From fully quantum thermodynamical identities to a second law equality

Alvaro Alhambra, Lluis Masanes, Jonathan Oppenheim, Chris Perry

Fluctuating States Phys. Rev. X 6, 041016 (2016)

Fluctuating Work Phys. Rev. X 6, 041017 (2016)

Thermodynamics is an information theory

Maxwell

Szilard

Landauer

Bennett

W=kTlog2

- A)W=kTlog2 on average, but there will be fluctuations around this value.
- B)We can achieve perfect erasure.
- C)By using slightly more work on average, you can sometimes gain work when you erase.

- A)W=kTlog2 on average, but there will be fluctuations around this value.
- B)We can achieve perfect erasure.
- C)By using slightly more work on average, you can sometimes gain work when you erase.
- D)None of these statements are true.

- A)W=kTlog2 on average, but there will be fluctuations around this value.
- B)We can achieve perfect erasure.
- C)By using slightly more work on average, you can sometimes gain work when you erase.
- D)None of these statements are true.
- E)This quiz is undecidable.

Fluctuating work in erasure

$$\sum_{s',w} P(s',w|s) = 1$$

$$\sum_{s,w} P(s',w|s) e^{\beta(E_{s'}-E_s+w)} = 1$$

$$e^{\beta w_o} + e^{\beta w_1} = 1/(1 - \epsilon)$$
$$e^{\beta \bar{w}_o} + e^{\beta \bar{w}_1} = 1/\epsilon$$

Main Results

- QIT strengthening of Stochastic Thermodynamics
- Generalisations of doubly-stochastic maps, majorisation
- Second law of thermodynamics as an equality (fine grained free energy)
- Fully quantum identity Stochastic Thermodynamics
- Fluctuations of work and of states
- Proof and quantification of third law of thermodynamics

Outline

- Review of thermodynamics (Macroscopic, QIT)
- Equalities for work fluctuations
- Quantum identities
- Outlook

Outline

- Review of thermodynamics (Macroscopic, QIT)
- Equalities for work fluctuations
- Quantum identities
- Outlook

3 laws of thermodynamics

- 0) If R_1 is in equilibrium with R_2 and R_3 then R_2 is in equilibrium with R_3
- 1) dE = dQ dW (energy conservation)
- Heat can never pass from a colder body to a warmer body without some other change occuring. – Clausius
- One can never attain T=0 in a finite number of steps

The second law

Heat can never pass from a colder body to a warmer body without some other change occurring – Clausius

The second law

$$\langle W
angle \leq \! \Delta F \;\;$$
 In any cyclic process

Free Energy

$$F = \langle E \rangle - TS$$

 $\langle W \rangle_{\text{rev}} = F(\rho_{\text{initial}}) - F(\rho_{\text{final}})$
 $\rho_{\text{initial}} \rightarrow \rho_{\text{final}} \text{ iff } \langle W \rangle \leq \Delta F$

Free Energy

$$F = \langle E \rangle - TS$$

$$\langle W \rangle_{\text{rev}} = F(\rho_{\text{initial}}) - F(\rho_{\text{final}})$$

$$\rho$$
 initial $\rightarrow \rho$ final iff $\langle W \rangle \leq \Delta F$

This is just the first order term of an equality!

Resource Theories

In reversible theories and under minor assumptions, relative entropy distance to free states \mathcal{F} is the unique measure of the resource (Horodecki et. al. 2011)

In thermodynamics, ${\cal F}$ will turn out to be the Gibbs state ρ_β and the measure is $F(\rho)-F(\rho_\beta)$

But thermodynamics can also be irreversible

What is Thermodynamics??

A resource theoretic approach: T

- (ρ_s, H_s)
- adding free states ρ_{B} , H_{B}
- work system ρ_W , H_W

- energy conserving unitaries U(1st law) $[U, H_s + H_w + H_B] = 0$
- ho_B, H_B ho_B, H_B ho_S, H_S ho_S, H_S ho_S, H_W

- tracing out
- can allow changing Hamiltonian by adding switch bit
- translation invariant on W: $[U,\Delta_w]=0$

$$[\Delta_{W}, H_{W}] = i$$

Streater (1995)
Janzig et. al. (2000)
Horodecki, JO (2011)
Skrzypczyk et. al. (2013)
Brandao et. al. (2015)

Work

or in the micro - regime

Broadest definition of thermo

Includes other paradigms (Brandao et. al. 2011)

- Hint
- *H*(t)
- implicit battery: arbitrary U, and take W=trHp-trHUpU[†]
- Implemented using very crude control (Perry et. al. 2016)
- c.f. catalytic transformations (Brandao et. al. 2015)

What is the cost of a state transformation? (2nd law)

What do we mean by work?

