Catalytic Decoupling

Joint work with Mario Berta, Frédéric Dupuis, Renato Renner and Matthias Christandl (arXiv:1605.00514, accepted for publication in PRL) merged with

Deconstruction and Conditional Erasure of Correlations

Joint work with Mario Berta, Fernando Brandao, and Mark Wilde (arXiv:1609.06994)

Christian Majenz QMATH, University of Copenhagen

QIP, Microsoft Research, Seattle

Introduction: Decoupling and Erasure

▶ Idea: destroy correlations by local noisy quantum channels

- ▶ Idea: destroy correlations by local noisy quantum channels
- ▶ Proof tool in quantum Shannon theory, thermodynamics, solid state physics, black hole radiation...

- Idea: destroy correlations by local noisy quantum channels
- ▶ Proof tool in quantum Shannon theory, thermodynamics, solid state physics, black hole radiation...

Step-by-step definition:

- bipartite quantum system $A \otimes E$ in mixed state ρ_{AE}

- Idea: destroy correlations by local noisy quantum channels
- Proof tool in quantum Shannon theory, thermodynamics, solid state physics, black hole radiation...

- bipartite quantum system $A \otimes E$ in mixed state ρ_{AE}
- divide $A \cong A_1 \otimes A_2$

- Idea: destroy correlations by local noisy quantum channels
- Proof tool in quantum Shannon theory, thermodynamics, solid state physics, black hole radiation...

- bipartite quantum system $A \otimes E$ in mixed state ρ_{AE}
- divide $A \cong A_1 \otimes A_2$
- apply a unitary to A

- Idea: destroy correlations by local noisy quantum channels
- Proof tool in quantum Shannon theory, thermodynamics, solid state physics, black hole radiation...

- bipartite quantum system $A \otimes E$ in mixed state ρ_{AE}
- divide $A \cong A_1 \otimes A_2$
- apply a unitary to A
- trace out $A_2 \Rightarrow$ approximate product state

- Idea: destroy correlations by local noisy quantum channels
- Proof tool in quantum Shannon theory, thermodynamics, solid state physics, black hole radiation...

- bipartite quantum system $A \otimes E$ in mixed state ρ_{AE}
- divide $A \cong A_1 \otimes A_2$
- apply a unitary to A
- trace out $A_2 \Rightarrow$ approximate product state
- how big do we have to choose A_2 ?

- Idea: destroy correlations by local noisy quantum channels
- Proof tool in quantum Shannon theory, thermodynamics, solid state physics, black hole radiation...

- bipartite quantum system $A \otimes E$ in mixed state ρ_{AE}
- divide $A \cong A_1 \otimes A_2$
- apply a unitary to A
- trace out $A_2 \Rightarrow$ approximate product state
- how big do we have to choose A_2 ?
- $\log |A_2| \approx \frac{n}{2} I(A:E)_{\sigma}$ for $\rho = \sigma^{\otimes n}$ (Horodecki, Oppenheim, Winter '05)

- Idea: destroy correlations by local noisy quantum channels
- Proof tool in quantum Shannon theory, thermodynamics, solid state physics, black hole radiation...

- bipartite quantum system $A \otimes E$ in mixed state ρ_{AE}
- divide $A \cong A_1 \otimes A_2$
- apply a unitary to A
- trace out $A_2 \Rightarrow$ approximate product state
- how big do we have to choose A_2 ?
- $\log |A_2| \approx \frac{n}{2} I(A:E)_{\sigma}$ for $\rho = \sigma^{\otimes n}$ (Horodecki, Oppenheim, Winter '05)
- ⇒ Operational interpretation of the quantum mutual information!

► Task introduced by Groisman, Popescu and Winter in '04

- ► Task introduced by Groisman, Popescu and Winter in '04
- Destruction of correlations is goal (not proof technique)

- ► Task introduced by Groisman, Popescu and Winter in '04
- Destruction of correlations is goal (not proof technique)

- ► Task introduced by Groisman, Popescu and Winter in '04
- Destruction of correlations is goal (not proof technique)

Step-by-step definition:

- bipartite quantum system $A \otimes E$ in mixed state ρ_{AE}

- Task introduced by Groisman, Popescu and Winter in '04
- Destruction of correlations is goal (not proof technique)

- bipartite quantum system $A \otimes E$ in mixed state ρ_{AE}
- Apply random unitary channel

- Task introduced by Groisman, Popescu and Winter in '04
- Destruction of correlations is goal (not proof technique)

- bipartite quantum system $A \otimes E$ in mixed state ρ_{AE}
- Apply random unitary channel
- Correlations erased if approximately product

- Task introduced by Groisman, Popescu and Winter in '04
- Destruction of correlations is goal (not proof technique)

- bipartite quantum system $A \otimes E$ in mixed state ho_{AE}
- Apply random unitary channel
- Correlations erased if approximately product
- How big do we have to choose *k*?

