" from given data
- Recent success: deep learning is extremely good at image recognition, natural language processing, even the game of Go
- Why the recent interest? Flood of available data, increasing computational power, growing progress in algorithms

Quantum machine learning

- What can quantum computing do for machine learning?
- The learner will be quantum, the data may be quantum
- Some examples are known of reduction in time complexity:
 - clustering (Aïmeur et al. '06)
 - principal component analysis (Lloyd et al. '13)
 - perceptron learning (Wiebe et al. '16)
 - recommendation systems (Kerenidis & Prakash '16)

Basic definitions

• Concept class C: collection of Boolean functions on n bits (Known)

- Concept class C: collection of Boolean functions on n bits (Known)
- Target concept c: some function $c \in C$ (Unknown)

- Concept class C: collection of Boolean functions on n bits (Known)
- Target concept c: some function $c \in C$ (Unknown)
- Distribution $D: \{0,1\}^n \rightarrow [0,1]$ (Unknown)

- Concept class C: collection of Boolean functions on n bits (Known)
- Target concept c: some function $c \in \mathcal{C}$ (Unknown)
- Distribution $D: \{0,1\}^n \to [0,1]$ (Unknown)
- Labeled example for $c \in \mathcal{C}$: (x, c(x)) where $x \sim D$

- Concept class C: collection of Boolean functions on n bits (Known)
- Target Concept c: some function $c \in C$. (Unknown)
- Distribution $D: \{0,1\}^n \to [0,1]$. (Unknown)
- Labeled example for $c \in \mathcal{C}$: (x, c(x)) where $x \sim D$

```
C
target concept
```

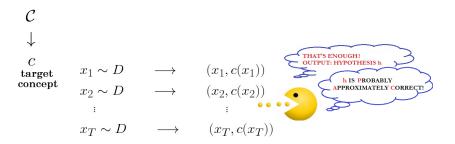

- Concept class C: collection of Boolean functions on n bits (Known)
- Target Concept c: some function $c \in C$. (Unknown)
- Distribution $D: \{0,1\}^n \to [0,1]$. (Unknown)
- Labeled example for $c \in \mathcal{C}$: (x, c(x)) where $x \sim D$

$$\begin{array}{cccc} \mathcal{C} & & & & \\ \downarrow & & & \\ c & & c & \\ \text{target} & & x_1 \sim D & & \longrightarrow & (x_1, c(x_1)) \end{array}$$

- Concept class C: collection of Boolean functions on n bits (Known)
- Target Concept c: some function $c \in C$. (Unknown)
- Distribution $D: \{0,1\}^n \to [0,1]$. (Unknown)
- Labeled example for $c \in \mathcal{C}$: (x, c(x)) where $x \sim D$

```
\begin{array}{cccc} \mathcal{C} & & & & \\ \downarrow & & & \\ c & & c & \\ \text{target} & & x_1 \sim D & \longrightarrow & (x_1, c(x_1)) \\ \text{concept} & & x_2 \sim D & \longrightarrow & (x_2, c(x_2)) \end{array}
```

- Concept class C: collection of Boolean functions on n bits (Known)
- Target Concept c: some function $c \in C$. (Unknown)
- Distribution $D: \{0,1\}^n \to [0,1]$. (Unknown)
- Labeled example for $c \in \mathcal{C}$: (x, c(x)) where $x \sim D$



Basic definitions

- Concept class C: collection of Boolean functions on n bits (Known)
- Target Concept c: some function $c \in C$. (Unknown)
- Distribution $D: \{0,1\}^n \to [0,1]$. (Unknown)
- Labeled example for $c \in C$: (x, c(x)) where $x \sim D$.

Formally: A theory of the learnable (Valiant'84)

Basic definitions

- Concept class C: collection of Boolean functions on n bits (Known)
- Target Concept c: some function $c \in C$. (Unknown)
- Distribution $D: \{0,1\}^n \to [0,1]$. (Unknown)
- Labeled example for $c \in C$: (x, c(x)) where $x \sim D$.

Formally: A theory of the learnable (Valiant'84)

• Using i.i.d. labeled examples, learner for C should output hypothesis h that is $Probably\ Approximately\ Correct$

Basic definitions

- Concept class C: collection of Boolean functions on n bits (Known)
- Target Concept c: some function $c \in C$. (Unknown)
- Distribution $D: \{0,1\}^n \to [0,1]$. (Unknown)
- Labeled example for $c \in C$: (x, c(x)) where $x \sim D$.

Formally: A theory of the learnable (Valiant'84)

- Using i.i.d. labeled examples, learner for C should output hypothesis h that is $Probably\ Approximately\ Correct$
- Error of h w.r.t. target c: $err_D(c, h) = \Pr_{x \sim D}[c(x) \neq h(x)]$

Basic definitions

- Concept class C: collection of Boolean functions on n bits (Known)
- Target Concept c: some function $c \in C$. (Unknown)
- Distribution $D: \{0,1\}^n \to [0,1]$. (Unknown)
- Labeled example for $c \in C$: (x, c(x)) where $x \sim D$.

Formally: A theory of the learnable (Valiant'84)

- Using i.i.d. labeled examples, learner for $\mathcal C$ should output hypothesis h that is $Probably\ Approximately\ Correct$
- Error of h w.r.t. target c: $err_D(c, h) = \Pr_{x \sim D}[c(x) \neq h(x)]$
- An algorithm (ε, δ) -PAC-learns $\mathcal C$ if:

$$\forall c \in \mathcal{C} \ \forall D: \ \Pr[\underbrace{\mathit{err}_D(c,h) \leq \varepsilon}_{\mathrm{Approximately Correct}}] \geq \underbrace{1-\delta}_{\mathrm{Probably}}$$

- Concept: some function $c: \{0,1\}^n \to \{0,1\}$ Concept class \mathcal{C} : set of concepts
- An algorithm (ε, δ) -PAC-learns $\mathcal C$ if:

```
\forall c \in \mathcal{C} \ \forall D: \ \Pr[\underbrace{\mathit{err}_D(c,h) \leq \varepsilon}_{\mathrm{Approximately Correct}}] \geq \underbrace{1-\delta}_{\mathrm{Probably}}
```

Recap

- Concept: some function $c: \{0,1\}^n \to \{0,1\}$ Concept class \mathcal{C} : set of concepts
- An algorithm (ε, δ) -PAC-learns $\mathcal C$ if:

$$\forall c \in \mathcal{C} \ \forall D: \ \Pr[\underbrace{\mathit{err}_D(c,h) \leq \varepsilon}_{\text{Approximately Correct}}] \geq \underbrace{1-\delta}_{\text{Probably}}$$

• How to measure the efficiency of the learning algorithm?

