
1/ 23

Optimal
Quantum Sample Complexity

of Learning Algorithms

Srinivasan Arunachalam

(Joint work with Ronald de Wolf)



2/ 23

Machine learning

Classical machine learning

Grand goal: enable AI systems to improve themselves

Practical goal: learn“something” from given data

Recent success: deep learning is extremely good at image
recognition, natural language processing, even the game of Go

Why the recent interest? Flood of available data, increasing
computational power, growing progress in algorithms

Quantum machine learning

What can quantum computing do for machine learning?

The learner will be quantum, the data may be quantum

Some examples are known of reduction in time complexity:

clustering (Äımeur et al. ’06)
principal component analysis (Lloyd et al. ’13)
perceptron learning (Wiebe et al. ’16)
recommendation systems (Kerenidis & Prakash ’16)
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Probably Approximately Correct (PAC) learning

Basic definitions

Concept class C: collection of Boolean functions on n bits (Known)

Target concept c : some function c ∈ C (Unknown)

Distribution D : {0, 1}n → [0, 1] (Unknown)

Labeled example for c ∈ C: (x , c(x)) where x ∼ D
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Complexity of learning

Recap

Concept: some function c : {0, 1}n → {0, 1}
Concept class C: set of concepts

An algorithm (ε, δ)-PAC-learns C if:

∀c ∈ C ∀D : Pr[ errD(c , h) ≤ ε︸ ︷︷ ︸
Approximately Correct

] ≥ 1− δ︸ ︷︷ ︸
Probably

How to measure the efficiency of the learning algorithm?

Sample complexity: number of labeled examples used by learner

Time complexity: number of time-steps used by learner

This talk: focus on sample complexity

No need for complexity-theoretic assumptions

No need to worry about the format of hypothesis h
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Vapnik and Chervonenkis (VC) dimension

VC dimension of C ⊆ {c : {0, 1}n → {0, 1}}

Let M be the |C| × 2n Boolean matrix whose c-th row is the truth table
of concept c : {0, 1}n → {0, 1}
VC-dim(C): largest d s.t. the |C| × d rectangle in M contains {0, 1}d
These d column indices are shattered by C
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VC dimension characterizes PAC sample complexity

VC dimension of C
M is the |C| × 2n Boolean matrix whose c-th row is the truth table of c

VC-dim(C): largest d s.t. the |C| × d rectangle in M contains {0, 1}d
These d column indices are shattered by C

Fundamental theorem of PAC learning

Suppose VC-dim(C) = d

Blumer-Ehrenfeucht-Haussler-Warmuth’86:

every (ε, δ)-PAC learner for C needs Ω
(

d
ε + log(1/δ)

ε

)
examples

Hanneke’16: there exists an (ε, δ)-PAC learner for C using

O
(

d
ε + log(1/δ)

ε

)
examples
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Quantum PAC learning

Do quantum computers provide an advantage for PAC learning?

Quantum data

Bshouty-Jackson’95: Quantum example is a superposition

|Ec,D 〉 =
∑

x∈{0,1}n

√
D(x) |x , c(x)〉

Measuring this (n + 1)-qubit state gives a classical example,
so quantum examples are at least as powerful as classical
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Quantum PAC learning

Quantum Data

Quantum example: |Ec,D 〉 =
∑

x∈{0,1}n
√

D(x) |x , c(x)〉
Quantum examples are at least as powerful as classical examples

Quantum is indeed more powerful for learning! (for a fixed distribution)

Learning class of linear functions under uniform D:
Classical: Ω(n) classical examples needed
Quantum: O(1) quantum examples suffice (Bernstein-Vazirani’93)

Learning DNF under uniform D:
Classical: Best known upper bound is quasi-poly. time (Verbeugt’90)
Quantum: Polynomial-time (Bshouty-Jackson’95)
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Quantum Data