- No Work: Ruch, Mead (1975); Janzig (2000); Horodecki et. al. (2003); Horodecki, JO (2011)
- Deterministic or worst case work: Dahlsten et al. (2010); Del Rio et. al. (2011); Horodecki, JO (2011); Aaberg (2011); Faist et. al. (2013), Egloff (2015)
- Average work: Brandao et. al. (2011); Skrzypczyk et. al. (2013); Korzekwa et. al. (2015)
- Fluctuating work: Jarzynski (1997); Crooks (1999); Tasaki (1999)

Outline

- Review of thermodynamics (Macroscopic, QIT)
- Equalities for work fluctuations
- Quantum identities
- Outlook

When can we go from ρ to σ ? (2nd law)

$$\langle W \rangle \le F(\rho) - F(\sigma)$$

Many Second Laws

H=0 (Noisy Operations), no work

majorisation

$$\rho \rightarrow \sigma iff \rho > \sigma$$

$$p(1) \ge p(2) \ge p(3)...$$

$$\rho \rightarrow \sigma iff \rho > \sigma$$
 $p(1) \ge p(2) \ge p(3) \dots$ $\sum_{k} p(k) \ge \sum_{k} q(k) \forall k$

$$q(s') = \sum_{s} P(s'|s)p(s)$$

$$\sum_{s} P(s'|s) = 1$$

$$\sum_{s'} P(s'|s) = 1$$

(Thermal Operations), deterministic work

thermo-majorisation

$$p(1)e^{\beta E_1} \ge p(2)e^{\beta E_2} \ge p(3)e^{\beta E_3}$$
 (\$\beta\$-ordering)

$$q(s') = \sum_{s} P(s'|s)p(s)$$

$$\sum_{s} P(s'|s)e^{-\beta E_s} = e^{-\beta E_{s'}}$$
$$\sum_{s'} P(s'|s) = 1$$

Fluctuating work

$$\rho \to \sigma \ iff$$

$$\sum_{\substack{s,w\\s',w}} P(s',w|s)e^{\beta(E_{s'}-E_{s}+w)}=1$$

$$\sum_{\substack{s',w\\s',w}} P(s',w|s)=1$$

$$f_s := E_s + Tlog \, p(s)$$

$$F = \langle f_s \rangle$$
$$= \langle E \rangle - TS$$

$$q(s', w) = \sum_{s} P(s'w|s)p(s)$$

$$\sum_{s'} \sum_{s,w} P(s', w|s) e^{\beta(E'_s - E_s + w)} \frac{p(s)}{p(s)} p(s') = \sum_{s'} p(s')$$

$$\langle e^{\beta(f_s - f_s + w)} \rangle = 1$$

2nd law equality

Classical derivation: Seifert (2012)

Corrections to second law

$$\langle e^{\beta(f_s - f_s + w)} \rangle = 1$$

$$f_s := E_s + TlogP(s)$$

$$F = \langle f_s \rangle$$

$$= \langle E \rangle - TS$$

$$\langle f_{s'} - f_s + w \rangle \leq 0$$

Standard 2nd law

$$W \leq \Delta F$$

$$\sum_{k=1}^{N} \frac{\beta^{k}}{k!} \langle (f_{s'} - f_{s} + w)^{k} \rangle \leq 0$$

Fluctuating work in erasure

$$\sum_{s,w} P(s',w|s)e^{\beta(E_{s'}-E_{s}+w)}=1$$

$$e^{\beta w_o} + e^{\beta w_1} = 1/(1 - \epsilon)$$
$$e^{\beta \bar{w}_o} + e^{\beta \bar{w}_1} = 1/\epsilon$$

Same considerations apply to non-deterministic case

- A)W=kTlog2 on average, but there will be fluctuations around this value.
- B)We can achieve perfect erasure.
- C)By using slightly more work on average, you can sometimes gain work when you erase.
- D)None of these statements are true.
- E)This quiz is undecidable.