- Concept: some function $c: \{0,1\}^n \to \{0,1\}$ Concept class \mathcal{C} : set of concepts
- An algorithm (ε, δ) -PAC-learns $\mathcal C$ if:

$$\forall c \in \mathcal{C} \ \forall D: \ \Pr[\underbrace{\mathit{err}_D(c,h) \leq \varepsilon}_{\text{Approximately Correct}}] \geq \underbrace{1-\delta}_{\text{Probably}}$$

- How to measure the efficiency of the learning algorithm?
 - Sample complexity: number of labeled examples used by learner

- Concept: some function $c: \{0,1\}^n \to \{0,1\}$ Concept class \mathcal{C} : set of concepts
- An algorithm (ε, δ) -PAC-learns $\mathcal C$ if:

$$\forall c \in \mathcal{C} \ \forall D: \ \Pr[\underbrace{\mathit{err}_D(c,h) \leq \varepsilon}_{\mathrm{Approximately Correct}}] \geq \underbrace{1-\delta}_{\mathrm{Probably}}$$

- How to measure the efficiency of the learning algorithm?
 - Sample complexity: number of labeled examples used by learner
 - Time complexity: number of time-steps used by learner

- Concept: some function $c: \{0,1\}^n \to \{0,1\}$ Concept class \mathcal{C} : set of concepts
- An algorithm (ε, δ) -PAC-learns $\mathcal C$ if:

$$\forall c \in \mathcal{C} \ \forall D: \ \Pr[\underbrace{\mathit{err}_D(c,h) \leq \varepsilon}_{\text{Approximately Correct}}] \geq \underbrace{1-\delta}_{\text{Probably}}$$

- How to measure the efficiency of the learning algorithm?
 - Sample complexity: number of labeled examples used by learner
 - Time complexity: number of time-steps used by learner
- This talk: focus on sample complexity

- Concept: some function $c: \{0,1\}^n \to \{0,1\}$ Concept class \mathcal{C} : set of concepts
- An algorithm (ε, δ) -PAC-learns $\mathcal C$ if:

$$\forall c \in \mathcal{C} \ \forall D: \ \Pr[\underbrace{\mathit{err}_D(c,h) \leq \varepsilon}_{\text{Approximately Correct}}] \geq \underbrace{1-\delta}_{\text{Probably}}$$

- How to measure the efficiency of the learning algorithm?
 - Sample complexity: number of labeled examples used by learner
 - Time complexity: number of time-steps used by learner
- This talk: focus on sample complexity
 - No need for complexity-theoretic assumptions

- Concept: some function $c: \{0,1\}^n \to \{0,1\}$ Concept class \mathcal{C} : set of concepts
- An algorithm (ε, δ) -PAC-learns $\mathcal C$ if:

$$\forall c \in \mathcal{C} \ \forall D: \ \Pr[\underbrace{\mathit{err}_D(c,h) \leq \varepsilon}_{\text{Approximately Correct}}] \geq \underbrace{1-\delta}_{\text{Probably}}$$

- How to measure the efficiency of the learning algorithm?
 - Sample complexity: number of labeled examples used by learner
 - Time complexity: number of time-steps used by learner
- This talk: focus on sample complexity
 - No need for complexity-theoretic assumptions
 - ullet No need to worry about the format of hypothesis h

```
VC dimension of \overline{\mathcal{C}}\subseteq\{c:\{0,1\}^n	o\{0,1\}\}
```

VC dimension of $\mathcal{C} \subseteq \{c : \{0,1\}^n \rightarrow \{0,1\}\}$

Let M be the $|\mathcal{C}| \times 2^n$ Boolean matrix whose c-th row is the truth table of concept $c: \{0,1\}^n \to \{0,1\}$

VC dimension of $\mathcal{C} \subseteq \{c : \{0,1\}^n \rightarrow \{0,1\}\}$

Let M be the $|\mathcal{C}| \times 2^n$ Boolean matrix whose c-th row is the truth table of concept $c: \{0,1\}^n \to \{0,1\}$

VC-dim(\mathcal{C}): largest d s.t. the $|\mathcal{C}| \times d$ rectangle in M contains $\{0,1\}^d$

VC dimension of $\mathcal{C} \subseteq \{c : \{0,1\}^n \rightarrow \{0,1\}\}$

Let M be the $|\mathcal{C}| \times 2^n$ Boolean matrix whose c-th row is the truth table of concept $c: \{0,1\}^n \to \{0,1\}$

VC-dim(\mathcal{C}): largest d s.t. the $|\mathcal{C}| \times d$ rectangle in M contains $\{0,1\}^d$

These d column indices are shattered by C

VC dimension of $C \subseteq \{c : \{0,1\}^n \to \{0,1\}\}$

M is the $|\mathcal{C}| \times 2^n$ Boolean matrix whose c-th row is the truth table of c VC-dim(\mathcal{C}): largest d s.t. the $|\mathcal{C}| \times d$ rectangle in M contains $\{0,1\}^d$ These d column indices are shattered by \mathcal{C}

Table : $VC\text{-dim}(\mathcal{C}) = 2$

Concepts	Truth table			
<i>c</i> ₁	0	1	0	1
<i>c</i> ₂	0	1	1	0
<i>c</i> ₃	1	0	0	1
C4	1	0	1	0
C ₅	1	1	0	1
<i>c</i> ₆	0	1	1	1
C ₇	0	0	1	1
<i>c</i> ₈	0	1	0	0
<i>C</i> 9	1	1	1	1

VC dimension of $\mathcal{C} \subseteq \{c : \{0,1\}^n \to \{0,1\}\}$

M is the $|\mathcal{C}| \times 2^n$ Boolean matrix whose c-th row is the truth table of c VC-dim(\mathcal{C}): largest d s.t. the $|\mathcal{C}| \times d$ rectangle in M contains $\{0,1\}^d$ These d column indices are shattered by \mathcal{C}

Table : $VC\text{-dim}(\mathcal{C}) = 2$

Concepts	Truth table			
<i>c</i> ₁	0	1	0	1
<i>c</i> ₂	0	1	1	0
<i>c</i> ₃	1	0	0	1
C ₄	1	0	1	0
C ₅	1	1	0	1
<i>c</i> ₆	0	1	1	1
C ₇	0	0	1	1
<i>c</i> ₈	0	1	0	0
Co	1	1	1	1

Table : VC-dim(C) = 3

Concepts	Truth table			
c_1	0	1	1	0
<i>c</i> ₂	1	0	0	1
<i>c</i> ₃	0	0	0	0
C ₄	1	1	0	1
C ₅	1	0	1	0
<i>c</i> ₆	0	1	1	1
C ₇	0	0	1	1
<i>c</i> ₈	0	1	0	1
C 9	0	1	0	0

VC dimension characterizes PAC sample complexity

VC dimension of $\mathcal C$

M is the $|\mathcal{C}| \times 2^n$ Boolean matrix whose c-th row is the truth table of c VC-dim(\mathcal{C}): largest d s.t. the $|\mathcal{C}| \times d$ rectangle in M contains $\{0,1\}^d$ These d column indices are shattered by \mathcal{C}

Fundamental theorem of PAC learning

VC dimension characterizes PAC sample complexity

VC dimension of $\mathcal C$

M is the $|\mathcal{C}| \times 2^n$ Boolean matrix whose c-th row is the truth table of c VC-dim(\mathcal{C}): largest d s.t. the $|\mathcal{C}| \times d$ rectangle in M contains $\{0,1\}^d$ These d column indices are shattered by \mathcal{C}