- Task introduced by Groisman, Popescu and Winter in '04
- Destruction of correlations is goal (not proof technique)

- bipartite quantum system $A \otimes E$ in mixed state ρ_{AE}
- Apply random unitary channel
- Correlations erased if approximately product
- How big do we have to choose k?
- optimal: $k \approx nI(A:E)_{\sigma}$ for $\rho = \sigma^{\otimes n}$

- Task introduced by Groisman, Popescu and Winter in '04
- Destruction of correlations is goal (not proof technique)

- bipartite quantum system $A \otimes E$ in mixed state ρ_{AE}
- Apply random unitary channel
- Correlations erased if approximately product
- How big do we have to choose k?
- optimal: $k \approx nI(A:E)_{\sigma}$ for $\rho = \sigma^{\otimes n}$
- ⇒ Operational interpretation of the quantum mutual information!

- Task introduced by Groisman, Popescu and Winter in '04
- Destruction of correlations is goal (not proof technique)

- bipartite quantum system $A \otimes E$ in mixed state ρ_{AE}
- Apply random unitary channel
- Correlations erased if approximately product
- How big do we have to choose k?
- optimal: $k \approx nI(A:E)_{\sigma}$ for $\rho = \sigma^{\otimes n}$
- ⇒ Operational interpretation of the quantum mutual information!
 - decoupling, erasure of correlations: two sides of same coin

This talk

This talk

This talk

Catalytic decoupling

Theorem (Dupuis, Berta, Wullschleger, Renner '10)

Let ρ_{AE} be a bipartite quantum state, and let $\mathcal{H}_A \cong \mathcal{H}_{A_1} \otimes \mathcal{H}_{A_2}$ such that

$$\log |A_2| \geq \frac{1}{2} \left(H_{\mathsf{max}}^\varepsilon(A)_\rho - H_{\mathsf{min}}^\varepsilon(A|E)_\rho \right) - \mathcal{O}\left(\log \frac{1}{\varepsilon}\right).$$

$$\left\| \operatorname{tr}_{A_{2}} \left(U_{A} \rho_{AE} U_{A}^{\dagger} \right) - \frac{1_{A_{1}}}{|A_{1}|} \otimes \rho_{E} \right\|_{1} \leq \mathcal{O} \left(\varepsilon \right).$$

Theorem (Dupuis, Berta, Wullschleger, Renner '10)

Let ρ_{AE} be a bipartite quantum state, and let $\mathcal{H}_A \cong \mathcal{H}_{A_1} \otimes \mathcal{H}_{A_2}$ such that

$$\log |A_2| \geq \frac{1}{2} \left(H_{\mathsf{max}}^\varepsilon(A)_\rho - H_{\mathsf{min}}^\varepsilon(A|E)_\rho \right) - \mathcal{O}\left(\log \frac{1}{\varepsilon}\right).$$

$$\left\| \operatorname{tr}_{A_{2}} \left(U_{A} \rho_{AE} U_{A}^{\dagger} \right) - \frac{\mathbf{1}_{A_{1}}}{|A_{1}|} \otimes \rho_{E} \right\|_{1} \leq \mathcal{O} \left(\varepsilon \right).$$

Theorem (Dupuis, Berta, Wullschleger, Renner '10)

Let ρ_{AE} be a bipartite quantum state, and let $\mathcal{H}_A \cong \mathcal{H}_{A_1} \otimes \mathcal{H}_{A_2}$ such that

$$\log |A_2| \geq \frac{1}{2} \left(H_{\mathsf{max}}^{\varepsilon}(A)_{\rho} - H_{\mathsf{min}}^{\varepsilon}(A|E)_{\rho} \right) - \mathcal{O} \left(\log \frac{1}{\varepsilon} \right).$$

$$\left\| \operatorname{tr}_{A_{2}} \left(U_{A} \rho_{AE} U_{A}^{\dagger} \right) - \frac{1_{A_{1}}}{|A_{1}|} \otimes \rho_{E} \right\|_{1} \leq \mathcal{O} \left(\varepsilon \right).$$

Theorem (Dupuis, Berta, Wullschleger, Renner '10)

Let ρ_{AE} be a bipartite quantum state, and let $\mathcal{H}_A \cong \mathcal{H}_{A_1} \otimes \mathcal{H}_{A_2}$ such that

$$\log |A_2| \geq \frac{1}{2} \left(H_{\mathsf{max}}^{\varepsilon}(A)_{\rho} - H_{\mathsf{min}}^{\varepsilon}(A|E)_{\rho} \right) - \mathcal{O} \left(\log \frac{1}{\varepsilon} \right).$$

Theorem (Dupuis, Berta, Wullschleger, Renner '10)

