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Spatially Coupled Ensembles Universally Achieve
Capacity Under Belief Propagation
Shrinivas Kudekar, Tom Richardson, Fellow, IEEE, and Rüdiger L. Urbanke

Abstract—We investigate spatially coupled code ensembles. For
transmission over the binary erasure channel, it was recently
shown that spatial coupling increases the belief propagation
threshold of the ensemble to essentially the maximum a priori
threshold of the underlying component ensemble. This explains
why convolutional LDPC ensembles, originally introduced by
Felström and Zigangirov, perform so well over this channel. We
show that the equivalent result holds true for transmission over
general binary-input memoryless output-symmetric channels.
More precisely, given a desired error probability and a gap to
capacity, we can construct a spatially coupled ensemble that
fulfills these constraints universally on this class of channels under
belief propagation decoding. In fact, most codes in this ensemble
have this property. The quantifier universal refers to the single
ensemble/code that is good for all channels but we assume that
the channel is known at the receiver. The key technical result is a
proof that, under belief-propagation decoding, spatially coupled
ensembles achieve essentially the area threshold of the underlying
uncoupled ensemble. We conclude by discussing some interesting
open problems.

Index Terms—Belief propagation (BP), capacity-achieving
codes, channel coding, convolutional low-density parity-check
(LDPC) codes, iterative decoding, LDPC codes, spatial coupling,
spatially coupled codes, threshold saturation.

I. INTRODUCTION

A. Historical Perspective

E VER since the publication of Shannon’s seminal paper
[1] and the introduction of the first coding schemes by

Hamming [2] and Golay [3], coding theory has been concerned
with finding low-delay and low-complexity capacity-achieving
schemes. The interested reader can find an excellent historical
review in [4]. Let us just briefly mention some of the highlights
before focusing on those parts that are the most relevant for our
purpose.
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In the first 50 years, coding theory focused on the con-
struction of algebraic coding schemes and algorithms that
were capable of exploiting the algebraic structure. Two early
highlights of this line of research were the introduction of the
Bose–Chaudhuri–Hocquenghem (BCH) codes [5], [6] as well
as the Reed–Solomon (RS) codes [7]. Berlekamp devised an
efficient decoding algorithm [8], and this algorithm was then
interpreted by Massey as an algorithm for finding the shortest
feedback-shift register that generates a given sequence [9].More
recently,Sudan introduceda list decodingalgorithmforRScodes
that decodes beyond the guaranteed error-correcting radius [10].
Guruswami and Sudan improved upon this algorithm [11] and
Koetter and Vardy showed how to handle soft information [12].
Another important branch started with the introduction of

convolutional codes [13] by Elias and the introduction of the
sequential decoding algorithm by Wozencraft [14]. Viterbi in-
troduced the Viterbi algorithm [15]. It was shown to be optimal
by Forney [16] and Omura [17] and to be eminently practical
by Heller [18], [19].
An important development in transmission over the con-

tinuous input, band-limited, additive white Gaussian noise
channel was the invention of the lattice codes. It was shown
in [20]–[24] that lattice codes achieve the Shannon capacity.
A breakthrough in bandwidth-limited communications came
about when Ungerboeck [25]–[27] invented a technique to
combine coding and modulation. Ungerboeck’s technique
ushered in a new era of fast modems. The technique, called
trellis-coded modulation (TCM), offered significant coding
gains without compromising bandwidth efficiency by mapping
binary code symbols, generated by a convolutional encoder, to a
larger (nonbinary) signal constellation. In [28] and [29], Forney
showed that lattice codes, as well as TCM schemes, might
be generated by the same basic elements and the generalized
technique was termed coset-coding.
Coming back to binary linear codes, in 1993, Berrou et al.

