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= Operational interpretation of the quantum mutual
information!
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Erasure of correlations

>

>

Task introduced by Groisman, Popescu and Winter in '04

Destruction of correlations is goal (not proof technique)

Step-by-step definition:

bipartite quantum system A ® E in mixed state pag
Apply random unitary channel

Correlations erased if approximately product

How big do we have to choose k7

optimal: k ~ nl(A: E), for p=o®"

Operational interpretation of the quantum mutual
information!

decoupling, erasure of correlations: two sides of same coin
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One-shot decoupling

Theorem (Dupuis, Berta, Wullschleger, Renner '10)

Let pae
Ha = Ha, ® Ha, such that

1
Iog |A2’ > 5 (Hriax(A)P -

Then AU, such that

tra, (UAPAEUD -

be a bipartite quantum state, and let

Hasn(A1E),) — O (105 7).

14,
A1

®/0E <O(€)

1




One-shot decoupling

Theorem (Dupuis, Berta, Wullschleger, Renner '10)

Let pae
Ha = Ha, ® Ha, such that

1
Iog |A2’ > 5 (Hriax(A)P -

Then AU, such that

tra, (UAPAEUD -

be a bipartite quantum state, and let

Hasn(A1E),) — O (105 7).

1a,
A1

®/0E <O(€)

1




One-shot decoupling

Theorem (Dupuis, Berta, Wullschleger, Renner '10)

Let pae
Ha = Ha, ® Ha, such that

1
|Og |A2| > 5 (Hriax(A)P -

Then AU, such that

tra, (UAPAEUD -

be a bipartite quantum state, and let

e (A1E),) ~ 0 (105 2).

1a,
A1

®pE <O(€)

1




One-shot decoupling

Theorem (Dupuis, Berta, Wullschleger, Renner '10)

Let pae be a bipartite quantum state, and let
Ha = Ha, ® Ha, such that

1 1
08 A2l > 5 (Hiw (), ~ Hisa(A1E),) O (105 2).

spec(p)

2Hfax (P) €

/21



One-shot decoupling

Theorem (Dupuis, Berta, Wullschleger, Renner '10)

Let pae
Ha = Ha, ® Ha, such that

1
|Og |A2| > 5 (Hriax(A)P -

Then AU, such that

tra, (UAPAEUD -

be a bipartite quantum state, and let

e (A1E),) ~ 0 (105 2).

1a,
A1

®pE <O(€)

1




One-shot decoupling

Theorem (Dupuis, Berta, Wullschleger, Renner '10)

Let pae be a bipartite quantum state, and let
Ha = Ha, ® Ha, such that

08 |42] > = (Hae(A)y — Hiin(AIE),) - 0<logi).

Then AU, such that

<O(e).

1a
tra, (UAPAEUD — = ®pE
1

A1

but there are product states with
HE 3 (A)p — AlE), = O(log|A|) = suboptimal for

max mln(
applications like state merging
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One-shot decoupling

Theorem (Dupuis, Berta, Wullschleger, Renner '10)

Let pae= 0%,’}5, be a bipartite quantum state, and let

Ha = Ha, ® Ha, such that
1
log |Az| > EI(E:

Then AU, such that

tra, (UAPAEUD -

4,0 (o).

14,
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- allow free mixed ancillary states
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Catalytic decoupling

>

Generalize decoupling twofold:
drop randomization condition

allow free mixed ancillary states

Step-by-step definition:

Bipartite system A® E in a mixed state pag

add ancillary system A’ in a fixed state

divide system A ® A’ into two parts, AQ A = A; ® A,
apply a unitary to AA/

trace out A,

how big do we have to choose A, here?

A
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Theorem (CM, Berta, Dupuis, Renner, Christandl)

Let pae € B(Ha ® HEg) be a quantum state. Then, for any
0 < €’ < ¢ catalytic decoupling with error € can be achieved with
remainder system size

1
08 | Az| ~ her(E : A),.
Conversely catalytic decoupling is impossible whenever

1
log |Az| < El,iax(E  A),.