Let ρ_{AE} be a bipartite quantum state, and let $\mathcal{H}_A \cong \mathcal{H}_{A_1} \otimes \mathcal{H}_{A_2}$ such that

$$\log |A_2| \geq \frac{1}{2} \left(H_{\mathsf{max}}^{\varepsilon}(A)_{\rho} - H_{\mathsf{min}}^{\varepsilon}(A|E)_{\rho} \right) - \mathcal{O} \left(\log \frac{1}{\varepsilon} \right).$$

$$\left\| \operatorname{tr}_{A_{2}} \left(U_{A} \rho_{AE} U_{A}^{\dagger} \right) - \frac{1_{A_{1}}}{|A_{1}|} \otimes \rho_{E} \right\|_{1} \leq \mathcal{O} \left(\varepsilon \right).$$

Theorem (Dupuis, Berta, Wullschleger, Renner '10)

Let ρ_{AE} be a bipartite quantum state, and let $\mathcal{H}_A \cong \mathcal{H}_{A_1} \otimes \mathcal{H}_{A_2}$ such that

$$\log |A_2| \geq \frac{1}{2} \left(H_{\mathsf{max}}^{\varepsilon}(A)_{\rho} - H_{\mathsf{min}}^{\varepsilon}(A|E)_{\rho} \right) - \mathcal{O}\left(\log \frac{1}{\varepsilon}\right).$$

Then $\exists U_A$ such that

$$\left\| \operatorname{tr}_{A_{2}} \left(U_{A} \rho_{AE} U_{A}^{\dagger} \right) - \frac{\mathbf{1}_{A_{1}}}{|A_{1}|} \otimes \rho_{E} \right\|_{1} \leq \mathcal{O} \left(\varepsilon \right).$$

but there are product states with $H^{\varepsilon}_{\max}(A)_{\rho} - H^{\varepsilon}_{\min}(A|E)_{\rho} = \mathcal{O}(\log |A|) \Rightarrow$ suboptimal for applications like state merging

Theorem (Dupuis, Berta, Wullschleger, Renner '10)

Let $\rho_{AE} = \sigma_{A'E'}^{\otimes n}$ be a bipartite quantum state, and let $\mathcal{H}_A \cong \mathcal{H}_{A_1} \otimes \mathcal{H}_{A_2}$ such that

$$\log |A_2| \geq \frac{1}{2} I(E : A)_{\rho} - \mathcal{O}\left(\log \frac{1}{\varepsilon}\right).$$

$$\left\| \operatorname{tr}_{A_{2}} \left(U_{A} \rho_{AE} U_{A}^{\dagger} \right) - \frac{\mathbf{1}_{A_{1}}}{|A_{1}|} \otimes \rho_{E} \right\|_{1} \leq \mathcal{O} \left(\varepsilon \right).$$

previous work on one-shot state merging:

- previous work on one-shot state merging:
- One-shot coherent state merging possible with $q(A:R)_{\psi} = \frac{1}{2}I_{\max}^{\varepsilon}(A:R) + \log\log|A| + \mathcal{O}\left(\log\frac{1}{\varepsilon}\right)$ (Berta, Christandl, Renner '09)

- previous work on one-shot state merging:
- ▶ One-shot coherent state merging possible with $q(A:R)_{\psi} = \frac{1}{2}I_{\max}^{\varepsilon}(A:R) + \log\log|A| + \mathcal{O}\left(\log\frac{1}{\varepsilon}\right)$ (Berta, Christandl, Renner '09)
- ... uses standard decoupling and embezzling states (van Dam and Hayden '02)

- previous work on one-shot state merging:
- ▶ One-shot coherent state merging possible with $q(A:R)_{\psi} = \frac{1}{2}I_{\max}^{\varepsilon}(A:R) + \log\log|A| + \mathcal{O}\left(\log\frac{1}{\varepsilon}\right)$ (Berta, Christandl, Renner '09)
- ... uses standard decoupling and embezzling states (van Dam and Hayden '02)
 - One-shot state merging possible with $q(A:R)_{\psi} = \frac{1}{2}(I_{\max}^{\varepsilon}(A:R) + \log\log I_{\max}^{\varepsilon}(A:R)) + \mathcal{O}\left(\log\frac{1}{\varepsilon}\right)$ (Anshu, Devabathini, Jain '15)

One-shot state merging

- previous work on one-shot state merging:
- ▶ One-shot coherent state merging possible with $q(A:R)_{\psi} = \frac{1}{2}I_{\max}^{\varepsilon}(A:R) + \log\log|A| + \mathcal{O}\left(\log\frac{1}{\varepsilon}\right)$ (Berta, Christandl, Renner '09)
- ... uses standard decoupling and embezzling states (van Dam and Hayden '02)
 - ▶ One-shot state merging possible with $q(A:R)_{\psi} = \frac{1}{2}(I_{\max}^{\varepsilon}(A:R) + \log\log I_{\max}^{\varepsilon}(A:R)) + \mathcal{O}\left(\log\frac{1}{\varepsilon}\right)$ (Anshu, Devabathini, Jain '15)
- ... uses different technique called convex split lemma.