[30] proposed turbo codes. These codes attain near-Shannon
limit performance under low-complexity iterative decoding.
Their remarkable performance leads to a flurry of research
on the “turbo” principle. Around the same time, Spielman
in his thesis [31], [32] and MacKay and Neal in [33]–[36],
independently rediscovered low-density parity-check (LDPC)
codes and iterative decoding, both introduced in Gallager’s
remarkable thesis [37]. Wiberg showed [38] that both turbo
codes and LDPC codes fall under the umbrella of codes based
on sparse graphs and that their iterative decoding algorithms
are special cases of the sum-product algorithm. This line of
research was formalized by Kschischang et al. who introduced
the notion of factor graphs [39].
The next breakthrough in the design of codes (based on sparse

graphs) came with the idea of using irregular LDPC codes by
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Belief propagation: message passing algorithm for 
performing inference in a graphical model
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Figure 3.10: Le : Tanner graph of H given in (3.9). Right: Tanner graph of [7, 4, 3]
Hamming code corresponding to the parity-check matrix on page 15.øis graph is
discussed in Example 3.11.

node represents one linear constraint (one row ofH). For the particular example we
start with 20 degrees of freedom (20 variable nodes).øe 10 constraints reduce the
number of degrees of freedomby atmost 10 (and exactly by 10 if all these constraints
are linearly independent as in this speci⌧c example).øerefore at least 10 degrees of
freedom remain. It follows that the shown code has rate (at least) one-half. n

§3.4. Low-Density Parity-Check Codes
In a nutshell, low-density parity-check (LDPC) codes are linear codes that have at
least one sparse Tanner graph. øe primary reason for focusing on such codes is

many applications in statistics and machine learning besides coding:  

inference, optimization, constraint satisfaction

decoder infers channel input from output;  
code can be described by a graphical model

early precursor: Bethe-Peierls 
approximation in statistical physics



Can use classical algorithm for usual stabilizer decoding 

Let’s consider CQ channels for simplicity

Optimal for: 

W

Quantum belief propagation decoding?

But not, e.g. amplitude damping 

Need to infer channel input from quantum output
(not trying to compute marginals of quantum states)
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Results

BP decoder for pure state channel, tree codes

Also works for polar codes:  
Efficient, capacity-achieving decoder for BPSK over lossy Bosonic channel

And for quantum communication, part of conjugate basis decoder: 
Efficient, capacity-achieving decoder for amplitude damping
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Coding setup

Shannon scenario: stochastic iid noise. 
not adversarial; fault-free decoding
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Factor graphs

factorizeable joint probability 
P (x1, x2, x3, x4) =

1
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FIG. 1: Factor graph for the joint probability distribution of a four-bit code with two parity checks
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Since the channel is memoryless, the channel contribution to (1) is already in factorized form.
Meanwhile, code membership is enforced by a sequence of parity-check constraints associated
with the code, which also leads to factorization. In the three-bit repetition code, for instance,
there are two parity constraints, x
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+ x
2

= 0 and x
2

+ x
3

= 0 (or x
1

+ x
3

= 0), and therefore
[x3

1

2 C] = [x
1

+ x
2

= 0] [x
2

+ x
3

= 0]. We can represent the joint distribution of any linear
code (up to normalization) by a factor graph; Figure 1 shows the factor graph of a code involving
two parity checks on four bits. For an arbitrary factorizeable function, the factor graph contains
one (round) variable node for each variable and one (square) factor node for each factor, and
factor nodes are connected to all their constituent variable nodes. This convention is violated
in the figure by not including y

j

variable nodes; instead they are treated as part of the channel
factors since their values are fixed and in any case each is connected to only one factor node.