Fundamental theorem of PAC learning

Suppose $VC\text{-dim}(\mathcal{C}) = d$

VC dimension characterizes PAC sample complexity

VC dimension of $\mathcal C$

M is the $|\mathcal{C}| \times 2^n$ Boolean matrix whose c-th row is the truth table of c VC-dim(\mathcal{C}): largest d s.t. the $|\mathcal{C}| \times d$ rectangle in M contains $\{0,1\}^d$ These d column indices are shattered by \mathcal{C}

Fundamental theorem of PAC learning

Suppose VC-dim(C) = d

• Blumer-Ehrenfeucht-Haussler-Warmuth'86: every (ε, δ) -PAC learner for $\mathcal C$ needs $\Omega\left(\frac{d}{\varepsilon} + \frac{\log(1/\delta)}{\varepsilon}\right)$ examples

VC dimension characterizes PAC sample complexity

VC dimension of C

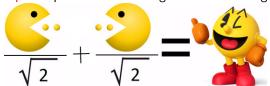
M is the $|\mathcal{C}| \times 2^n$ Boolean matrix whose c-th row is the truth table of c VC-dim(\mathcal{C}): largest d s.t. the $|\mathcal{C}| \times d$ rectangle in M contains $\{0,1\}^d$ These d column indices are shattered by \mathcal{C}

Fundamental theorem of PAC learning

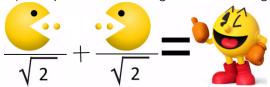
Suppose VC-dim(C) = d

- Blumer-Ehrenfeucht-Haussler-Warmuth'86: every (ε, δ) -PAC learner for $\mathcal C$ needs $\Omega\left(\frac{d}{\varepsilon} + \frac{\log(1/\delta)}{\varepsilon}\right)$ examples
- Hanneke'16: there exists an (ε, δ) -PAC learner for $\mathcal C$ using $O\left(\frac{d}{\varepsilon} + \frac{\log(1/\delta)}{\varepsilon}\right)$ examples

Do quantum computers provide an advantage for PAC learning?

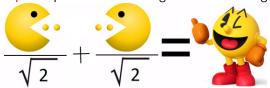


Do quantum computers provide an advantage for PAC learning?



Quantum data

Do quantum computers provide an advantage for PAC learning?

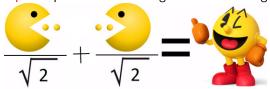


Quantum data

• Bshouty-Jackson'95: Quantum example is a superposition

$$|E_{c,D}\rangle = \sum_{x \in \{0,1\}^n} \sqrt{D(x)} |x,c(x)\rangle$$

Do quantum computers provide an advantage for PAC learning?



Quantum data

• Bshouty-Jackson'95: Quantum example is a superposition

$$|E_{c,D}\rangle = \sum_{x \in \{0,1\}^n} \sqrt{D(x)} |x,c(x)\rangle$$

• Measuring this (n + 1)-qubit state gives a classical example, so quantum examples are at least as powerful as classical

Quantum Data

- Quantum example: $|E_{c,D}\rangle = \sum_{x \in \{0,1\}^n} \sqrt{D(x)} |x,c(x)\rangle$
- Quantum examples are at least as powerful as classical examples

Quantum is indeed more powerful for learning! (for a fixed distribution)

Quantum Data

- Quantum example: $|E_{c,D}\rangle = \sum_{x \in \{0,1\}^n} \sqrt{D(x)} |x,c(x)\rangle$
- Quantum examples are at least as powerful as classical examples

Quantum is indeed more powerful for learning! (for a fixed distribution)

• Learning class of linear functions under uniform *D*:

Quantum Data

- Quantum example: $|E_{c,D}\rangle = \sum_{x \in \{0,1\}^n} \sqrt{D(x)} |x,c(x)\rangle$
- Quantum examples are at least as powerful as classical examples

Quantum is indeed more powerful for learning! (for a fixed distribution)

• Learning class of linear functions under uniform *D*:

Classical: $\Omega(n)$ classical examples needed

Quantum: O(1) quantum examples suffice (Bernstein-Vazirani'93)

Quantum Data

- Quantum example: $|E_{c,D}\rangle = \sum_{x \in \{0,1\}^n} \sqrt{D(x)} |x,c(x)\rangle$
- Quantum examples are at least as powerful as classical examples

Quantum is indeed more powerful for learning! (for a fixed distribution)

- Learning class of linear functions under uniform D: Classical: $\Omega(n)$ classical examples needed Quantum: O(1) quantum examples suffice (Bernstein-Vazirani'93)
- Learning DNF under uniform *D*:

Quantum Data

- Quantum example: $|E_{c,D}\rangle = \sum_{x \in \{0,1\}^n} \sqrt{D(x)} |x,c(x)\rangle$
- Quantum examples are at least as powerful as classical examples

Quantum is indeed more powerful for learning! (for a fixed distribution)

- Learning class of linear functions under uniform D: Classical: $\Omega(n)$ classical examples needed
 - Quantum: O(1) quantum examples suffice (Bernstein-Vazirani'93)
- Learning DNF under uniform *D*:
 - Classical: Best known upper bound is quasi-poly. time (Verbeugt'90)
 - Quantum: Polynomial-time (Bshouty-Jackson'95)

Quantum Data

- Quantum example: $|E_{c,D}\rangle = \sum_{x \in \{0,1\}^n} \sqrt{D(x)} |x,c(x)\rangle$
- Quantum examples are at least as powerful as classical examples

Quantum is indeed more powerful for learning! (for a fixed distribution)

- Learning class of linear functions under uniform D: Classical: $\Omega(n)$ classical examples needed Quantum: O(1) quantum examples suffice (Bernstein-Vazirani'93)
- Learning DNF under uniform D:
 Classical: Best known upper bound is quasi-poly. time (Verbeugt'90)
 Quantum Polynomial-time (Bshouty-Jackson'95)

But in the PAC model, learner has to succeed for all D!