One-shot state merging

- previous work on one-shot state merging:
- ▶ One-shot coherent state merging possible with $q(A:R)_{\psi} = \frac{1}{2}I_{\max}^{\varepsilon}(A:R) + \log\log|A| + \mathcal{O}\left(\log\frac{1}{\varepsilon}\right)$ (Berta, Christandl, Renner '09)
- ... uses standard decoupling and embezzling states (van Dam and Hayden '02)
 - ▶ One-shot state merging possible with $q(A:R)_{\psi} = \frac{1}{2}(I_{\max}^{\varepsilon}(A:R) + \log\log I_{\max}^{\varepsilon}(A:R)) + \mathcal{O}\left(\log\frac{1}{\varepsilon}\right)$ (Anshu, Devabathini, Jain '15)
- ... uses different technique called convex split lemma.
 - tailored techniques

Generalize decoupling twofold:

- Generalize decoupling twofold:
- drop randomization condition

- Generalize decoupling twofold:
- drop randomization condition
- allow free mixed ancillary states

- Generalize decoupling twofold:
- drop randomization condition
- allow free mixed ancillary states

- Generalize decoupling twofold:
- drop randomization condition
- allow free mixed ancillary states

Step-by-step definition:

- Bipartite system $A \otimes E$ in a mixed state ρ_{AE}

- Generalize decoupling twofold:
- drop randomization condition
- allow free mixed ancillary states

- Bipartite system $A \otimes E$ in a mixed state ρ_{AE}
- add ancillary system A' in a fixed state

- Generalize decoupling twofold:
- drop randomization condition
- allow free mixed ancillary states

- Bipartite system $A \otimes E$ in a mixed state ρ_{AE}
- add ancillary system A' in a fixed state
- divide system $A\otimes A'$ into two parts, $A\otimes A'\cong A_1\otimes A_2$

- Generalize decoupling twofold:
- drop randomization condition
- allow free mixed ancillary states

- Bipartite system $A \otimes E$ in a mixed state ρ_{AE}
- add ancillary system A' in a fixed state
- divide system $A \otimes A'$ into two parts, $A \otimes A' \cong A_1 \otimes A_2$
- apply a unitary to AA'

- Generalize decoupling twofold:
- drop randomization condition
- allow free mixed ancillary states

- Bipartite system $A \otimes E$ in a mixed state ρ_{AE}
- add ancillary system A' in a fixed state
- divide system $A\otimes A'$ into two parts, $A\otimes A'\cong A_1\otimes A_2$
- apply a unitary to AA'
- trace out A₂

- Generalize decoupling twofold:
- drop randomization condition
- allow free mixed ancillary states

- Bipartite system $A \otimes E$ in a mixed state ρ_{AE}
- add ancillary system A' in a fixed state
- divide system $A \otimes A'$ into two parts, $A \otimes A' \cong A_1 \otimes A_2$
- apply a unitary to AA'
- trace out A₂
- how big do we have to choose A_2 here?

Theorem (CM, Berta, Dupuis, Renner, Christandl)

Let $\rho_{AE} \in \mathcal{B}(\mathcal{H}_A \otimes \mathcal{H}_E)$ be a quantum state. Then, for any $0 \leq \varepsilon' < \varepsilon$ catalytic decoupling with error ε can be achieved with remainder system size

$$\log |A_2| pprox rac{1}{2} I_{\mathsf{max}}^{\varepsilon'}(E:A)_{
ho}.$$

Conversely catalytic decoupling is impossible whenever

$$\log |A_2| < \frac{1}{2} I_{\mathsf{max}}^{\varepsilon} (E : A)_{\rho}.$$

Theorem (CM, Berta, Dupuis, Renner, Christandl)

Let $\rho_{AE} \in \mathcal{B}(\mathcal{H}_A \otimes \mathcal{H}_E)$ be a quantum state. Then, for any $0 \leq \varepsilon' < \varepsilon$ catalytic decoupling with error ε can be achieved with remainder system size

$$\log |A_2| pprox rac{1}{2} I_{\mathsf{max}}^{arepsilon'}(E:A)_{
ho}.$$

Conversely catalytic decoupling is impossible whenever

$$\log |A_2| < \frac{1}{2} I_{\mathsf{max}}^{\varepsilon} (E : A)_{\rho}.$$

max-mutual information:

$$I_{\mathsf{max}}(A:B)_{
ho} = \mathsf{min}_{\sigma_B} \, D_{\mathsf{max}}(
ho_{AB} \|
ho_A \otimes \sigma_B)$$

Theorem (CM, Berta, Dupuis, Renner, Christandl)

Let $\rho_{AE} \in \mathcal{B}(\mathcal{H}_A \otimes \mathcal{H}_E)$ be a quantum state. Then, for any $0 \leq \varepsilon' < \varepsilon$ catalytic decoupling with error ε can be achieved with remainder system size

$$\log |A_2| pprox rac{1}{2} I_{\sf max}^{arepsilon'}(E:A)_
ho.$$

Conversely catalytic decoupling is impossible whenever

$$\log |A_2| < \frac{1}{2} I_{\mathsf{max}}^{\varepsilon} (E : A)_{\rho}.$$

max-mutual information:

$$I_{\mathsf{max}}(A:B)_{
ho} = \mathsf{min}_{\sigma_B} \, D_{\mathsf{max}}(
ho_{AB} \|
ho_A \otimes \sigma_B)$$