For factor graphs which are trees, meaning only one path connects any two nodes as in
Figure 1, the belief propagation algorithm can compute the marginal distributions exactly. In
the present context of coding, it directly finds the most likely input value. Supposing we are
interested in determining x

1

, treat variable node x
1

as the root of the tree. BP then proceeds by
passing messages between nodes, starting from the leaves (here, channel outputs) and working
inward, combining all relevant information as it goes. Simplifying the general BP rules (see [2])
to the decoding problem, the initial messages from the channel factors to the variable nodes can
be taken as the log-likelihood ratios ` = log[W (y

j

|0)/W (y
j

|1)] of the channel given the output
y
j

(here we suppress the dependence of ` on the channel output y
j

). At variable nodes the
messages simply add, so that the outgoing ` is the sum of incoming `

k

. At check nodes the
rule is more complicated: tanh `

2

=
Q

k

tanh `k
2

. After all messages have arrived at the root, the
algorithm produces the log-likelihood ratio for x

1

given all the channel outputs, and the decoder
simply outputs 0 if the ratio is positive or 1 if negative.

By adopting a modified update rule it is in fact possible to compute all the marginals at
once with only a modest overhead. Instead of only proceeding inward from the leaves, we send
messages in both directions along each edge, starting by sending channel log-likelihoods in from
the leaves. Each node sends messages on each edge once it has received messages on all its other
edges. For graphs that contain loops, the algorithm is not guaranteed to converge, but one can
nevertheless hope that the result is a good approximation and that the decoder outputs the
correct value. This is borne out in practice for turbo codes and LDPC codes.

There is an intuitive way of understanding the BP decoding algorithm which is the basis of
our quantum generalization. At every step the message can be interpreted as the log-likelihood
ratio of the e↵ective channel from that node to its descendants. This is sensible as the likelihood
ratio is a su�cient statistic for estimating the (binary) input from the channel output. The
rules for combining messages can then be interpreted as rules for combining channels, and the
algorithm can be seen as successively simplifying the channel from the root to the leaves by
utilizing the structure of the factor graph. At variable nodes, adding the log-likelihood ratios
for two channels W and W 0 amounts to considering the convolution channel W f W 0 with

2

decoding, computing such marginals is indeed su�cient, as we will describe in more detail
below. But even for bitwise decoding of a classical-quantum (CQ) channel having classical
input and quantum output, it is not enough to know the relevant marginal state; we need a
way to perform the optimal (Helstrom) measurement [20] or some suitable approximation. Put
di↵erently, a quantum BP decoder is a quantum algorithm, and we may expect that it will need
to pass quantum messages.

In this paper we construct a quantum BP decoding algorithm for the pure state channel, a
binary input CQ channel whose outputs are pure states. The algorithm for estimating a single
input bit works by passing single qubits as well as classical information along the factor graph,
while sequential estimation of all input bits requires passing many qubits. For codes whose
factor graphs are trees, as well as for polar codes, we show how the BP decoder leads to explicit
circuits for the optimal measurement that have quadratic size in the code length. To the best
our knowledge, this is the first instance of a quantum algorithm for belief propagation.

The pure state channel arises, for instance, in binary phase-shift keying (BPSK) modulation
of a pure loss Bosonic quantum channel, whose channel outputs are coherent states [21]. Thus,
our result gives an explicit construction of a successive cancellation decoder for the capacity-
achieving polar code described in [21], and addresses the issue of decoding CQ polar codes
discussed in [17]. Moreover, the pure state channel also arises as part of the quantum polar
decoder for the amplitude damping channel [16, 18], and therefore our result gives an explicit
decoder for polar codes over this channel.

The remainder of the paper is structured as follows. In the next section give a very brief
overview of factor graphs and their use in classical decoding, and then rewrite the BP rules in
a manner that lead to the quantum algorithm. Section II B gives the quantum BP decoding
algorithm and applications to polar codes are given in Section IIC. We finish with several open
questions for future research raised by our result.