Quantum sample complexity

Quantum sample complexity

Quantum upper bound

Classical upper bound $O\left(\frac{d}{\varepsilon} + \frac{\log(1/\delta)}{\varepsilon}\right)$ carries over to quantum

Quantum sample complexity

Quantum upper bound

Classical upper bound $O\left(\frac{d}{\varepsilon} + \frac{\log(1/\delta)}{\varepsilon}\right)$ carries over to quantum

Best known quantum lower bounds

Atici & Servedio'04: lower bound $\Omega\left(\frac{\sqrt{d}}{\varepsilon}+d+\frac{\log(1/\delta)}{\varepsilon}\right)$

Zhang'10 improved first term to $\frac{d^{1-\eta}}{\varepsilon}$ for all $\eta>0$

Quantum sample complexity = Classical sample complexity

Quantum upper bound

Classical upper bound $O\left(\frac{d}{\varepsilon} + \frac{\log(1/\delta)}{\varepsilon}\right)$ carries over to quantum

Best known quantum lower bounds

Atici & Servedio'04: lower bound $\Omega\left(\frac{\sqrt{d}}{arepsilon} + d + \frac{\log(1/\delta)}{arepsilon}
ight)$

Zhang'10 improved first term to $\frac{d^{1-\eta}}{\varepsilon}$ for all $\eta>0$

Our result: Tight lower bound

We show: $\Omega\left(\frac{d}{\varepsilon} + \frac{\log(1/\delta)}{\varepsilon}\right)$ quantum examples are necessary

Quantum sample complexity = Classical sample complexity

Quantum upper bound

Classical upper bound $O\left(\frac{d}{\varepsilon} + \frac{\log(1/\delta)}{\varepsilon}\right)$ carries over to quantum

Best known quantum lower bounds

Atici & Servedio'04: lower bound $\Omega\left(\frac{\sqrt{d}}{\varepsilon}+d+\frac{\log(1/\delta)}{\varepsilon}\right)$

Zhang'10 improved first term to $\frac{d^{1-\eta}}{\varepsilon}$ for all $\eta>0$

Our result: Tight lower bound

We show: $\Omega\left(\frac{d}{\varepsilon} + \frac{\log(1/\delta)}{\varepsilon}\right)$ quantum examples are necessary

Two proof approaches

• Information theory: conceptually simple, nearly-tight bounds

Quantum sample complexity = Classical sample complexity

Quantum upper bound

Classical upper bound $O\left(\frac{d}{\varepsilon} + \frac{\log(1/\delta)}{\varepsilon}\right)$ carries over to quantum

Best known quantum lower bounds

Atici & Servedio'04: lower bound $\Omega\left(\frac{\sqrt{d}}{\varepsilon}+d+\frac{\log(1/\delta)}{\varepsilon}\right)$

Zhang'10 improved first term to $\frac{d^{1-\eta}}{\varepsilon}$ for all $\eta>0$

Our result: Tight lower bound

We show: $\Omega\left(\frac{d}{\varepsilon} + \frac{\log(1/\delta)}{\varepsilon}\right)$ quantum examples are necessary

Two proof approaches

- Information theory: conceptually simple, nearly-tight bounds
- Optimal measurement: tight bounds, some messy calculations

```
State identification: Ensemble \mathcal{E} = \{(p_z, |\psi_z\rangle)\}_{z \in [m]}
```

```
State identification: Ensemble \mathcal{E} = \{(p_z, |\psi_z\rangle)\}_{z \in [m]}
```

ullet Given state $|\psi_z
angle\in\mathcal{E}$ with prob p_z Goal: identify z

```
State identification: Ensemble \mathcal{E} = \{(p_z, |\psi_z\rangle)\}_{z \in [m]}
```

- ullet Given state $|\psi_z
 angle\in\mathcal{E}$ with prob p_z Goal: identify z
- Optimal measurement could be quite complicated,

```
State identification: Ensemble \mathcal{E} = \{(p_z, |\psi_z\rangle)\}_{z \in [m]}
```

- ullet Given state $|\psi_z\rangle\in\mathcal{E}$ with prob p_z Goal: identify z
- Optimal measurement could be quite complicated, but we can always use the Pretty Good Measurement

State identification: Ensemble $\mathcal{E} = \{(p_z, |\psi_z\rangle)\}_{z \in [m]}$

- ullet Given state $|\psi_z\rangle\in\mathcal{E}$ with prob p_z Goal: identify z
- Optimal measurement could be quite complicated, but we can always use the Pretty Good Measurement
- Crucial property: if P_{opt} is the success probability of the optimal measurement,

State identification: Ensemble $\mathcal{E} = \{(p_z, |\psi_z\rangle)\}_{z \in [m]}$

- ullet Given state $|\psi_z
 angle\in\mathcal{E}$ with prob p_z Goal: identify z
- Optimal measurement could be quite complicated, but we can always use the Pretty Good Measurement
- Crucial property: if P_{opt} is the success probability of the optimal measurement, then $P_{opt} \geq P_{pgm}$

State identification: Ensemble $\mathcal{E} = \{(p_z, |\psi_z\rangle)\}_{z \in [m]}$

- ullet Given state $|\psi_z
 angle\in\mathcal{E}$ with prob \emph{p}_z Goal: identify \emph{z}
- Optimal measurement could be quite complicated, but we can always use the Pretty Good Measurement
- Crucial property: if P_{opt} is the success probability of the optimal measurement, then $P_{opt} \geq P_{pgm} \geq P_{opt}^2$ (Barnum-Knill'02)

State identification: Ensemble $\mathcal{E} = \{(p_z, |\psi_z\rangle)\}_{z \in [m]}$

- Given state $|\psi_z\rangle \in \mathcal{E}$ with prob p_z Goal: identify z
- Optimal measurement could be quite complicated, but we can always use the Pretty Good Measurement
- Crucial property: if P_{opt} is the success probability of the optimal measurement, then $P_{opt} \geq P_{pgm} \geq P_{opt}^2$ (Barnum-Knill'02)

State identification: Ensemble $\mathcal{E} = \{(p_z, |\psi_z\rangle)\}_{z \in [m]}$

- Given state $|\psi_z\rangle \in \mathcal{E}$ with prob p_z Goal: identify z
- Optimal measurement could be quite complicated, but we can always use the Pretty Good Measurement
- Crucial property: if P_{opt} is the success probability of the optimal measurement, then $P_{opt} \geq P_{pgm} \geq P_{opt}^2$ (Barnum-Knill'02)

How does learning relate to identification?

• Quantum PAC: Given $|\psi_c\rangle = |E_{c,D}\rangle^{\otimes T}$, learn c approximately

State identification: Ensemble $\mathcal{E} = \{(p_z, |\psi_z\rangle)\}_{z \in [m]}$

- Given state $|\psi_z\rangle \in \mathcal{E}$ with prob p_z Goal: identify z
- Optimal measurement could be quite complicated, but we can always use the Pretty Good Measurement
- Crucial property: if P_{opt} is the success probability of the optimal measurement, then $P_{opt} \geq P_{pgm} \geq P_{opt}^2$ (Barnum-Knill'02)

- Quantum PAC: Given $|\psi_c\rangle = |E_{c,D}\rangle^{\otimes T}$, learn c approximately
- Goal: show $T \geq d/\varepsilon$, where $d = VC-dim(\mathcal{C})$

State identification: Ensemble $\mathcal{E} = \{(p_z, |\psi_z\rangle)\}_{z \in [m]}$

- ullet Given state $|\psi_z\rangle\in\mathcal{E}$ with prob p_z Goal: identify z
- Optimal measurement could be quite complicated, but we can always use the Pretty Good Measurement
- Crucial property: if P_{opt} is the success probability of the optimal measurement, then $P_{opt} \geq P_{pgm} \geq P_{opt}^2$ (Barnum-Knill'02)

- Quantum PAC: Given $|\psi_c\rangle = |E_{c,D}\rangle^{\otimes T}$, learn c approximately
- Goal: show $T \geq d/\varepsilon$, where $d = VC\text{-dim}(\mathcal{C})$
- Suppose $\{s_0, \ldots, s_d\}$ is shattered by C.