Quantum example: |Ec,D 〉 =
∑

x∈{0,1}n
√

D(x) |x , c(x)〉
Quantum examples are at least as powerful as classical examples

Quantum is indeed more powerful for learning! (for a fixed distribution)

Learning class of linear functions under uniform D:
Classical: Ω(n) classical examples needed
Quantum: O(1) quantum examples suffice (Bernstein-Vazirani’93)

Learning DNF under uniform D:
Classical: Best known upper bound is quasi-poly. time (Verbeugt’90)
Quantum Polynomial-time (Bshouty-Jackson’95)

But in the PAC model,
learner has to succeed for all D!
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Quantum sample complexity

Quantum upper bound

Classical upper bound O
(

d
ε + log(1/δ)

ε

)
carries over to quantum

Best known quantum lower bounds

Atici & Servedio’04: lower bound Ω
(√
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ε + d + log(1/δ)
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)
Zhang’10 improved first term to d1−η

ε for all η > 0
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Proof approach: Pretty Good Measurement

State identification: Ensemble E = {(pz , |ψz 〉)}z∈[m]

Given state |ψz 〉 ∈ E with prob pz Goal: identify z

Optimal measurement could be quite complicated,
but we can always use the Pretty Good Measurement

Crucial property: if Popt is the success probability of the optimal
measurement, then Popt ≥ Ppgm ≥ P2

opt (Barnum-Knill’02)

How does learning relate to identification?

Quantum PAC: Given |ψc 〉 = |Ec,D 〉⊗T , learn c approximately

Goal: show T ≥ d/ε, where d = VC-dim(C)

Suppose {s0, . . . , sd} is shattered by C. Fix a nasty distribution D:

D(s0) = 1− 16ε, D(si ) = 16ε/d on {s1, . . . , sd}
Let E : {0, 1}k → {0, 1}d be a good error-correcting code
s.t. k ≥ d/4 and dH(E (y),E (z)) ≥ d/8

Pick concepts {cz}z∈{0,1}k ⊆ C: cz(s0) = 0, cz(si ) = E (z)i ∀ i
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Pick concepts {cz} ⊆ C: cz(s0) = 0, cz(si ) = E (z)i ∀ i

Suppose VC (C) = d + 1 and {s0, . . . , sd} is shattered by C, i.e.,
|C| × (d + 1) rectangle of {s0, . . . , sd} contains {0, 1}d+1

Concepts Truth table
c ∈ C s0 s1 · · · sd−1 sd · · · · · ·

c1 0 0 · · · 0 0 · · · · · ·
c2 0 0 · · · 1 0 · · · · · ·
c3 0 0 · · · 1 1 · · · · · ·
...

...
...

. . .
...

... · · · · · ·
c2d−1 0 1 · · · 1 0 · · · · · ·

c2d 0 1 · · · 1 1 · · · · · ·
c2d+1 1 0 · · · 0 1 · · · · · ·

...
...

...
. . .

...
... · · · · · ·

c2d+1 1 1 · · · 1 1 · · · · · ·
...

...
...

. . .
...

... · · · · · ·


c(s0) = 0

Among {c1, . . . , c2d}, pick 2k concepts that correspond to codewords of
E : {0, 1}k → {0, 1}d on {s1, . . . , sd}
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Proof approach: Pretty Good Measurement

State identification: Ensemble E = {(pz , |ψz 〉)}z∈[m]

Given state |ψz 〉 ∈ E with prob pz Goal: identify z

Optimal measurement could be quite complicated,
but we can always use the Pretty Good Measurement

Crucial property: Popt ≥ Ppgm ≥ P2
opt (Barnum-Knill’02)

How does learning relate to identification?