II. RESULTS

A. Belief propagation decoding on factor graphs

Let us first examine BP on factor graphs directly in the coding context; for a more general
treatment see [2, 22]. Consider the problem of reliable communication over a memoryless channel
W using a linear code C. Fix C to be an n-bit code, i.e. a linear subspace of Zn

2

, and suppose
that the channel W maps inputs in X = Z

2

to some alphabet Y according to the transition
probabilities P

Y |X=x
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= (x
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, x
2

, . . . , x
n

) 2 C is picked
at random and its consituent bits are each subjected to W , producing the output yn

1

. The
goal of decoding is to invert this process and determine the input codeword from the channel
output. This is a task of statistical inference, whose nominal solution is to output the xn

1

which
maximizes the conditional probability of inputs given outputs, P

X

n|Y n . Since we assume the
inputs are uniformly chosen from C, we can directly work with the joint distribution P

X

n
Y

n of
inputs and outputs. In general, though, this task is known to be computationally intractable.

A simpler approach is to decode bitwise and find the most likely value of x
k

given yn
1

, for
each k. Then we are interested in the marginal distribution P

XkY
n , and we need only determine

which of the two values of x
k

maximize P
XkY

n(x
k

, yn
1

). Exact marginalization is also generally
computationally intractable since the size of the joint distribution grows exponentially in the
number of variables. However, for linear codes the joint distribution can be factorized, which
often greatly simplifies the marginalization task. The joint distribution P
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Since the channel is memoryless, the channel contribution to (1) is already in factorized form.
Meanwhile, code membership is enforced by a sequence of parity-check constraints associated
with the code, which also leads to factorization. In the three-bit repetition code, for instance,
there are two parity constraints, x
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= 0), and therefore
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= 0]. We can represent the joint distribution of any linear
code (up to normalization) by a factor graph; Figure 1 shows the factor graph of a code involving
two parity checks on four bits. For an arbitrary factorizeable function, the factor graph contains
one (round) variable node for each variable and one (square) factor node for each factor, and
factor nodes are connected to all their constituent variable nodes. This convention is violated
in the figure by not including y

j

variable nodes; instead they are treated as part of the channel
factors since their values are fixed and in any case each is connected to only one factor node.

For factor graphs which are trees, meaning only one path connects any two nodes as in
Figure 1, the belief propagation algorithm can compute the marginal distributions exactly. In
the present context of coding, it directly finds the most likely input value. Supposing we are
interested in determining x

1

, treat variable node x
1

as the root of the tree. BP then proceeds by
passing messages between nodes, starting from the leaves (here, channel outputs) and working
inward, combining all relevant information as it goes. Simplifying the general BP rules (see [2])
to the decoding problem, the initial messages from the channel factors to the variable nodes can
be taken as the log-likelihood ratios ` = log[W (y
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|1)] of the channel given the output
y
j

(here we suppress the dependence of ` on the channel output y
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). At variable nodes the
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rule is more complicated: tanh `
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. After all messages have arrived at the root, the
algorithm produces the log-likelihood ratio for x

1

given all the channel outputs, and the decoder
simply outputs 0 if the ratio is positive or 1 if negative.

By adopting a modified update rule it is in fact possible to compute all the marginals at
once with only a modest overhead. Instead of only proceeding inward from the leaves, we send
messages in both directions along each edge, starting by sending channel log-likelihoods in from
the leaves. Each node sends messages on each edge once it has received messages on all its other
edges. For graphs that contain loops, the algorithm is not guaranteed to converge, but one can
nevertheless hope that the result is a good approximation and that the decoder outputs the
correct value. This is borne out in practice for turbo codes and LDPC codes.

There is an intuitive way of understanding the BP decoding algorithm which is the basis of
our quantum generalization. At every step the message can be interpreted as the log-likelihood
ratio of the e↵ective channel from that node to its descendants. This is sensible as the likelihood
ratio is a su�cient statistic for estimating the (binary) input from the channel output. The
rules for combining messages can then be interpreted as rules for combining channels, and the
algorithm can be seen as successively simplifying the channel from the root to the leaves by
utilizing the structure of the factor graph. At variable nodes, adding the log-likelihood ratios
for two channels W and W 0 amounts to considering the convolution channel W f W 0 with
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Classical BP decoding