State identification: Ensemble $\mathcal{E} = \{(p_z, |\psi_z\rangle)\}_{z \in [m]}$

- ullet Given state $|\psi_z\rangle\in\mathcal{E}$ with prob p_z Goal: identify z
- Optimal measurement could be quite complicated, but we can always use the Pretty Good Measurement
- Crucial property: if P_{opt} is the success probability of the optimal measurement, then $P_{opt} \geq P_{pgm} \geq P_{opt}^2$ (Barnum-Knill'02)

- Quantum PAC: Given $|\psi_c\rangle = |E_{c,D}\rangle^{\otimes T}$, learn c approximately
- Goal: show $T \geq d/\varepsilon$, where $d = VC\text{-dim}(\mathcal{C})$
- Suppose $\{s_0, \ldots, s_d\}$ is shattered by \mathcal{C} . Fix a nasty distribution D: $D(s_0) = 1 16\varepsilon$, $D(s_i) = 16\varepsilon/d$ on $\{s_1, \ldots, s_d\}$

State identification: Ensemble $\mathcal{E} = \{(p_z, |\psi_z\rangle)\}_{z \in [m]}$

- ullet Given state $|\psi_z\rangle\in\mathcal{E}$ with prob p_z Goal: identify z
- Optimal measurement could be quite complicated, but we can always use the Pretty Good Measurement
- Crucial property: if P_{opt} is the success probability of the optimal measurement, then $P_{opt} \geq P_{pgm} \geq P_{opt}^2$ (Barnum-Knill'02)

- Quantum PAC: Given $|\psi_c\rangle = |E_{c,D}\rangle^{\otimes T}$, learn c approximately
- Goal: show $T \ge d/\varepsilon$, where d = VC-dim(C)
- Suppose $\{s_0, \ldots, s_d\}$ is shattered by \mathcal{C} . Fix a nasty distribution D: $D(s_0) = 1 16\varepsilon$, $D(s_i) = 16\varepsilon/d$ on $\{s_1, \ldots, s_d\}$
- Let $E: \{0,1\}^k \to \{0,1\}^d$ be a good error-correcting code s.t. $k \ge d/4$ and $d_H(E(y), E(z)) \ge d/8$

State identification: Ensemble $\mathcal{E} = \{(p_z, |\psi_z\rangle)\}_{z \in [m]}$

- Given state $|\psi_z\rangle \in \mathcal{E}$ with prob p_z Goal: identify z
- Optimal measurement could be quite complicated, but we can always use the Pretty Good Measurement
- Crucial property: if P_{opt} is the success probability of the optimal measurement, then $P_{opt} \geq P_{pgm} \geq P_{opt}^2$ (Barnum-Knill'02)

- Quantum PAC: Given $|\psi_c\rangle = |E_{c,D}\rangle^{\otimes T}$, learn c approximately
- Goal: show $T \ge d/\varepsilon$, where $d = VC\text{-dim}(\mathcal{C})$
- Suppose $\{s_0, \ldots, s_d\}$ is shattered by \mathcal{C} . Fix a nasty distribution D: $D(s_0) = 1 16\varepsilon$, $D(s_i) = 16\varepsilon/d$ on $\{s_1, \ldots, s_d\}$
- Let $E: \{0,1\}^k \to \{0,1\}^d$ be a good error-correcting code s.t. $k \ge d/4$ and $d_H(E(y), E(z)) \ge d/8$
- Pick concepts $\{c^z\}_{z\in\{0,1\}^k}\subseteq \mathcal{C}$:

State identification: Ensemble $\mathcal{E} = \{(p_z, |\psi_z\rangle)\}_{z \in [m]}$

- Given state $|\psi_z\rangle \in \mathcal{E}$ with prob p_z Goal: identify z
- Optimal measurement could be quite complicated, but we can always use the Pretty Good Measurement
- Crucial property: if P_{opt} is the success probability of the optimal measurement, then $P_{opt} \geq P_{pgm} \geq P_{opt}^2$ (Barnum-Knill'02)

- Quantum PAC: Given $|\psi_c\rangle = |E_{c,D}\rangle^{\otimes T}$, learn c approximately
- Goal: show $T \geq d/\varepsilon$, where $d = VC\text{-dim}(\mathcal{C})$
- Suppose $\{s_0, \ldots, s_d\}$ is shattered by \mathcal{C} . Fix a nasty distribution D: $D(s_0) = 1 16\varepsilon$, $D(s_i) = 16\varepsilon/d$ on $\{s_1, \ldots, s_d\}$
- Let $E: \{0,1\}^k \to \{0,1\}^d$ be a good error-correcting code s.t. $k \ge d/4$ and $d_H(E(y), E(z)) \ge d/8$
- Pick concepts $\{c^z\}_{z\in\{0,1\}^k}\subseteq\mathcal{C}\colon c^z(s_0)=0,\ c^z(s_i)=E(z)_i\ \forall\ i$

Pick concepts $\{c^z\}\subseteq \mathcal{C}: c^z(s_0)=0, c^z(s_i)=E(z)_i \ \forall i$

Suppose $VC(\mathcal{C}) = d+1$ and $\{s_0, \ldots, s_d\}$ is shattered by \mathcal{C} , i.e., $|\mathcal{C}| \times (d+1)$ rectangle of $\{s_0, \ldots, s_d\}$ contains $\{0, 1\}^{d+1}$

Pick concepts $\{c^z\}\subseteq \mathcal{C}:\ c^z(s_0)=0,\ c^z(s_i)=E(z)_i\ \forall\ i$

Suppose $VC(\mathcal{C}) = d+1$ and $\{s_0, \ldots, s_d\}$ is shattered by \mathcal{C} , i.e., $|\mathcal{C}| \times (d+1)$ rectangle of $\{s_0, \ldots, s_d\}$ contains $\{0, 1\}^{d+1}$

Concepts	Truth table								
$c\in \mathcal{C}$	<i>s</i> ₀	s_1		s_{d-1}	Sd	• • •	• • •		
<i>c</i> ₁	0	0		0	0				
<i>c</i> ₂	0	0		1	0				
<i>c</i> ₃	0	0		1	1				
:	:	:	٠	:	:				
$c_{2^{d}-1}$	0	1		1	0				
C 2 ^d	0	1		1	1				
c_{2^d+1}	1	0		0	1	• • •			
:	:	:	٠	:	:				
$c_{2^{d+1}}$	1	1		1	1				
:	:	:	٠.	:	:				

Pick concepts $\{c^z\}\subseteq \mathcal{C}:\ c^z(s_0)=0,\ c^z(s_i)=E(z)_i\ \forall\ i$

Suppose $VC(\mathcal{C}) = d+1$ and $\{s_0, \ldots, s_d\}$ is shattered by \mathcal{C} , i.e., $|\mathcal{C}| \times (d+1)$ rectangle of $\{s_0, \ldots, s_d\}$ contains $\{0, 1\}^{d+1}$