 $D_{\max}(\rho \| \sigma) = \min\{\lambda \in \mathbb{R} | 2^{\lambda} \sigma \ge \rho\}$

Theorem (CM, Berta, Dupuis, Renner, Christandl)

Let $\rho_{AE} \in \mathcal{B}(\mathcal{H}_A \otimes \mathcal{H}_E)$ be a quantum state. Then, for any $0 \leq \varepsilon' < \varepsilon$ catalytic decoupling with error ε can be achieved with remainder system size

$$\log |A_2| pprox rac{1}{2} I_{\sf max}^{arepsilon'}(E:A)_{
ho}.$$

Conversely catalytic decoupling is impossible whenever

$$\log |A_2| < \frac{1}{2} I_{\mathsf{max}}^{\varepsilon} (E : A)_{\rho}.$$

- max-mutual information:
 - $I_{\mathsf{max}}(A:B)_{\rho} = \mathsf{min}_{\sigma_B} \, D_{\mathsf{max}}(\rho_{AB} \| \rho_A \otimes \sigma_B)$
- $D_{\max}(\rho \| \sigma) = \min\{\lambda \in \mathbb{R} | 2^{\lambda} \sigma \geq \rho\}$
- ► Two proofs, one using the techniques from Anshu et al. and Berta et al. respectively

▶ Denote the minimal remainder system size $\log |A_2|$ by $R_c^{\varepsilon}(A:E)_{\rho}$

- ▶ Denote the minimal remainder system size $\log |A_2|$ by $R_c^{\varepsilon}(A:E)_{\rho}$
- ▶ Minimal remainder system size if $\rho = \sigma^{\otimes n}$:

$$\frac{1}{n}R_c^{\varepsilon}(A:E)_{\rho}\approx\frac{1}{2}I(A:E)_{\sigma}$$

- ▶ Denote the minimal remainder system size $\log |A_2|$ by $R_c^{\varepsilon}(A:E)_{\rho}$
- ▶ Minimal remainder system size if $\rho = \sigma^{\otimes n}$:

$$\frac{1}{n}R_c^{\varepsilon}(A:E)_{\rho}\approx\frac{1}{2}I(A:E)_{\sigma}$$

! asymptotically the ancilla becomes unnecessary, usual randomization condition becomes redundant

- ▶ Denote the minimal remainder system size $\log |A_2|$ by $R_c^{\varepsilon}(A:E)_{\rho}$
- ▶ Minimal remainder system size if $\rho = \sigma^{\otimes n}$:

$$\frac{1}{n}R_c^{\varepsilon}(A:E)_{\rho}\approx\frac{1}{2}I(A:E)_{\sigma}$$

- ! asymptotically the ancilla becomes unnecessary, usual randomization condition becomes redundant
- tightness of characterization allows derivation of a 2nd order term:

$$R_c^{\varepsilon}(A:E)_{\rho} = \frac{1}{2} \left[nI(A:E)_{\sigma} + \sqrt{nV_I(A:E)_{\sigma}} \Phi^{-1}(\varepsilon) \right] + \mathcal{O}(\log n)$$

- ▶ Denote the minimal remainder system size $\log |A_2|$ by $R_c^{\varepsilon}(A:E)_{\rho}$
- ▶ Minimal remainder system size if $\rho = \sigma^{\otimes n}$:

$$\frac{1}{n}R_c^{\varepsilon}(A:E)_{\rho}\approx\frac{1}{2}I(A:E)_{\sigma}$$

- ! asymptotically the ancilla becomes unnecessary, usual randomization condition becomes redundant
- tightness of characterization allows derivation of a 2nd order term:

$$R_c^{\varepsilon}(A:E)_{\rho} = \frac{1}{2} \left[nI(A:E)_{\sigma} + \sqrt{nV_I(A:E)_{\sigma}} \Phi^{-1}(\varepsilon) \right] + \mathcal{O}(\log n)$$

 Unitary randomizing and partial trace models equivalent with ancilla

Conditional Erasure

ightharpoonup ρ_{AER}

- $\triangleright \rho_{AER}$
- ► Conditional quantum mutual information $I(A : E|R)_{\rho} = H(\rho_{AR}) + H(\rho_{ER}) H(\rho_{AER}) H(\rho_{R})$

- $\triangleright \rho_{AER}$
- ► Conditional quantum mutual information $I(A : E|R)_{\rho} = H(\rho_{AR}) + H(\rho_{ER}) H(\rho_{AER}) H(\rho_{R})$
- ▶ Recoverability: if $I(A : E|R) = \varepsilon$ small, $\rho_{AER} \approx_{\mathcal{O}(\varepsilon)} \mathcal{R}_{R \to RA}(\rho_{ER})$ for some quantum channel \mathcal{R} . (Fawzi, Renner '14)