BP rules specify two kinds of channel convolution

Variable node

Check node
x1

x3

x2

x4
W f W 1 W0 b W 1

0

W1 b W 1
1

W f W 1 1{2pW0 b W 1
0 ` W1 b W 1

1q
1{2pW0 b W 1

1 ` W1 b W 1
0q

BP finds exact marginals on trees 
Can run algorithm for all codeword bits concurrently 

Also works on loopy LDPC factor graphs
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Quantum BP decoding

x1

x3

x2

x4

Now the outputs are quantum, no likelihood function

Can we combine Helstrom 
measurements along the branches?

Want to perform Helstrom measurement

Try the simplest case:  
pure state outputs W0 

1
|`✓y
|´✓y

Can we “repackage” the outputs as with likelihood?

x`✓|´✓y “ cos ✓

optimal measurement is σx



Quantum BP decoding

⧆  convolution gives a heralded mixture of pure states!

W f W 1 W0 b W 1
0

W1 b W 1
1

W f W 1 1{2pW0 b W 1
0 ` W1 b W 1

1q
1{2pW0 b W 1

1 ` W1 b W 1
0q

Ufp✓, ✓1qrepackage in a single qubit with  

x1

x3

x2

x4

x`✓|´✓y “ cos ✓

⊛  convolution yields pure states:
|`✓y b |`✓1y |´✓y b |´✓1y |˘✓fy

cos ✓f “ cos ✓ cos ✓1

unitary       gives Uf
ÿ

jPt0,1u
pj |jy xj| b |˘✓f

j yx˘✓f
j |

cos ✓f
0 “ cos ✓ ` cos ✓1

1 ` cos ✓ cos ✓1 cos ✓f
1 “ cos ✓ ´ cos ✓1

1 ´ cos ✓ cos ✓1p0 “ 1
2 p1 ` cos ✓ cos ✓1q

W0 
1

|`✓y
|´✓y



Quantum BP decoding
5

Uf
⇥ |

⇥ ⇥
Uf

H

⇥
Uf

|

FIG. 2: Circuit decoding the first bit of the code depicted in Figure 1. The first f convolution is Uf(✓, ✓),
the second Uf(✓f, ✓f

j ) for cos ✓f = cos2 ✓ and cos ✓f
0

= 2 cos ✓
(1+cos

2 ✓) , ✓
f
1

= ⇡
2

, depending on the value j of
the measurement outcome in the bottom wire. The symbol a denotes that the qubit is discarded. The
final Hadamard gate and measurement implement the Helstrom measurement.

The f convolution is more complicated because the outputs are no longer pure. How-
ever, applying the unitary Uf = cnot

2!1

cnot

1!2

results in a CQ state of the form
P

j2{0,1} pj
���±✓f

j

ED
±✓f

j

��� ⌦ |ji hj|. We are free to measure the second qubit, and conditional

state of the first qubit is again one of two pure states, though now the overlap cos ✓f
j

depends

on the measurement outcome j. In particular, p
0

= 1

2

(1 + cos ✓ cos ✓0), p
1

= 1� p
0

, and the two
overlaps are given by

cos ✓f
0

=
cos ✓ + cos ✓0

1 + cos ✓ cos ✓0
, (7)

cos ✓f
1

=
cos ✓ � cos ✓0

1� cos ✓ cos ✓0
. (8)

For outcome j = 0 the angle between the states has decreased, while for outcome j = 1 the
angle has increased. Therefore, the f convolution of pure state channels can be represented by
two pure state channels, corresponding to the two measurement outcomes. As before, several
channels can be combined sequentially.

The quantum decoding algorithm now proceeds as in classical BP, taking the quantum out-
puts of the channels and combining them at variable and check nodes. At a variable node the
algorithm combines the outputs using Uf and forwards the output to its parent node. At check
nodes the algorithm applies Uf, measures the second qubit, and forwards both the qubit and
the measurement result to its parent node. The classical messages are required to inform parent
variable nodes how to choose the angles in subsequent Uf unitaries. Ultimately this procedure
results in one qubit at the root node such that measurement of �

x

corresponds to the optimal
Helstrom measurement for the associated bit. This then is su�cient to estimate one input bit.