Truth table									
<i>s</i> ₀	<i>s</i> ₁		s_{d-1}	Sd					
0	0		0	0					
0	0		1	0					
0	0		1	1					
:	:	٠	:	:					
0	1		1	0					
0	1		1	1					
1	0		0	1	• • •				
:	:	٠	:	:					
1	1		1	1					
:	:	٠	:	:					
	0 0 0 : 0 0 1	0 0 0 0 0 0 : : 0 1 0 1 1 0 : : 1 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			

$$c(s_0)=0$$

Among $\{c_1,\ldots,c_{2^d}\}$, pick 2^k concepts that correspond to codewords of $E:\{0,1\}^k \to \{0,1\}^d$ on $\{s_1,\ldots,s_d\}$

Proof approach: Pretty Good Measurement

State identification: Ensemble $\mathcal{E} = \{(p_z, |\psi_z\rangle)\}_{z \in [m]}$

- Given state $|\psi_z\rangle \in \mathcal{E}$ with prob p_z Goal: identify z
- Optimal measurement could be quite complicated, but we can always use the Pretty Good Measurement
- Crucial property: $P_{opt} \ge P_{pgm} \ge P_{opt}^2$ (Barnum-Knill'02)

How does learning relate to identification?

- Given $|\psi_{c^z}\rangle = |E_{c^z,D}\rangle^{\otimes T}$, learn c^z approximately. Show $T \geq d/\varepsilon$
- Suppose $\{s_0, \ldots, s_d\}$ is shattered by \mathcal{C} . Fix a nasty distribution D: $D(s_0) = 1 16\varepsilon$, $D(s_i) = 16\varepsilon/d$ on $\{s_1, \ldots, s_d\}$
- Let $E: \{0,1\}^k \to \{0,1\}^d$ be a good error-correcting code s.t. $k \ge d/4$ and $d_H(E(y), E(z)) \ge d/8$
- Pick concepts $\{c^z\}_{z\in\{0,1\}^k}\subseteq\mathcal{C}\colon c^z(s_0)=0,\ c^z(s_i)=E(z)_i\ \forall\ i$

Proof approach: Pretty Good Measurement

State identification: Ensemble $\mathcal{E} = \{(p_z, |\psi_z\rangle)\}_{z \in [m]}$

- ullet Given state $|\psi_z
 angle\in\mathcal{E}$ with prob p_z Goal: identify z
- Optimal measurement could be quite complicated, but we can always use the Pretty Good Measurement
- Crucial property: $P_{opt} \ge P_{pgm} \ge P_{opt}^2$ (Barnum-Knill'02)

How does learning relate to identification?

- Given $|\psi_{c^z}\rangle = |E_{c^z,D}\rangle^{\otimes T}$, learn c^z approximately. Show $T \geq d/\varepsilon$
- Suppose $\{s_0, \ldots, s_d\}$ is shattered by \mathcal{C} . Fix a nasty distribution D: $D(s_0) = 1 16\varepsilon$, $D(s_i) = 16\varepsilon/d$ on $\{s_1, \ldots, s_d\}$
- Let $E: \{0,1\}^k \to \{0,1\}^d$ be a good error-correcting code s.t. $k \ge d/4$ and $d_H(E(y), E(z)) \ge d/8$
- Pick concepts $\{c^z\}_{z \in \{0,1\}^k} \subseteq \mathcal{C}$: $c^z(s_0) = 0$, $c^z(s_i) = E(z)_i \ \forall \ i$
- Learning c^z approximately (wrt D) is equivalent to identifying z!

Recap

• Learning c^z approximately (wrt D) is equivalent to identifying z!

Recap

- Learning c^z approximately (wrt D) is equivalent to identifying z!
- If sample complexity is T, then there is a good learner (i.e., measurement) that *identifies* z from $|\psi_{c^z}\rangle = |E_{c^z,D}\rangle^{\otimes T}$ with probability $\geq 1 \delta$

Recap

- Learning c^z approximately (wrt D) is equivalent to identifying z!
- If sample complexity is T, then there is a good learner (i.e., measurement) that *identifies* z from $|\psi_{c^z}\rangle = |E_{c^z,D}\rangle^{\otimes T}$ with probability $\geq 1-\delta$
- Goal: Show $T \ge d/\varepsilon$

Recap

- Learning c^z approximately (wrt D) is equivalent to identifying z!
- If sample complexity is T, then there is a good learner (i.e., measurement) that *identifies* z from $|\psi_{c^z}\rangle = |E_{c^z,D}\rangle^{\otimes T}$ with probability $\geq 1-\delta$
- Goal: Show $T \ge d/\varepsilon$

Recap

- Learning c^z approximately (wrt D) is equivalent to identifying z!
- If sample complexity is T, then there is a good learner (i.e., measurement) that identifies z from $|\psi_{c^z}\rangle = |E_{c^z,D}\rangle^{\otimes T}$ with probability $\geq 1-\delta$
- Goal: Show $T \ge d/\varepsilon$

Analysis of PGM

• For the ensemble $\{|\psi_{c^z}\rangle:z\in\{0,1\}^k\}$ with uniform probabilities $p_z=1/2^k$, we have P_{pgm}

Recap

- Learning c^z approximately (wrt D) is equivalent to identifying z!
- If sample complexity is T, then there is a good learner (i.e., measurement) that identifies z from $|\psi_{c^z}\rangle = |E_{c^z,D}\rangle^{\otimes T}$ with probability $\geq 1-\delta$
- Goal: Show $T \ge d/\varepsilon$

Analysis of PGM

• For the ensemble $\{|\psi_{c^z}\rangle: z\in\{0,1\}^k\}$ with uniform probabilities $p_z=1/2^k$, we have $P_{pgm}\geq P_{opt}^2\geq (1-\delta)^2$

Recap

- Learning c^z approximately (wrt D) is equivalent to identifying z!
- If sample complexity is T, then there is a good learner (i.e., measurement) that identifies z from $|\psi_{c^z}\rangle = |E_{c^z,D}\rangle^{\otimes T}$ with probability $\geq 1-\delta$
- Goal: Show $T \ge d/\varepsilon$

- For the ensemble $\{|\psi_{c^z}\rangle:z\in\{0,1\}^k\}$ with uniform probabilities $p_z=1/2^k$, we have $P_{pgm}\geq P_{opt}^2\geq (1-\delta)^2$
- \bullet $P_{pgm} \leq$

Recap

- Learning c^z approximately (wrt D) is equivalent to identifying z!
- If sample complexity is T, then there is a good learner (i.e., measurement) that identifies z from $|\psi_{c^z}\rangle = |E_{c^z,D}\rangle^{\otimes T}$ with probability $\geq 1-\delta$
- Goal: Show $T \ge d/\varepsilon$

- For the ensemble $\{|\psi_{c^z}\rangle:z\in\{0,1\}^k\}$ with uniform probabilities $p_z=1/2^k$, we have $P_{pgm}\geq P_{opt}^2\geq (1-\delta)^2$
- $P_{pgm} \leq \cdots$ 4-page calculation $\cdots \leq \exp(T^2 \varepsilon^2/d + \sqrt{Td\varepsilon} d T\varepsilon)$