- $\triangleright \rho_{AER}$
- ► Conditional quantum mutual information $I(A : E|R)_{\rho} = H(\rho_{AR}) + H(\rho_{ER}) H(\rho_{AER}) H(\rho_{R})$
- ▶ Recoverability: if $I(A : E|R) = \varepsilon$ small, $\rho_{AER} \approx_{\mathcal{O}(\varepsilon)} \mathcal{R}_{R \to RA}(\rho_{ER})$ for some quantum channel \mathcal{R} . (Fawzi, Renner '14)

- $\triangleright \rho_{AER}$
- ► Conditional quantum mutual information $I(A : E|R)_{\rho} = H(\rho_{AR}) + H(\rho_{ER}) H(\rho_{AER}) H(\rho_{R})$
- ▶ Recoverability: if $I(A : E|R) = \varepsilon$ small, $\rho_{AER} \approx_{\mathcal{O}(\varepsilon)} \mathcal{R}_{R \to RA}(\rho_{ER})$ for some quantum channel \mathcal{R} . (Fawzi, Renner '14)

- $\triangleright \rho_{AER}$
- ► Conditional quantum mutual information $I(A : E|R)_{\rho} = H(\rho_{AR}) + H(\rho_{ER}) H(\rho_{AER}) H(\rho_{R})$
- ▶ Recoverability: if $I(A : E|R) = \varepsilon$ small, $\rho_{AER} \approx_{\mathcal{O}(\varepsilon)} \mathcal{R}_{R \to RA}(\rho_{ER})$ for some quantum channel \mathcal{R} . (Fawzi, Renner '14)

- $\triangleright \rho_{AER}$
- ► Conditional quantum mutual information $I(A : E|R)_{\rho} = H(\rho_{AR}) + H(\rho_{ER}) H(\rho_{AER}) H(\rho_{R})$
- ▶ Recoverability: if $I(A : E|R) = \varepsilon$ small, $\rho_{AER} \approx_{\mathcal{O}(\varepsilon)} \mathcal{R}_{R \to RA}(\rho_{ER})$ for some quantum channel \mathcal{R} . (Fawzi, Renner '14)

- $\triangleright \rho_{AER}$
- ► Conditional quantum mutual information $I(A : E|R)_{\rho} = H(\rho_{AR}) + H(\rho_{ER}) H(\rho_{AER}) H(\rho_{R})$
- ▶ Recoverability: if $I(A : E|R) = \varepsilon$ small, $\rho_{AER} \approx_{\mathcal{O}(\varepsilon)} \mathcal{R}_{R \to RA}(\rho_{ER})$ for some quantum channel \mathcal{R} . (Fawzi, Renner '14)
- \Rightarrow All correlations of A and E mediated by R

- $\triangleright \rho_{AER}$
- ► Conditional quantum mutual information $I(A : E|R)_{\rho} = H(\rho_{AR}) + H(\rho_{ER}) H(\rho_{AER}) H(\rho_{R})$
- ▶ Recoverability: if $I(A : E|R) = \varepsilon$ small, $\rho_{AER} \approx_{\mathcal{O}(\varepsilon)} \mathcal{R}_{R \to RA}(\rho_{ER})$ for some quantum channel \mathcal{R} . (Fawzi, Renner '14)
- \Rightarrow All correlations of A and E mediated by R
- $\Rightarrow E R A$ is approximate quantum Markov chain

- $\triangleright \rho_{AER}$
- ► Conditional quantum mutual information $I(A : E|R)_{\rho} = H(\rho_{AR}) + H(\rho_{ER}) H(\rho_{AER}) H(\rho_{R})$
- ▶ Recoverability: if $I(A : E|R) = \varepsilon$ small, $\rho_{AER} \approx_{\mathcal{O}(\varepsilon)} \mathcal{R}_{R \to RA}(\rho_{ER})$ for some quantum channel \mathcal{R} . (Fawzi, Renner '14)
- \Rightarrow All correlations of A and E mediated by R
- $\Rightarrow E R A$ is approximate quantum Markov chain
 - ► I(A : E|R) measures conditional correlations

- $\triangleright \rho_{AER}$
- ► Conditional quantum mutual information $I(A : E|R)_{\rho} = H(\rho_{AR}) + H(\rho_{ER}) H(\rho_{AER}) H(\rho_{R})$
- ▶ Recoverability: if $I(A : E|R) = \varepsilon$ small, $\rho_{AER} \approx_{\mathcal{O}(\varepsilon)} \mathcal{R}_{R \to RA}(\rho_{ER})$ for some quantum channel \mathcal{R} . (Fawzi, Renner '14)
- \Rightarrow All correlations of A and E mediated by R
- $\Rightarrow E R A$ is approximate quantum Markov chain
 - ► I(A : E|R) measures conditional correlations
 - ▶ i.i.d. setting