Given |ψcz 〉 = |Ecz ,D 〉⊗T , learn cz approximately. Show T ≥ d/ε

Suppose {s0, . . . , sd} is shattered by C. Fix a nasty distribution D:

D(s0) = 1− 16ε, D(si ) = 16ε/d on {s1, . . . , sd}
Let E : {0, 1}k → {0, 1}d be a good error-correcting code
s.t. k ≥ d/4 and dH(E (y),E (z)) ≥ d/8

Pick concepts {cz}z∈{0,1}k ⊆ C: cz(s0) = 0, cz(si ) = E (z)i ∀ i

Learning cz approximately (wrt D) is equivalent to identifying z!
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Crucial property: Popt ≥ Ppgm ≥ P2
opt (Barnum-Knill’02)

How does learning relate to identification?

Given |ψcz 〉 = |Ecz ,D 〉⊗T , learn cz approximately. Show T ≥ d/ε

Suppose {s0, . . . , sd} is shattered by C. Fix a nasty distribution D:

D(s0) = 1− 16ε, D(si ) = 16ε/d on {s1, . . . , sd}
Let E : {0, 1}k → {0, 1}d be a good error-correcting code
s.t. k ≥ d/4 and dH(E (y),E (z)) ≥ d/8

Pick concepts {cz}z∈{0,1}k ⊆ C: cz(s0) = 0, cz(si ) = E (z)i ∀ i

Learning cz approximately (wrt D) is equivalent to identifying z!
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Sample complexity lower bound via PGM

Recap

Learning cz approximately (wrt D) is equivalent to identifying z!

If sample complexity is T , then there is a good learner (i.e.,

measurement) that identifies z from |ψcz 〉 = |Ecz ,D 〉⊗T with
probability ≥ 1− δ
Goal: Show T ≥ d/ε

Analysis of PGM

For the ensemble {|ψcz 〉 : z ∈ {0, 1}k} with uniform probabilities
pz = 1/2k , we have Ppgm ≥ P2

opt ≥ (1− δ)2

Ppgm ≤ · · · 4-page calculation · · · ≤ exp(T 2ε2/d +
√

Tdε− d − Tε)

This implies T = Ω(d/ε)



19/ 23

Sample complexity lower bound via PGM

Recap

Learning cz approximately (wrt D) is equivalent to identifying z!

If sample complexity is T , then there is a good learner (i.e.,

measurement) that identifies z from |ψcz 〉 = |Ecz ,D 〉⊗T with
probability ≥ 1− δ

Goal: Show T ≥ d/ε

Analysis of PGM

For the ensemble {|ψcz 〉 : z ∈ {0, 1}k} with uniform probabilities
pz = 1/2k , we have Ppgm ≥ P2

opt ≥ (1− δ)2

Ppgm ≤ · · · 4-page calculation · · · ≤ exp(T 2ε2/d +
√

Tdε− d − Tε)

This implies T = Ω(d/ε)



19/ 23

Sample complexity lower bound via PGM

Recap

Learning cz approximately (wrt D) is equivalent to identifying z!

If sample complexity is T , then there is a good learner (i.e.,

measurement) that identifies z from |ψcz 〉 = |Ecz ,D 〉⊗T with
probability ≥ 1− δ
Goal: Show T ≥ d/ε

Analysis of PGM

For the ensemble {|ψcz 〉 : z ∈ {0, 1}k} with uniform probabilities
pz = 1/2k , we have Ppgm ≥ P2

opt ≥ (1− δ)2

Ppgm ≤ · · · 4-page calculation · · · ≤ exp(T 2ε2/d +
√

Tdε− d − Tε)

This implies T = Ω(d/ε)



19/ 23

Sample complexity lower bound via PGM

Recap

Learning cz approximately (wrt D) is equivalent to identifying z!

If sample complexity is T , then there is a good learner (i.e.,

measurement) that identifies z from |ψcz 〉 = |Ecz ,D 〉⊗T with
probability ≥ 1− δ
Goal: Show T ≥ d/ε

Analysis of PGM

For the ensemble {|ψcz 〉 : z ∈ {0, 1}k} with uniform probabilities
pz = 1/2k , we have Ppgm ≥ P2

opt ≥ (1− δ)2

Ppgm ≤ · · · 4-page calculation · · · ≤ exp(T 2ε2/d +
√

Tdε− d − Tε)

This implies T = Ω(d/ε)



19/ 23

Sample complexity lower bound via PGM

Recap

Learning cz approximately (wrt D) is equivalent to identifying z!