no work to fluctuating work

doubly stochastic maps

Gibbs-stochastic maps

$$\sum_{s'} P(s'|s) = 1$$

$$\sum_{s} P(s'|s) = 1$$

majorisation

$$\sum_{s'} P(s'|s) = 1$$

$$\sum_{s} P(s'|s)e^{\beta(E_{s'}-E_s)}=1$$

thermo-majorisation

fluctuating work

$$\sum_{s'} P(s'|s) = 1$$

$$\sum_{s,w} P(s',w|s)e^{\beta(E_s-E_s+w)}=1$$

Thermo-majorisation curves

Outline

- Review of thermodynamics (Macroscopic, QIT)
- Equalities for work fluctuations
- Quantum identities
- Outlook

Quantum identity

$$tr_{W}[\mathcal{F}_{H'_{S}+H_{W}}\Gamma_{SW}\mathcal{F}_{H_{S}+H_{W}}^{-1}]1_{S}\otimes\rho_{W}=1_{S}$$

$$\mathcal{F}_{H}(\rho) := e^{\frac{\beta}{2}H} \rho e^{\frac{\beta}{2}H}$$

$$\Gamma_{SW} = tr_B U \rho_{SWB} U^{\dagger}$$

$$\sum_{s,w} P(s',w|s)e^{\beta(E_{s'}-E_{s}+w)}=1$$

For classical states

$$P(s', w|s) = tr[|s'\rangle\langle s'| \otimes |w\rangle\langle w|\Gamma_{SW}(|s\rangle\langle s| \otimes |0\rangle\langle 0|)]$$

Quantum identity

$$\operatorname{tr}_{W}\left(\mathcal{J}_{H'_{S}+H_{W}}\Gamma_{SW}\mathcal{J}_{H_{S}+H_{W}}^{-1}\right)\left(\mathbb{1}_{S}\otimes\rho_{W}\right)$$

$$=\operatorname{tr}_{W}\mathcal{J}_{H'_{S}+H_{W}}\left(\operatorname{tr}_{B}\left[U\mathcal{J}_{H_{S}+H_{W}}^{-1}\frac{e^{-\beta H_{B}}}{Z_{B}}(\mathbb{1}_{S}\otimes\rho_{W})U^{\dagger}\right]\right)$$

$$=\operatorname{tr}_{W}\mathcal{J}_{H'_{S}+H_{W}}\left(\frac{1}{Z_{B}}\operatorname{tr}_{B}\left[U\mathcal{J}_{H_{S}+H_{B}+H_{W}}^{-1}(\mathbb{1}_{SB}\otimes\rho_{W})U^{\dagger}\right]\right)$$

$$=\operatorname{tr}_{W}\mathcal{J}_{H'_{S}+H_{W}}\left(\frac{1}{Z_{B}}\operatorname{tr}_{B}\left[\mathcal{J}_{H'_{S}+H_{B}+H_{W}}^{-1}(U\mathbb{1}_{SB}\otimes\rho_{W})U^{\dagger}\right]\right)$$

$$=\operatorname{tr}_{BW}\left(\frac{-\beta H_{B}}{Z_{B}}U(\mathbb{1}_{SB}\otimes\rho_{W})U^{\dagger}\right)$$
Masanes, JO (2014)
$$=\operatorname{tr}_{B}\left(\frac{-\beta H_{B}}{Z_{B}}\mathbb{1}_{SB}\right)=\mathbb{1}_{S}.$$

Fully quantum identities

Generalised Gibbs- stochastic	$\operatorname{tr}_{W}\left(\mathcal{J}_{H'_{S}+H_{W}}\Gamma_{SW}\mathcal{J}_{H_{S}+H_{W}}^{-1}\right)\left(\mathbb{1}_{S}\otimes\rho_{W}\right)=\mathbb{1}_{S}$
Second Law equality	$\operatorname{tr}_{SW}\left[\left(\mathcal{J}_{T\ln\rho'_{S}}\mathcal{J}_{H'_{S}+H_{W}}\Gamma_{SW}\mathcal{J}_{H_{S}+H_{W}}^{-1}\mathcal{J}_{T\ln\rho_{S}}^{-1}\right)(\rho_{S}\otimes\rho_{W})\right]=1$
Generalised Jarzynski equality	$\operatorname{tr}_{SW}\left[\left(\mathcal{J}_{H_W}\Gamma_{SW}\mathcal{J}_{H_S+H_W}^{-1}\mathcal{J}_{T\ln\rho_S}^{-1}\right)\left(\rho_S\otimes\rho_W\right)\right]=Z_S'$
Crooks equation¹ (Petz recovery)	$\mathcal{J}_{H_S'+H_W}\Gamma_{SW}\mathcal{J}_{H_S+H_W}^{-1/2} = \Theta_{SW}^*$

