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Introduction:
Decoupling and Erasure

2 / 21



Decoupling

I Idea: destroy correlations by local noisy quantum channels

I Proof tool in quantum Shannon theory, thermodynamics, solid
state physics, black hole radiation...

- bipartite quantum system A⊗ E in mixed state ρAE

- divide A ∼= A1 ⊗ A2

- apply a unitary to A

- trace out A2 ⇒ approximate product state

- how big do we have to choose A2?
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⇒ Operational interpretation of the quantum mutual
information!
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Erasure of correlations

I Task introduced by Groisman, Popescu and Winter in ’04

I Destruction of correlations is goal (not proof technique)

- bipartite quantum system A⊗ E in mixed state ρAE

- Apply random unitary channel

- Correlations erased if approximately product

- How big do we have to choose k?

- optimal: k ≈ nI (A : E )σ for ρ = σ⊗n
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Catalytic decoupling
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One-shot decoupling

Theorem (Dupuis, Berta, Wullschleger, Renner ’10)

Let ρAE= σ⊗nA′E ′ be a bipartite quantum state, and let
HA
∼= HA1 ⊗HA2 such that

log |A2| ≥
1

2
(Hε

max(A)ρ − Hε
min(A|E )ρ)−O

(
log

1

ε

)
.

Then ∃UA such that∥∥∥∥trA2

(
UAρAEU

†
A

)
− 1A1

|A1|
⊗ ρE

∥∥∥∥
1

≤ O (ε) .
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(
UAρAEU

†
A

)
− 1A1

|A1|
⊗ ρE
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1

≤ O (ε) .

but there are product states with
Hε

max(A)ρ − Hε
min(A|E )ρ = O(log |A|) ⇒ suboptimal for

applications like state merging
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One-shot state merging

I previous work on one-shot state merging:

I One-shot coherent state merging possible with
q(A : R)ψ = 1

2 I
ε
max(A : R) + log log |A|+O

(
log 1

ε

)
(Berta,

Christandl, Renner ’09)

. . . uses standard decoupling and embezzling states (van Dam
and Hayden ’02)

I One-shot state merging possible with
q(A : R)ψ = 1

2 (I εmax(A : R) + log log I εmax(A : R)) +O
(
log 1

ε

)
(Anshu, Devabathini, Jain ’15)

. . . uses different technique called convex split lemma.

I tailored techniques
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Catalytic decoupling

I Generalize decoupling twofold:

- drop randomization condition

- allow free mixed ancillary states

- Bipartite system A⊗ E in a mixed state ρAE

- add ancillary system A′ in a fixed state

- divide system A⊗ A′ into two parts, A⊗ A′ ∼= A1 ⊗ A2

- apply a unitary to AA′

- trace out A2

- how big do we have to choose A2 here?
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Characterization

Theorem (CM, Berta, Dupuis, Renner, Christandl)

Let ρAE ∈ B(HA ⊗HE ) be a quantum state. Then, for any
0 ≤ ε′ < ε catalytic decoupling with error ε can be achieved with
remainder system size

log |A2| ≈
1

2
I ε

′
max(E : A)ρ.

Conversely catalytic decoupling is impossible whenever

log |A2| <
1

2
I εmax(E : A)ρ.

I max-mutual information:
Imax(A : B)ρ = minσB Dmax(ρAB‖ρA ⊗ σB)

I Dmax(ρ‖σ) = min{λ ∈ R|2λσ ≥ ρ}
I Two proofs, one using the techniques from Anshu et al. and

Berta et al. respectively

10 / 21



Characterization

Theorem (CM, Berta, Dupuis, Renner, Christandl)

Let ρAE ∈ B(HA ⊗HE ) be a quantum state. Then, for any
0 ≤ ε′ < ε catalytic decoupling with error ε can be achieved with
remainder system size

log |A2| ≈
1

2
I ε

′
max(E : A)ρ.

Conversely catalytic decoupling is impossible whenever

log |A2| <
1

2
I εmax(E : A)ρ.

I max-mutual information:
Imax(A : B)ρ = minσB Dmax(ρAB‖ρA ⊗ σB)

I Dmax(ρ‖σ) = min{λ ∈ R|2λσ ≥ ρ}
I Two proofs, one using the techniques from Anshu et al. and

Berta et al. respectively

10 / 21



Characterization

Theorem (CM, Berta, Dupuis, Renner, Christandl)

Let ρAE ∈ B(HA ⊗HE ) be a quantum state. Then, for any
0 ≤ ε′ < ε catalytic decoupling with error ε can be achieved with
remainder system size

log |A2| ≈
1

2
I ε

′
max(E : A)ρ.

Conversely catalytic decoupling is impossible whenever

log |A2| <
1

2
I εmax(E : A)ρ.

I max-mutual information:
Imax(A : B)ρ = minσB Dmax(ρAB‖ρA ⊗ σB)

I Dmax(ρ‖σ) = min{λ ∈ R|2λσ ≥ ρ}
I Two proofs, one using the techniques from Anshu et al. and

Berta et al. respectively

10 / 21



Characterization

Theorem (CM, Berta, Dupuis, Renner, Christandl)

Let ρAE ∈ B(HA ⊗HE ) be a quantum state. Then, for any
0 ≤ ε′ < ε catalytic decoupling with error ε can be achieved with
remainder system size

log |A2| ≈
1

2
I ε

′
max(E : A)ρ.