If sample complexity is T , then there is a good learner (i.e.,

measurement) that identifies z from |ψcz 〉 = |Ecz ,D 〉⊗T with
probability ≥ 1− δ
Goal: Show T ≥ d/ε

Analysis of PGM

For the ensemble {|ψcz 〉 : z ∈ {0, 1}k} with uniform probabilities
pz = 1/2k , we have Ppgm

≥ P2
opt ≥ (1− δ)2

Ppgm ≤ · · · 4-page calculation · · · ≤ exp(T 2ε2/d +
√

Tdε− d − Tε)

This implies T = Ω(d/ε)



19/ 23

Sample complexity lower bound via PGM

Recap

Learning cz approximately (wrt D) is equivalent to identifying z!

If sample complexity is T , then there is a good learner (i.e.,

measurement) that identifies z from |ψcz 〉 = |Ecz ,D 〉⊗T with
probability ≥ 1− δ
Goal: Show T ≥ d/ε

Analysis of PGM

For the ensemble {|ψcz 〉 : z ∈ {0, 1}k} with uniform probabilities
pz = 1/2k , we have Ppgm ≥ P2

opt ≥ (1− δ)2

Ppgm ≤ · · · 4-page calculation · · · ≤ exp(T 2ε2/d +
√

Tdε− d − Tε)

This implies T = Ω(d/ε)



19/ 23

Sample complexity lower bound via PGM

Recap

Learning cz approximately (wrt D) is equivalent to identifying z!

If sample complexity is T , then there is a good learner (i.e.,

measurement) that identifies z from |ψcz 〉 = |Ecz ,D 〉⊗T with
probability ≥ 1− δ
Goal: Show T ≥ d/ε

Analysis of PGM

For the ensemble {|ψcz 〉 : z ∈ {0, 1}k} with uniform probabilities
pz = 1/2k , we have Ppgm ≥ P2

opt ≥ (1− δ)2

Ppgm ≤

· · · 4-page calculation · · · ≤ exp(T 2ε2/d +
√

Tdε− d − Tε)

This implies T = Ω(d/ε)



19/ 23

Sample complexity lower bound via PGM

Recap

Learning cz approximately (wrt D) is equivalent to identifying z!

If sample complexity is T , then there is a good learner (i.e.,

measurement) that identifies z from |ψcz 〉 = |Ecz ,D 〉⊗T with
probability ≥ 1− δ
Goal: Show T ≥ d/ε

Analysis of PGM

For the ensemble {|ψcz 〉 : z ∈ {0, 1}k} with uniform probabilities
pz = 1/2k , we have Ppgm ≥ P2

opt ≥ (1− δ)2

Ppgm ≤ · · · 4-page calculation · · · ≤ exp(T 2ε2/d +
√

Tdε− d − Tε)

This implies T = Ω(d/ε)



19/ 23

Sample complexity lower bound via PGM

Recap

Learning cz approximately (wrt D) is equivalent to identifying z!

If sample complexity is T , then there is a good learner (i.e.,

measurement) that identifies z from |ψcz 〉 = |Ecz ,D 〉⊗T with
probability ≥ 1− δ
Goal: Show T ≥ d/ε

Analysis of PGM

For the ensemble {|ψcz 〉 : z ∈ {0, 1}k} with uniform probabilities
pz = 1/2k , we have Ppgm ≥ P2

opt ≥ (1− δ)2

Ppgm ≤ · · · 4-page calculation · · · ≤ exp(T 2ε2/d +
√

Tdε− d − Tε)

This implies T = Ω(d/ε)



20/ 23

Sample complexity lower bound via PGM

Recap

Learning cz approximately (wrt D) is equivalent to identifying z!
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Agnostic learning

Lets get real!