- $\triangleright \rho_{AER}$
- ► Conditional quantum mutual information $I(A : E|R)_{\rho} = H(\rho_{AR}) + H(\rho_{ER}) H(\rho_{AER}) H(\rho_{R})$
- ▶ Recoverability: if $I(A : E|R) = \varepsilon$ small, $\rho_{AER} \approx_{\mathcal{O}(\varepsilon)} \mathcal{R}_{R \to RA}(\rho_{ER})$ for some quantum channel \mathcal{R} . (Fawzi, Renner '14)
- \Rightarrow All correlations of A and E mediated by R
- $\Rightarrow E R A$ is approximate quantum Markov chain
 - ► I(A : E|R) measures conditional correlations
 - ▶ i.i.d. setting
 - ▶ Recall: Erasure of correlations in ρ_{AE} operating on A costs I(A:E) bits of noise.

- $\triangleright \rho_{AER}$
- ► Conditional quantum mutual information $I(A : E|R)_{\rho} = H(\rho_{AR}) + H(\rho_{ER}) H(\rho_{AER}) H(\rho_{R})$
- ▶ Recoverability: if $I(A : E|R) = \varepsilon$ small, $\rho_{AER} \approx_{\mathcal{O}(\varepsilon)} \mathcal{R}_{R \to RA}(\rho_{ER})$ for some quantum channel \mathcal{R} . (Fawzi, Renner '14)
- \Rightarrow All correlations of A and E mediated by R
- $\Rightarrow E R A$ is approximate quantum Markov chain
 - ► I(A : E|R) measures conditional correlations
 - ▶ i.i.d. setting
 - ▶ Recall: Erasure of correlations in ρ_{AE} operating on A costs I(A : E) bits of noise.
 - ? Can we erase conditional correlations by injecting $I(A : E|R)_{\rho}$ bits of noise into A?

Counterexample

- ? Can we erase conditional correlations by injecting $I(A : E|R)_{\rho}$ bits of noise into A?
- ! No, \exists Classical counterexample.

Counterexample

- ? Can we erase conditional correlations by injecting $I(A : E|R)_{\rho}$ bits of noise into A?
- ! No, \exists Classical counterexample.
- ► Characterization for pure states: Noise $\gg I(A : E|R)$ necessary in general (Wakakuwa et al. '15)

Counterexample

- ? Can we erase conditional correlations by injecting $I(A : E|R)_{\rho}$ bits of noise into A?
- ! No, \exists Classical counterexample.
- ► Characterization for pure states: Noise $\gg I(A : E|R)$ necessary in general (Wakakuwa et al. '15)
- obvious solution in the classical case: condition on R!

lacktriangle Alice, Bob and a referee share a pure state $|\psi\rangle\langle\psi|_{ABCR}$

- Alice, Bob and a referee share a pure state $|\psi\rangle\langle\psi|_{ABCR}$
- ▶ Alice has AC, Bob has B, Referee has R

- Alice, Bob and a referee share a pure state $|\psi\rangle\langle\psi|_{ABCR}$
- ▶ Alice has AC, Bob has B, Referee has R
- ▶ their task: Alice has to send A to Bob

- Alice, Bob and a referee share a pure state $|\psi\rangle\langle\psi|_{ABCR}$
- ▶ Alice has AC, Bob has B, Referee has R
- ▶ their task: Alice has to send A to Bob
- they can use entanglement

- Alice, Bob and a referee share a pure state $|\psi\rangle\langle\psi|_{ABCR}$
- ▶ Alice has AC, Bob has B, Referee has R
- ▶ their task: Alice has to send A to Bob
- they can use entanglement
- ▶ optimal comunication rate I(A : R|C) (Devetak and Yard '06)

▶ State ρ_{AER}

- ▶ State ρ_{AER}
- quantum conditional operation on A conditioned on R:

- ▶ State ρ_{AER}
- quantum conditional operation on A conditioned on R: operation on AR, but ρ_{RE} approximately unchanged

- ▶ State ρ_{AER}
- ▶ quantum conditional operation on A conditioned on R: operation on AR, but ρ_{RE} approximately unchanged
- allow ancilla like in catalytic decoupling

- ▶ State ρ_{AER}
- quantum conditional operation on A conditioned on R: operation on AR, but ρ_{RE} approximately unchanged
- allow ancilla like in catalytic decoupling

- ▶ State ρ_{AER}
- ▶ quantum conditional operation on A conditioned on R: operation on AR, but ρ_{RE} approximately unchanged
- allow ancilla like in catalytic decoupling

Step-by-step definition:

- add ancillary system A' in a fixed state

- ▶ State ρ_{AER}
- quantum conditional operation on A conditioned on R: operation on AR, but ρ_{RE} approximately unchanged
- allow ancilla like in catalytic decoupling

- add ancillary system A' in a fixed state
- apply a unitary $U_{RAA'}$

- State ρ_{AER}
- quantum conditional operation on A conditioned on R: operation on AR, but ρ_{RE} approximately unchanged
- allow ancilla like in catalytic decoupling