For example, return to the code depicted in Figure 1 for a pure state channel with overlap
✓, and suppose we are interested in decoding the first bit. Starting at the leaves, the outputs of
all but the first channel can be immediately passed to their corresponding variable nodes, since
these variable nodes do not have any other outward branches. (Formally this follows from the
convolution rules by considering convolution with a trivial channel, having ✓ = 0.) The output
of the first channel, meanwhile, must wait to be combined according to the f convolution with
several other qubit messages. Next, since 2 and 4 are connected by a check node, we combine
qubits 2 and 4 into one qubit (2) and one classical bit (4) by applying Uf and measuring the 4th
qubit. As qubits 1 and 3 are connected by a variable node, we can simultaneously combine these
with Uf(✓, ✓). Finally, we combine qubits 1 and 2 by applying Uf(✓f, ✓f

j

), where cos ✓f = cos2 ✓

and cos ✓f
0

= 2 cos ✓

(1+cos

2
✓)

, ✓f
1

= ⇡

2

, depending on the value j of the earlier measurement. A quantum

circuit implementing these steps is shown in Figure 2.
One drawback is that the above procedure implements the Helstrom measurement destruc-

tively, since once we estimate the first bit we no longer have the original channel output in
order to estimate the second bit. And we cannot run the algorithm backwards to reproduce the

x1

x3

x2

x4
swap

1

2
3
4

|˘✓fy

ÿ

jPt0,1u
pj |˘✓f

j yx˘✓f
j | b |jy xj|

needs to know input qubit angles

Helstrom measurement

pass qubits and some classical bits: “sufficient statistic”

decode all codeword bits sequentially, unwinding each time

O(n2) implementation of all Helstrom measurements



Quantum BP & polar codes

O(n2) decoder for capacity-achieving quantum polar code for amplitude damping 

Variable and check convolutions = “better” and “worse” synth channels

Polar decoder has tree structure (for message not codeword bits, tho)

Quantum polar decoder uses polar decoder 
for classical amplitude and phase info
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Polar Codes for Private and Quantum

Communication Over Arbitrary Channels

Joseph M. Renes, Member, IEEE, and Mark M. Wilde, Senior Member, IEEE

Abstract— We construct new polar coding schemes for the

transmission of quantum or private classical information over

arbitrary quantum channels. In the former case, our coding

scheme achieves the symmetric coherent information, and in the

latter, the symmetric private information. Both schemes are built

from a polar coding construction capable of transmitting classical

information over a quantum channel. Appropriately merging two

such classical-quantum schemes, one for transmitting amplitude

information and the other for transmitting phase, leads to the new

private and quantum coding schemes, similar to the construction

for Pauli and erasure channels of Renes et al. The encoding

is entirely similar to the classical case, and thus efficient. The

decoding can also be performed by successive cancellation, as in

the classical case, but no efficient successive cancellation scheme

is yet known for arbitrary quantum channels. An efficient code

construction is unfortunately still unknown. Generally, our two

coding schemes require entanglement or secret-key assistance,

respectively, but we extend two known conditions under which

the needed assistance rate vanishes. Finally, although our results

are formulated for qubit channels, we show how the scheme can

be extended to multiple qubits. This then demonstrates a near-

explicit coding method for realizing one of the most striking

phenomena in quantum information theory: the superactivation

effect, whereby two quantum channels, which individually have

zero quantum capacity can have a nonzero quantum capacity

when used together.

Index Terms— Quantum polar codes, private communication,

quantum communication, superactivation, quantum successive

cancellation decoder.

POLAR coding is a promising code construction for trans-

mitting classical information over classical channels [1].