So far, examples were generated according to a target concept c ∈ C
In realistic situations we could have “noisy” examples for the target
concept, or maybe no fixed target concept even exists

How do we model this? Agnostic learning

Unknown distribution D on (x , `) generates examples

Suppose “best” concept in C has error OPT = min
c∈C

Pr
(x,`)∼D

[c(x) 6= `]

Goal of the agnostic learner: output h ∈ C with error ≤ OPT + ε

What about sample complexity?

Classical sample complexity: Θ
(

d
ε2 + log(1/δ)

ε2

)
[VC74,Tal94]

No quantum bounds known before (unlike PAC model)

We show the quantum examples do not reduce sample complexity



21/ 23

Agnostic learning

Lets get real!

So far, examples were generated according to a target concept c ∈ C

In realistic situations we could have “noisy” examples for the target
concept, or maybe no fixed target concept even exists

How do we model this? Agnostic learning

Unknown distribution D on (x , `) generates examples

Suppose “best” concept in C has error OPT = min
c∈C

Pr
(x,`)∼D

[c(x) 6= `]

Goal of the agnostic learner: output h ∈ C with error ≤ OPT + ε

What about sample complexity?

Classical sample complexity: Θ
(

d
ε2 + log(1/δ)

ε2

)
[VC74,Tal94]

No quantum bounds known before (unlike PAC model)

We show the quantum examples do not reduce sample complexity



21/ 23

Agnostic learning

Lets get real!

So far, examples were generated according to a target concept c ∈ C
In realistic situations we could have “noisy” examples for the target
concept, or maybe no fixed target concept even exists

How do we model this? Agnostic learning

Unknown distribution D on (x , `) generates examples

Suppose “best” concept in C has error OPT = min
c∈C

Pr
(x,`)∼D

[c(x) 6= `]

Goal of the agnostic learner: output h ∈ C with error ≤ OPT + ε

What about sample complexity?

Classical sample complexity: Θ
(

d
ε2 + log(1/δ)

ε2

)
[VC74,Tal94]

No quantum bounds known before (unlike PAC model)

We show the quantum examples do not reduce sample complexity



21/ 23

Agnostic learning

Lets get real!

So far, examples were generated according to a target concept c ∈ C
In realistic situations we could have “noisy” examples for the target
concept, or maybe no fixed target concept even exists

How do we model this? Agnostic learning

Unknown distribution D on (x , `) generates examples

Suppose “best” concept in C has error OPT = min
c∈C

Pr
(x,`)∼D

[c(x) 6= `]

Goal of the agnostic learner: output h ∈ C with error ≤ OPT + ε

What about sample complexity?

Classical sample complexity: Θ
(

d
ε2 + log(1/δ)

ε2

)
[VC74,Tal94]

No quantum bounds known before (unlike PAC model)

We show the quantum examples do not reduce sample complexity



21/ 23

Agnostic learning

Lets get real!

So far, examples were generated according to a target concept c ∈ C
In realistic situations we could have “noisy” examples for the target
concept, or maybe no fixed target concept even exists

How do we model this? Agnostic learning

Unknown distribution D on (x , `) generates examples

Suppose “best” concept in C has error OPT = min
c∈C

Pr
(x,`)∼D

[c(x) 6= `]

Goal of the agnostic learner: output h ∈ C with error ≤ OPT + ε

What about sample complexity?

Classical sample complexity: Θ
(

d
ε2 + log(1/δ)

ε2

)
[VC74,Tal94]

No quantum bounds known before (unlike PAC model)

We show the quantum examples do not reduce sample complexity



21/ 23

Agnostic learning

Lets get real!

So far, examples were generated according to a target concept c ∈ C
In realistic situations we could have “noisy” examples for the target
concept, or maybe no fixed target concept even exists

How do we model this? Agnostic learning

Unknown distribution D on (x , `) generates examples

Suppose “best” concept in C has error OPT = min
c∈C

Pr
(x,`)∼D

[c(x) 6= `]

Goal of the agnostic learner: output h ∈ C with error ≤ OPT + ε

What about sample complexity?