Conversely catalytic decoupling is impossible whenever

log |A2| <
1

2
I εmax(E : A)ρ.

I max-mutual information:
Imax(A : B)ρ = minσB Dmax(ρAB‖ρA ⊗ σB)

I Dmax(ρ‖σ) = min{λ ∈ R|2λσ ≥ ρ}

I Two proofs, one using the techniques from Anshu et al. and
Berta et al. respectively

10 / 21



Characterization

Theorem (CM, Berta, Dupuis, Renner, Christandl)

Let ρAE ∈ B(HA ⊗HE ) be a quantum state. Then, for any
0 ≤ ε′ < ε catalytic decoupling with error ε can be achieved with
remainder system size

log |A2| ≈
1

2
I ε

′
max(E : A)ρ.

Conversely catalytic decoupling is impossible whenever

log |A2| <
1

2
I εmax(E : A)ρ.

I max-mutual information:
Imax(A : B)ρ = minσB Dmax(ρAB‖ρA ⊗ σB)

I Dmax(ρ‖σ) = min{λ ∈ R|2λσ ≥ ρ}
I Two proofs, one using the techniques from Anshu et al. and

Berta et al. respectively 10 / 21



Properties

I Denote the minimal remainder system size log |A2| by
Rεc (A : E )ρ

I Minimal remainder system size if ρ = σ⊗n:

1

n
Rεc (A : E )ρ ≈

1

2
I (A : E )σ

! asymptotically the ancilla becomes unnecessary, usual
randomization condition becomes redundant

I tightness of characterization allows derivation of a 2nd order
term:

Rεc (A : E )ρ =
1
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Erasure of conditional correlations

I ρAER

I Conditional quantum mutual information
I (A : E |R)ρ = H(ρAR) + H(ρER)− H(ρAER)− H(ρR)

I Recoverability: if I (A : E |R) = ε small,
ρAER ≈O(ε) RR→RA (ρER) for some quantum channel R.
(Fawzi, Renner ’14)
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I i.i.d. setting

I Recall: Erasure of correlations in ρAE operating on A costs
I (A : E ) bits of noise.

? Can we erase conditional correlations by injecting I (A : E |R)ρ
bits of noise into A?
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Counterexample

? Can we erase conditional correlations by injecting I (A : E |R)ρ
bits of noise into A?

! No, ∃ Classical counterexample.

I Characterization for pure states: Noise � I (A : E |R)
necessary in general (Wakakuwa et al. ’15)

I obvious solution in the classical case: condition on R!
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State redistribution (SRD)

I Alice, Bob and a referee share a pure state |ψ〉〈ψ|ABCR
I Alice has AC , Bob has B, Referee has R

I their task: Alice has to send A to Bob

I they can use entanglement

I optimal comunication rate I (A : R|C ) (Devetak and Yard ’06)
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Deconstruction, conditional erasure I

I State ρAER

I quantum conditional operation on A conditioned on R:

operation on AR, but ρRE approximately unchanged

I allow ancilla like in catalytic decoupling

divide system AA′ into two parts, AA′ ∼= A1A2

divide system AA′ into two parts, AA′ ∼= A1A2

divide system AA′ into two parts, AA′ ∼= A1A2

divide system AA′ into two parts, AA′ ∼= A1A2
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I quantum conditional operation on A conditioned on R:

operation on AR, but ρRE approximately unchanged

I allow ancilla like in catalytic decoupling

Step-by-step definition:

- add ancillary system A′ in a fixed state

- apply a unitary URAA′ that negligibly disturbs ρER

- divide system AA′ into two parts, AA′ ∼= A1A2
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Deconstruction, conditional erasure II

I Different goals:

I make E − R − A1 an approximate quantum Markov chain,
deconstruction of correlations

I make A1 product with ER, conditional erasure of correlations
(⇒ deconstruction of correlations)

E R

A1

A
2

Theorem (Berta, Brandao, CM, Wilde)

Conditional erasure of correlations is equivalent to quantum state
redistribution. Asymptotically, deconstruction needs at least a rate
of I (A : E |R) bits of noise.

I Both tasks have same optimal rate I (A : E |R) of noise
asymptotically

I Operational interpretation of quantum conditional mutual
information!
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Application

One-shot coherent state merging (Berta et al. ’09)

I Now: easy!

Difficult parts hidden in achievability of CD.

I Alice, Bob and a referee share a quantum state |ψ〉〈ψ|ABR .

I their task: Alice has to send her part of the state to Bob

I Alice needs ancilla – give purification to Bob ⇒ entangled
resource!
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ε
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Applications

I 2-party state ρAB , measurement ΛA→X

I (unoptimized) quantum discord:
D(A : B)ρ,Λ = I (A : B)ρ − I (X : B)Λ(ρ)

I original interpretation: decrease of correlations under
interaction with environment (”einselection”, Zurek ’00)

Theorem (Berta, Brandao, CM, Wilde)

D(A : B)ρ,Λ is equal to the rate of noise necessary to simulate the
loss of correlations incurred by ρ⊗n under the action of Λ⊗n.

I Squashed entanglement: Esq(A : B)ρ = infσ I (A : B|E )σ, inf
over all σABE with trE σABE = ρAB

⇒ Squashed entanglement is amount of noise necessary to make
many i.i.d. copies of ρAB close to separable by operation on A
and arbitrary catalytic side information E
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