» max-mutual information:
/max(A : B)p = minO'B Dmax(pABHpA & UB)
> Dimax(pllo) = min{\ € R|2*c > p}
» Two proofs, one using the techniques from Anshu et al. and

Berta et al. respectively 10/21
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RE(A: E),

» Minimal remainder system size if p = o®":

1 1
;RC(A CE), = EI(A 1 E)s

I asymptotically the ancilla becomes unnecessary, usual
randomization condition becomes redundant

> tightness of characterization allows derivation of a 2nd order
term:

1
RE(A:E)y =5 [nl(A: E)y +/nVi(A: E)C,qu(g)} +O(log n)
» Unitary randomizing and partial trace models equivalent with

ancilla
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Counterexample

? Can we erase conditional correlations by injecting /(A : E|R),
bits of noise into A?

I' No, 3 Classical counterexample.

» Characterization for pure states: Noise > /(A : E|R)
necessary in general (Wakakuwa et al. '15)

» obvious solution in the classical case: condition on R!

14 /21



State redistribution (SRD)

5/21



State redistribution (SRD)

» Alice, Bob and a referee share a pure state 1) (¢)|aBcr

[0} ($laBor

@© o/\/\o

15/21



State redistribution (SRD)

» Alice, Bob and a referee share a pure state 1) (¢)|aBcr
> Alice has AC, Bob has B, Referee has R

[0} ($laBor

15/21



State redistribution (SRD)

» Alice, Bob and a referee share a pure state 1) (¢)|aBcr
» Alice has AC, Bob has B, Referee has R
» their task: Alice has to send A to Bob

[0} ($laBor

/ N
DR

15/21



State redistribution (SRD)

v

Alice, Bob and a referee share a pure state |¢){(¢)|agcr
Alice has AC, Bob has B, Referee has R
their task: Alice has to send A to Bob

v

v

v

they can use entanglement

|1/) ¢|ABCR

15/21
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v

Alice, Bob and a referee share a pure state |¢){(¢)|agcr
Alice has AC, Bob has B, Referee has R
their task: Alice has to send A to Bob

v

v

v

they can use entanglement
optimal comunication rate /(A : R|C) (Devetak and Yard '06)

v

|1/) ¢|ABCR
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» quantum conditional operation on A conditioned on R:

operation on AR, but pgrg approximately unchanged
» allow ancilla like in catalytic decoupling
Step-by-step definition:
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» State PAER

» quantum conditional operation on A conditioned on R:

operation on AR, but pgrg approximately unchanged
» allow ancilla like in catalytic decoupling
Step-by-step definition:
- add ancillary system A’ in a fixed state
- apply a unitary Uraas that negligibly disturbs pgr
- divide system AA’ into two parts, AA' = A1 A,

i

- trace out As

A
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» Different goals:

» make E — R — A; an approximate quantum Markov chain,
deconstruction of correlations

» make A; product with ER, conditional erasure of correlations
(= deconstruction of correlations)

Theorem (Berta, Brandao, CM, Wilde)

Conditional erasure of correlations is equivalent to quantum state
redistribution. Asymptotically, deconstruction needs at least a rate
of I(A: E|R) bits of noise.

» Both tasks have same optimal rate /(A : E|R) of noise
asymptotically

» Operational interpretation of quantum conditional mutual
information!
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One-shot coherent state merging (Berta et al. '09)

>

>

>

Now: easy! Difficult parts hidden in achievability of CD.

Alice, Bob and a referee share a quantum state |¢) (¢)| agr-

their task: Alice has to send her part of the state to Bob

Alice needs ancilla — give purification to Bob = entangled
resource!

from here: protocol as in the asymtotic case

one-shot state merging possible with /. (A : R) gbits of
communication
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> 2-party state pag, measurement Aa_,x

» (unoptimized) quantum discord:
D(A:B),a=1(A:B),—I(X: B)a¢p)

» original interpretation: decrease of correlations under
interaction with environment (" einselection”, Zurek '00)

Theorem (Berta, Brandao, CM, Wilde)

D(A: B), is equal to the rate of noise necessary to simulate the
loss of correlations incurred by p®" under the action of A®".

» Squashed entanglement: Eg(A: B), = inf, [(A: B|E),, inf
over all oage with tre oage = PAB

= Squashed entanglement is amount of noise necessary to make
many i.i.d. copies of pag close to separable by operation on A
and arbitrary catalytic side information E
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