Classical sample complexity: Θ
(

d
ε2 + log(1/δ)

ε2

)
[VC74,Tal94]

No quantum bounds known before (unlike PAC model)

We show the quantum examples do not reduce sample complexity



21/ 23

Agnostic learning

Lets get real!

So far, examples were generated according to a target concept c ∈ C
In realistic situations we could have “noisy” examples for the target
concept, or maybe no fixed target concept even exists

How do we model this? Agnostic learning

Unknown distribution D on (x , `) generates examples

Suppose “best” concept in C has error OPT = min
c∈C

Pr
(x,`)∼D

[c(x) 6= `]

Goal of the agnostic learner: output h ∈ C with error

≤ OPT + ε

What about sample complexity?

Classical sample complexity: Θ
(

d
ε2 + log(1/δ)

ε2

)
[VC74,Tal94]

No quantum bounds known before (unlike PAC model)

We show the quantum examples do not reduce sample complexity



21/ 23

Agnostic learning

Lets get real!

So far, examples were generated according to a target concept c ∈ C
In realistic situations we could have “noisy” examples for the target
concept, or maybe no fixed target concept even exists

How do we model this? Agnostic learning

Unknown distribution D on (x , `) generates examples

Suppose “best” concept in C has error OPT = min
c∈C

Pr
(x,`)∼D

[c(x) 6= `]

Goal of the agnostic learner: output h ∈ C with error ≤ OPT + ε

What about sample complexity?

Classical sample complexity: Θ
(

d
ε2 + log(1/δ)

ε2

)
[VC74,Tal94]

No quantum bounds known before (unlike PAC model)

We show the quantum examples do not reduce sample complexity



21/ 23

Agnostic learning

Lets get real!

So far, examples were generated according to a target concept c ∈ C
In realistic situations we could have “noisy” examples for the target
concept, or maybe no fixed target concept even exists

How do we model this? Agnostic learning

Unknown distribution D on (x , `) generates examples

Suppose “best” concept in C has error OPT = min
c∈C

Pr
(x,`)∼D

[c(x) 6= `]

Goal of the agnostic learner: output h ∈ C with error ≤ OPT + ε

What about sample complexity?

Classical sample complexity: Θ
(

d
ε2 + log(1/δ)

ε2

)
[VC74,Tal94]

No quantum bounds known before (unlike PAC model)

We show the quantum examples do not reduce sample complexity



21/ 23

Agnostic learning

Lets get real!

So far, examples were generated according to a target concept c ∈ C
In realistic situations we could have “noisy” examples for the target
concept, or maybe no fixed target concept even exists

How do we model this? Agnostic learning

Unknown distribution D on (x , `) generates examples

Suppose “best” concept in C has error OPT = min
c∈C

Pr
(x,`)∼D

[c(x) 6= `]

Goal of the agnostic learner: output h ∈ C with error ≤ OPT + ε

What about sample complexity?

Classical sample complexity: Θ
(

d
ε2 + log(1/δ)

ε2

)
[VC74,Tal94]

No quantum bounds known before (unlike PAC model)

We show the quantum examples do not reduce sample complexity



21/ 23

Agnostic learning

Lets get real!

So far, examples were generated according to a target concept c ∈ C
In realistic situations we could have “noisy” examples for the target
concept, or maybe no fixed target concept even exists

How do we model this? Agnostic learning

Unknown distribution D on (x , `) generates examples

Suppose “best” concept in C has error OPT = min
c∈C

Pr
(x,`)∼D

[c(x) 6= `]

Goal of the agnostic learner: output h ∈ C with error ≤ OPT + ε

What about sample complexity?

Classical sample complexity: Θ
(

d
ε2 + log(1/δ)

ε2

)
[VC74,Tal94]

No quantum bounds known before (unlike PAC model)

We show the quantum examples do not reduce sample complexity



21/ 23

Agnostic learning

Lets get real!