¹ c.f. Åberg (2016)

Quantum identities w/ diagonal input

Generalised Gibbs-
stochastic

$$\sum_{s,w} P(s',w|s)e^{\beta(E_{s'}-E_s+w)}=1$$

Second Law equality

$$\langle e^{\beta(f_s,-f_s+w)}\rangle=1$$

Generalised Jarzynski equality

$$\langle e^{\beta(w-f_s)}\rangle = Z'_S$$

c.f. Sagawa, Ueda (2011) Schumacher (2014) Manzano (2015)

Crooks equation (Petz recovery)

$$\frac{p_{\text{forward}}(w, s, s')}{p_{\text{back}}(-w, s, s')} = e^{-\beta w} \frac{Z'_S}{Z_S}$$

Outline

- Review of thermodynamics (Macroscopic, QIT)
- Equalities for work fluctuations
- Quantum identities
- Outlook

Outlook and open questions

- Fluctuations of states
 - Probabilistic transformation (LOCC: Vidal 1999, Jonathan & Plenio 1999), Alhambra et. al. (2014); Renes (2015); Narasimhachar, Gour (2016)
- Generalised third laws
 - Reeb, Wolf (2013)
 - Thermal machines: Masanes, JO (2014)
- Fully quantum fluctuations (non-commuting case)
- Recovery Maps
 - Alhambra et. al. (2015), Åberg (2016), Alhambra et.al. (2016)
- Embezzlement of work? (Brandao et. al. 2015)
- Autonomous machines and clocks
 - Horodecki et. al. (2011), Woods et. al. (2016)

Probabilistic state transformations

$$\rho \rightarrow \sigma$$

$$\rho \longrightarrow \rho' = p^* \sigma + (1-p^*)X$$

$$p^* = \min_{l \in 1, 2...n} \frac{V_l(\rho)}{V_l(\sigma)}$$

$$V_l(\rho) = \sum_{s=1}^l p(s)$$

$$2^{W_{\rho\Rightarrow\sigma}} \le p^* \le 2^{-W_{\sigma\Rightarrow\rho}}$$

c.f. entanglement theory G. Vidal (1999) Jonathan, Plenio (1999)

Probabilistic state transformations

$$p^* = \min_{l \in 1, 2...n} \frac{V_l(\rho)}{V_l(\sigma)}$$

$$2^{W_{\rho\Rightarrow\sigma}} \le p^* \le 2^{-W_{\sigma\Rightarrow\rho}}$$

Probabilistic state transformations

$$p^* = \min_{l \in 1, 2...n} \frac{V_l(\rho)}{V_l(\sigma)}$$

$$\sum_{s} T(s'|s) e^{-\beta E_{s}} \le e^{-\beta E_{s'}}$$
$$\sum_{s} T(s'|s) p(s) \ge p^{*}p(s')$$

Renes (2015)

Quantitative third law (Masanes, JO; to appear in Nat. Comm.)

Heat Theorem (Planck 1911): when the temperature of a pure substance approaches absolute zero, its entropy approaches zero

Unattainability Principle (Nernst 1912): any thermodynamical process cannot attain absolute zero in a finite number of steps or within a finite time

$$T' \ge \frac{\alpha T}{t^{2d+1}}$$

Thermal Machines

- Like Turing Machines
- In a finite time, they interact with a finite volume and inject a finite amount of work

•
$$t \ge \frac{1}{v} V^{1/d}$$
 $t \ge \frac{1}{u} w_{max}$

• Bath of volume V has sub-exponential density of states $\Omega(E)$

Outlook and open questions

- Fluctuations of states
 - Probabilistic transformation (LOCC: Vidal 1999, Jonathan & Plenio 1999), Alhambra et. al. (2014); Renes (2015); Narasimhachar, Gour (2016)
- Generalised third laws
 - Reeb, Wolf (2013)
 - Thermal machines: Masanes, JO (2014)
- Fully quantum fluctuations (non-commuting case)
- Recovery Maps
 - Alhambra et. al. (2015), Åberg (2016), Alhambra et.al. (2016)
- Embezzlement of work? (Brandao et. al. 2015)
- Autonomous machines and clocks
 - Horodecki et. al. (2011), Woods et. al. (2016)