Arıkan proved that polar codes achieve the symmetric capacity

of any classical channel, with an encoding and decoding

complexity that is O(N log N) where N is the number of
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channel uses. These codes exploit the channel polarization

effect whereby a particular recursive encoding induces a set

of virtual channels, such that some of the virtual channels are

perfect for data transmission while the others are useless for

this task. The fraction containing perfect virtual channels is

equal to the channel’s symmetric capacity.1

In this paper, we offer new polar coding schemes for

transmitting quantum information or for privately transmitting

classical information. Both are strongly based on ideas of

Renes and Boileau [2], who showed that quantum or private

coding protocols can be constructed from two different

protocols that protect classical information encoded into com-

plementary variables. In particular, a protocol for reliably

transmitting quantum data can be built from a protocol that

reliably recovers classical information encoded into an “ampli-

tude” variable and a protocol that reliably recovers “phase”

information with the assistance of quantum side information.

The quantum coding scheme uses the decoders of both of these

tasks, while the private coding scheme needs only the decoder

of the amplitude variable and uses the fact that the phase could

have been decoded in order to ensure security of the data via

an entropic uncertainty relation (see [3]–[6] for related ideas).

These ideas were used to construct quantum and private

polar coding schemes with explicit, efficient decoders in [7]

achieving rates equal to the symmetric coherent and private

information, respectively, but only for a certain set of channels

with essentially classical outputs (Pauli and erasure channels).

Following a different approach, Wilde and Guha [8] con-

structed quantum and private polar codes at these rates for any

degradable channels for which the output to the environment

is essentially classical. (In both cases, the private codes obey

the so-called strong security criterion, such that the eaves-

dropper gets essentially no information about the transmitted

information, not merely that she only gets information at a

vanishing rate.) Both coding techniques require entanglement

or secret-key assistance in the general case.

Our new constructions have several advantages over these

previous schemes:

• The net communication rate is equal to the symmetric

coherent or private information for an arbitrary quantum

channel with qubit input.

• The decoders are explicit; in the quantum case the

decoder consists of O(N) rounds of coherent quantum

successive cancellation followed by N CNOT gates, while

1 The symmetric capacity is equal to the channel’s input-output mutual

information, evaulated for a uniformly random input.
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r Theoret

ische Physik, E
TH Zurich, C

H-8093 Zürich, S
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Polar cod
ing, intro

duced 2008 by Ar!kan, is
the first (

very) effi
ciently encodabl

e and decodabl
e coding

scheme whose i
nformation transmission rate prov

ably achieves
the Shann

on bound for classi
cal discre

te

memoryless ch
annels in

the asymptotic lim
it of large

block size
s. Here, w

e study th
e use of p

olar code
s for

the transm
ission of quantu

m information. Foc
using on the case o

f qubit Pa
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es to construct

a coding scheme that asym
ptotically

achieves
a net

transmission rate equa
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One of the most exciting
developm

ents in classical

information theory of the last decad
e, polar c

odes enab
le

the transmission of information over arbitrary
discrete,

memoryless ch
annels (D

MCs) at rat
es up to t

he symmetric

capacity
of the channel (

the Shannon
limit assuming uni-

formly distribute
d inputs to

the channel)
[1,2]. Moreover,

both the c
onstructio

n of polar
codes as w

ell as the
encoding

and decod
ing opera

tions can
be perfor

med very e
fficiently,

in Oðn log nÞ steps
for n the block

length of the cod
e [1,3].

The main idea underlyin
g their construct

ion is channel

polarizati
on: From

n identical
DMCs, one

can create n

logical c
hannels via a suitable transform

ation, suc
h that

each logi
cal chann

el is eithe
r ‘‘good’’

(nearly n
oiseless)

or

‘‘bad’’ (c
ompletely noisy). M

essages can be transmitted

via the go
od chann

els, and th
e inputs t

o bad cha
nnels fixe

d

or ‘‘froze
n’’ to valu

es known
to the dec

oder. As n
! 1, the

fraction of good
channels

approach
es the symmetric ca-

pacity of
the origin

al DMC, so the
coding sc

heme achieve
s

the symmetric capa
city.