Recap

- Learning c^z approximately (wrt D) is equivalent to identifying z!
- If sample complexity is T, then there is a good learner (i.e., measurement) that identifies z from $|\psi_{c^z}\rangle = |E_{c^z,D}\rangle^{\otimes T}$ with probability $\geq 1-\delta$
- Goal: Show $T \ge d/\varepsilon$

- For the ensemble $\{|\psi_{c^z}\rangle: z\in\{0,1\}^k\}$ with uniform probabilities $p_z=1/2^k$, we have $P_{pgm}\geq P_{opt}^2\geq (1-\delta)^2$
- $P_{pgm} \leq \cdots$ 4-page calculation $\cdots \leq \exp(T^2 \varepsilon^2/d + \sqrt{Td\varepsilon} d T\varepsilon)$
- This implies $T = \Omega(d/\varepsilon)$

Recap

- Learning c^z approximately (wrt D) is equivalent to identifying z!
- If sample complexity is T, then there is a good learner that *identifies* z from $|\psi_{c^z}\rangle=|{\cal E}_{c^z,D}\rangle^{\otimes T}$ with probability $\geq 1-\delta$

Analysis of PGM

- For the ensemble $\{|\psi_{c^z}\rangle:z\in\{0,1\}^k\}$ with uniform probabilities $p_z=1/2^k$, we have $\frac{P_{pgm}}{P_{opt}}\geq (1-\delta)^2$
- $P_{pgm} \leq \cdots$ 4-page calculation $\cdots \leq \exp(T^2 \varepsilon^2/d + \sqrt{Td\varepsilon} d T\varepsilon)$
- This implies $T = \Omega(d/\varepsilon)$

Quantum PAC

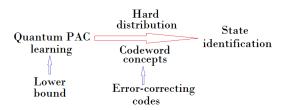
learning

ower

Recap

- Learning c^z approximately (wrt D) is equivalent to identifying z!
- If sample complexity is T, then there is a good learner that *identifies* z from $|\psi_{c^z}\rangle = |\mathcal{E}_{c^z,D}\rangle^{\otimes T}$ with probability $\geq 1 \delta$

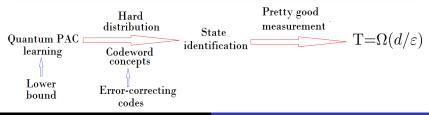
- For the ensemble $\{|\psi_{c^z}\rangle:z\in\{0,1\}^k\}$ with uniform probabilities $p_z=1/2^k$, we have $\frac{P_{pgm}}{P_{opt}}\geq \frac{(1-\delta)^2}{(1-\delta)^2}$
- $P_{pgm} \leq \cdots$ 4-page calculation $\cdots \leq \exp(T^2 \varepsilon^2/d + \sqrt{Td\varepsilon} d T\varepsilon)$
- This implies $T = \Omega(d/\varepsilon)$



Recap

- Learning c^z approximately (wrt D) is equivalent to identifying z!
- If sample complexity is T, then there is a good learner that *identifies* z from $|\psi_{c^z}\rangle=|{\cal E}_{c^z,D}\rangle^{\otimes T}$ with probability $\geq 1-\delta$

- For the ensemble $\{|\psi_{c^z}\rangle:z\in\{0,1\}^k\}$ with uniform probabilities $p_z=1/2^k$, we have $\frac{P_{pgm}}{P_{opt}}\geq (1-\delta)^2$
- $P_{pgm} \leq \cdots$ 4-page calculation $\cdots \leq \exp(T^2 \varepsilon^2/d + \sqrt{Td\varepsilon} d T\varepsilon)$
- This implies $T = \Omega(d/\varepsilon)$



Lets get real!

ullet So far, examples were generated according to a target concept $c\in\mathcal{C}$

Lets get real!

- ullet So far, examples were generated according to a target concept $c\in\mathcal{C}$
- In realistic situations we could have "noisy" examples for the target concept, or maybe no fixed target concept even exists

Lets get real!

- ullet So far, examples were generated according to a target concept $c\in\mathcal{C}$
- In realistic situations we could have "noisy" examples for the target concept, or maybe no fixed target concept even exists

Lets get real!

- ullet So far, examples were generated according to a target concept $c\in\mathcal{C}$
- In realistic situations we could have "noisy" examples for the target concept, or maybe no fixed target concept even exists

How do we model this? Agnostic learning

• Unknown distribution D on (x,ℓ) generates examples

Lets get real!

- ullet So far, examples were generated according to a target concept $c\in\mathcal{C}$
- In realistic situations we could have "noisy" examples for the target concept, or maybe no fixed target concept even exists

- Unknown distribution D on (x, ℓ) generates examples
- Suppose "best" concept in $\mathcal C$ has error $\mathsf{OPT} = \min_{c \in \mathcal C} \Pr_{(x,\ell) \sim D}[c(x) \neq \ell]$

Lets get real!

- ullet So far, examples were generated according to a target concept $c\in\mathcal{C}$
- In realistic situations we could have "noisy" examples for the target concept, or maybe no fixed target concept even exists

- Unknown distribution D on (x, ℓ) generates examples
- Suppose "best" concept in $\mathcal C$ has error $\mathsf{OPT} = \min_{c \in \mathcal C} \Pr_{(x,\ell) \sim D}[c(x) \neq \ell]$
- Goal of the agnostic learner: output $h \in C$ with error

Lets get real!

- ullet So far, examples were generated according to a target concept $c\in\mathcal{C}$
- In realistic situations we could have "noisy" examples for the target concept, or maybe no fixed target concept even exists

- Unknown distribution D on (x, ℓ) generates examples
- Suppose "best" concept in $\mathcal C$ has error $\mathsf{OPT} = \min_{c \in \mathcal C} \Pr_{(x,\ell) \sim D}[c(x) \neq \ell]$
- Goal of the agnostic learner: output $h \in C$ with error $\leq \mathsf{OPT} + \varepsilon$

Lets get real!

- ullet So far, examples were generated according to a target concept $c \in \mathcal{C}$
- In realistic situations we could have "noisy" examples for the target concept, or maybe no fixed target concept even exists

How do we model this? Agnostic learning

- Unknown distribution D on (x, ℓ) generates examples
- Suppose "best" concept in $\mathcal C$ has error $\mathsf{OPT} = \min_{c \in \mathcal C} \Pr_{(x,\ell) \sim D}[c(x) \neq \ell]$
- Goal of the agnostic learner: output $h \in C$ with error $\leq \mathsf{OPT} + \varepsilon$

What about sample complexity?

Lets get real!