So far, examples were generated according to a target concept c ∈ C
In realistic situations we could have “noisy” examples for the target
concept, or maybe no fixed target concept even exists

How do we model this? Agnostic learning

Unknown distribution D on (x , `) generates examples

Suppose “best” concept in C has error OPT = min
c∈C

Pr
(x,`)∼D

[c(x) 6= `]

Goal of the agnostic learner: output h ∈ C with error ≤ OPT + ε

What about sample complexity?

Classical sample complexity: Θ
(

d
ε2 + log(1/δ)

ε2

)
[VC74,Tal94]

No quantum bounds known before (unlike PAC model)

We show the quantum examples do not reduce sample complexity



22/ 23

Conclusion and future work

Conclusion

PAC and agnostic: Quantum examples are no better than classical

We also studied the model with random classification noise and
show that quantum examples are no better than classical

Future work

Quantum machine learning is still young! Don’t have convincing
examples where quantum significantly improve machine learning

Theoretically, one could consider more optimistic PAC-like models
where learner need not succeed ∀c ∈ C and ∀D
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Buffer 1: Proof approach via Information theory

Suppose {s0, . . . , sd} is shattered by C. By definition:
∀a ∈ {0, 1}d ∃c ∈ C s.t. c(s0) = 0, and c(si ) = ai ∀ i ∈ [d ]

Fix a nasty distribution D:

D(s0) = 1− 4ε, D(si ) = 4ε/d on {s1, . . . , sd}.
Good learner produces hypothesis h s.t.
h(si ) = c(si ) = ai for ≥ 3

4 of is

Think of c as uniform d-bit string A, approximated by h ∈ {0, 1}d
that depends on examples B = (B1, . . . ,BT )

1 I (A : B) ≥ I (A : h(B)) ≥ Ω(d) [because h ≈ A]
2 I (A : B) ≤

∑T
i=1 I (A : Bi ) = T · I (A : B1) [subadditivity]

3 I (A : B1) ≤ 4ε [because prob of useful example is 4ε]

This implies Ω(d) ≤ I (A : B) ≤ 4Tε, hence T = Ω( d
ε )

For analyzing quantum examples, only step 3 changes:

I (A : B1) ≤ O(ε log(d/ε)) ⇒ T = Ω( d
ε

1
log(d/ε) )
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Buffer 2: Proof approach in detail

Suppose we’re given state |ψi 〉 with prob pi , i = 1, . . . ,m. Goal:
learn i

Optimal measurement could be quite complicated,
but we can always use the Pretty Good Measurement.

This has POVM operators

Mi = piρ
−1/2|ψi 〉〈ψi |ρ−1/2, where ρ =

∑
i pi |ψi 〉〈ψi |

Success probability of PGM: PPGM =
∑

i piTr(Mi |ψi 〉〈ψi |)

Crucial property (BK’02): if POPT is the success probablity of the
optimal POVM, then POPT ≥ PPGM ≥ P2

OPT

Let G be the m ×m Gram matrix of the vectors
√

pi |ψi 〉,
then PPGM =

∑
i

√
G (i , i)2
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Buffer 3: Analysis of PGM

For the ensemble {|ψcz 〉 : z ∈ {0, 1}k} with uniform probabilities
pz = 1/2k , we have PPGM ≥ (1− δ)2

Let G be the 2k × 2k Gram matrix of the vectors
√

pz |ψcz 〉, then

PPGM =
∑

z

√
G (z , z)2

Gxy = g(x ⊕ y). Can diagonalize G using Hadamard transform, and

its eigenvalues will be 2k ĝ(s). This gives
√

G∑
z

√
G (z , z)2 ≤ · · · 4-page calculation · · · ≤

≤ exp(T 2ε2/d +
√

Tdε− d − Tε)

This implies T = Ω(d/ε)


	Appendix