Polar cod
es have attracted

considera
ble interest i

n the

classical
information theory community. For

instance,
see

[3] for effi
cient con

structions
of polar c

odes, [4]
for bound

s

on their erro
r probabi

lities, [5,
6] for th

eir use in source

coding, a
nd [7] for

applicatio
ns to the privat

e communica-

tion over wire
-tap channels;

[6] also provides
an excellent

overview
. Recentl

y, Wilde and Guha sho
wed that chan

nel

polarizati
on extends t

o quantum
channels

when transmit-

ting either cla
ssical [8]

or quantu
m [9] inform

ation, bu
t

they did not give a
n efficient d

ecoding algorithm
.

In this Lette
r, we ada

pt classic
al polar c

odes to the task

of transm
itting quantum

information over nois
y channels

by construct
ing Calderba

nk-Shor-S
teane (CSS) qu

antum

codes [10
,11] havi

ng efficient
encoding

and decoding
op-

erations.
We further

show that, usin
g these co

des, quan
tum

information can be transm
itted over Paul

i or erasu
re chan-

nels at a r
ate given

by the sy
mmetric cohe

rent infor
mation

(the coherent
information of the channel

evaluated
for

Bell-state
input). Generica

lly, our scheme requires
the

use of preshared
entanglem

ent between
sender and re-

ceiver, though we demonstrate
that in many cases the

rate at which
it is needed vanishes.

Random
coding can

achieve the coherent
information [12], but

to our know
l-

edge no previousl
y-known

explicit s
cheme achieves

the

coherent
information, aside from the construct

ion for

specific d
egradable

channels
in [9].

Classical
polar cod

ing.—Polar cod
ing is based on the

following
simple construct

ion. Let
W be a channel w

ith

binary input des
cribed by a random

variable X
and output

described
by an arbitrary

random variable
Y. Now,

con-

sider two
instances

of W, whose i
nputs are

connected
by a

CNOT gate, as s
hown in Fig. 1. Fo

r U1, U2 unif
ormly and

independ
ently distribute

d on f0; 1g, it follow
s that

2IðX:YÞ ¼ IðX1X2:Y1Y2Þ ¼ IðU1U2:Y1Y2Þ

¼ IðU1:Y1Y2Þ þ IðU2:U1Y1Y2Þ: (1)

Here, IðX:YÞ i
s the mutual info

rmation between
input and

output of
a single u

se of W, and X1, X2, Y1, Y2 are d
efined

as in Fig.
1. In the s

econd lin
e, we hav

e used the
chain rule

for mutual info
rmation and the fact that

U1 and U2 are

independ
ent.

Since U2 ¼ X2, IðU2:U1Y1Y2Þ % IðX:YÞ. Thus,
we may

think of the CNOT gate as transfo
rming the two physical

FIG. 1.
The basic polar cod

ing channel t
ransform

ation. Tw
o

instances
of a channel

W are transform
ed into two logical

channels,
one with higher information-carr

ying capacity
than

the origin
al and the other

lower. Th
e worse c

hannel ta
kes U1 as

input and
outputs Y1Y2, reg

arding U2 as random. The better

channel t
akes U2 as i

nput and
outputs U1Y1Y2.
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amplitude = classical Z channel,  
phase = pure state channel

:



Open

Questions
oldsloat.blogspot



Open

Questions

loops? spatially-coupled LDPC codes?

relation to tensor networks?

Viterbi decoder (blockwise decoder)?

other channels? e.g. classical coding for amplitude damping? 

fully quantum version?

junction-tree algorithm?

other tasks besides decoding?

use density matrix BP? need sufficient statistics, local tree to global 

oldsloat.blogspot