- ullet So far, examples were generated according to a target concept $c\in\mathcal{C}$
- In realistic situations we could have "noisy" examples for the target concept, or maybe no fixed target concept even exists

How do we model this? Agnostic learning

- Unknown distribution D on (x, ℓ) generates examples
- Suppose "best" concept in $\mathcal C$ has error $\mathsf{OPT} = \min_{c \in \mathcal C} \Pr_{(x,\ell) \sim D}[c(x) \neq \ell]$
- Goal of the agnostic learner: output $h \in C$ with error $\leq \mathsf{OPT} + \varepsilon$

What about sample complexity?

• Classical sample complexity: $\Theta\left(\frac{d}{\varepsilon^2} + \frac{\log(1/\delta)}{\varepsilon^2}\right)$ [VC74, Tal94]

Lets get real!

- ullet So far, examples were generated according to a target concept $c\in\mathcal{C}$
- In realistic situations we could have "noisy" examples for the target concept, or maybe no fixed target concept even exists

How do we model this? Agnostic learning

- Unknown distribution D on (x, ℓ) generates examples
- Suppose "best" concept in $\mathcal C$ has error $\mathsf{OPT} = \min_{c \in \mathcal C} \Pr_{(x,\ell) \sim D}[c(x) \neq \ell]$
- Goal of the agnostic learner: output $h \in C$ with error $\leq \mathsf{OPT} + \varepsilon$

What about sample complexity?

- Classical sample complexity: $\Theta\left(\frac{d}{\varepsilon^2} + \frac{\log(1/\delta)}{\varepsilon^2}\right)$ [VC74, Tal94]
- No quantum bounds known before (unlike PAC model)

Lets get real!

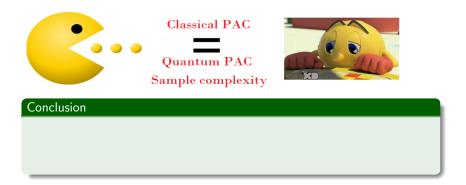
- ullet So far, examples were generated according to a target concept $c\in\mathcal{C}$
- In realistic situations we could have "noisy" examples for the target concept, or maybe no fixed target concept even exists

How do we model this? Agnostic learning

- Unknown distribution D on (x, ℓ) generates examples
- Suppose "best" concept in $\mathcal C$ has error $\mathsf{OPT} = \min_{c \in \mathcal C} \Pr_{(x,\ell) \sim D}[c(x) \neq \ell]$
- Goal of the agnostic learner: output $h \in \mathcal{C}$ with error $\leq \mathsf{OPT} + \varepsilon$

What about sample complexity?

- ullet Classical sample complexity: $\Theta\left(rac{d}{arepsilon^2} + rac{\log(1/\delta)}{arepsilon^2}
 ight)$ [VC74,Tal94]
- No quantum bounds known before (unlike PAC model)
- We show the quantum examples do not reduce sample complexity

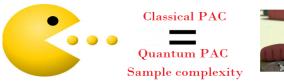


Conclusion

• PAC and agnostic: Quantum examples are no better than classical

Conclusion

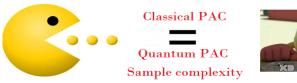
- PAC and agnostic: Quantum examples are no better than classical
- We also studied the model with random classification noise and show that quantum examples are no better than classical



Conclusion

- PAC and agnostic: Quantum examples are no better than classical
- We also studied the model with random classification noise and show that quantum examples are no better than classical

Future work



Conclusion

- PAC and agnostic: Quantum examples are no better than classical
- We also studied the model with random classification noise and show that quantum examples are no better than classical

Future work

 Quantum machine learning is still young! Don't have convincing examples where quantum significantly improve machine learning

Conclusion

- PAC and agnostic: Quantum examples are no better than classical
- We also studied the model with random classification noise and show that quantum examples are no better than classical

Future work

- Quantum machine learning is still young! Don't have convincing examples where quantum significantly improve machine learning
- Theoretically, one could consider more optimistic PAC-like models where learner need not succeed $\forall c \in \mathcal{C}$ and $\forall D$

Buffer 1: Proof approach via Information theory

- Suppose $\{s_0, \ldots, s_d\}$ is shattered by \mathcal{C} . By definition: $\forall a \in \{0, 1\}^d \ \exists c \in \mathcal{C} \text{ s.t. } c(s_0) = 0, \text{ and } c(s_i) = a_i \ \forall \ i \in [d]$
- Fix a nasty distribution *D*:

$$D(s_0) = 1 - 4\varepsilon$$
, $D(s_i) = 4\varepsilon/d$ on $\{s_1, \dots, s_d\}$.

• Good learner produces hypothesis h s.t.

$$h(s_i) = c(s_i) = a_i \text{ for } \geq \frac{3}{4} \text{ of } is$$

Think of c as uniform d-bit string A, approximated by $h \in \{0,1\}^d$ that depends on examples $B = (B_1, \dots, B_T)$

[because $h \approx A$]

This implies $\Omega(d) \leq I(A:B) \leq 4T\varepsilon$, hence $T = \Omega(\frac{d}{\varepsilon})$

For analyzing quantum examples, only step 3 changes:

$$I(A:B_1) \leq O(\varepsilon \log(d/\varepsilon)) \Rightarrow T = \Omega(\frac{d}{\varepsilon} \frac{1}{\log(d/\varepsilon)})$$

Buffer 2: Proof approach in detail

- Suppose we're given state $|\psi_i\rangle$ with prob $p_i, i = 1, ..., m$. Goal: learn i
- Optimal measurement could be quite complicated, but we can always use the Pretty Good Measurement. This has POVM operators $M_i = p_i \rho^{-1/2} |\psi_i\rangle \langle \psi_i| \rho^{-1/2}, \text{ where } \rho = \sum_i p_i |\psi_i\rangle \langle \psi_i|$

• Success probability of PGM:
$$P_{PGM} = \sum_i p_i \text{Tr}(M_i | \psi_i \rangle \langle \psi_i |)$$

- Crucial property (BK'02): if P_{OPT} is the success probablity of the optimal POVM, then $P_{OPT} \geq P_{PGM} \geq P_{OPT}^2$
- Let G be the $m \times m$ Gram matrix of the vectors $\sqrt{p_i} |\psi_i\rangle$, then $P_{PGM} = \sum_i \sqrt{G}(i,i)^2$

Buffer 3: Analysis of PGM

- For the ensemble $\{|\psi_{c^z}\rangle:z\in\{0,1\}^k\}$ with uniform probabilities $p_z=1/2^k$, we have $P_{PGM}\geq (1-\delta)^2$
- Let G be the $2^k \times 2^k$ Gram matrix of the vectors $\sqrt{p_z}\,|\psi_{c^z}\rangle$, then $P_{PGM}=\sum_z\sqrt{G}(z,z)^2$
- $G_{xy} = g(x \oplus y)$. Can diagonalize G using Hadamard transform, and its eigenvalues will be $2^k \hat{g}(s)$. This gives \sqrt{G}
- $\sum_{z} \sqrt{G}(z, z)^{2} \leq \cdots$ 4-page calculation $\cdots \leq \exp(T^{2} \varepsilon^{2} / d + \sqrt{T d \varepsilon} d T \varepsilon)$
- This implies $T = \Omega(d/\varepsilon)$