- add ancillary system A' in a fixed state
- apply a unitary $U_{RAA'}$ that negligibly disturbs ho_{ER}

- ▶ State ρ_{AER}
- quantum conditional operation on A conditioned on R: operation on AR, but ρ_{RE} approximately unchanged
- allow ancilla like in catalytic decoupling

- add ancillary system A' in a fixed state
- apply a unitary $U_{RAA'}$ that negligibly disturbs ho_{ER}
- divide system AA' into two parts, $AA'\cong A_1A_2$

- ▶ State ρ_{AER}
- quantum conditional operation on A conditioned on R: operation on AR, but ρ_{RE} approximately unchanged
- allow ancilla like in catalytic decoupling

- add ancillary system A' in a fixed state
- apply a unitary $U_{RAA'}$ that negligibly disturbs ho_{ER}
- divide system AA' into two parts, $AA'\cong A_1A_2$
- trace out A₂

Different goals:

- Different goals:
- ▶ make $E R A_1$ an approximate quantum Markov chain, deconstruction of correlations

- Different goals:
- ▶ make $E R A_1$ an approximate quantum Markov chain, deconstruction of correlations
- ▶ make A_1 product with ER, conditional erasure of correlations (\Rightarrow deconstruction of correlations)

- Different goals:
- ▶ make $E R A_1$ an approximate quantum Markov chain, deconstruction of correlations
- ▶ make A_1 product with ER, conditional erasure of correlations (\Rightarrow deconstruction of correlations)

Theorem (Berta, Brandao, CM, Wilde)

Conditional erasure of correlations is equivalent to quantum state redistribution. Asymptotically, deconstruction needs at least a rate of I(A:E|R) bits of noise.

- Different goals:
- ▶ make $E R A_1$ an approximate quantum Markov chain, deconstruction of correlations
- ▶ make A₁ product with ER, conditional erasure of correlations (⇒ deconstruction of correlations)

Theorem (Berta, Brandao, CM, Wilde)

Conditional erasure of correlations is equivalent to quantum state redistribution. Asymptotically, deconstruction needs at least a rate of I(A : E|R) bits of noise.

▶ Both tasks have same optimal rate I(A : E|R) of noise asymptotically

- Different goals:
- ▶ make $E R A_1$ an approximate quantum Markov chain, deconstruction of correlations
- ▶ make A₁ product with ER, conditional erasure of correlations (⇒ deconstruction of correlations)

Theorem (Berta, Brandao, CM, Wilde)

Conditional erasure of correlations is equivalent to quantum state redistribution. Asymptotically, deconstruction needs at least a rate of I(A : E|R) bits of noise.

- ▶ Both tasks have same optimal rate I(A : E|R) of noise asymptotically
- Operational interpretation of quantum conditional mutual information!

The End

backup slides

One-shot coherent state merging (Berta et al. '09)

► Now: easy!

One-shot coherent state merging (Berta et al. '09)

▶ Now: easy! Difficult parts hidden in achievability of CD.

- ▶ Now: easy! Difficult parts hidden in achievability of CD.
- ▶ Alice, Bob and a referee share a quantum state $|\psi\rangle\langle\psi|_{ABR}$.

- ▶ Now: easy! Difficult parts hidden in achievability of CD.
- ▶ Alice, Bob and a referee share a quantum state $|\psi\rangle\langle\psi|_{ABR}$.
- their task: Alice has to send her part of the state to Bob

- ▶ Now: easy! Difficult parts hidden in achievability of CD.
- ▶ Alice, Bob and a referee share a quantum state $|\psi\rangle\langle\psi|_{ABR}$.
- their task: Alice has to send her part of the state to Bob
- ► Alice needs ancilla give purification to Bob ⇒ entangled resource!

- ▶ Now: easy! Difficult parts hidden in achievability of CD.
- ▶ Alice, Bob and a referee share a quantum state $|\psi\rangle\langle\psi|_{ABR}$.
- their task: Alice has to send her part of the state to Bob
- ► Alice needs ancilla give purification to Bob ⇒ entangled resource!
- from here: protocol as in the asymtotic case

- ▶ Now: easy! Difficult parts hidden in achievability of CD.
- ▶ Alice, Bob and a referee share a quantum state $|\psi\rangle\langle\psi|_{ABR}$.
- their task: Alice has to send her part of the state to Bob
- ► Alice needs ancilla give purification to Bob ⇒ entangled resource!
- from here: protocol as in the asymtotic case
- \Rightarrow one-shot state merging possible with $\frac{1}{2}I_{\max}^{\varepsilon}(A:R)$ qbits of communication

▶ 2-party state ρ_{AB} , measurement $\Lambda_{A\to X}$

- ▶ 2-party state ρ_{AB} , measurement $\Lambda_{A\to X}$
- (unoptimized) quantum discord: $D(\overline{A}:B)_{\rho,\Lambda} = I(A:B)_{\rho} I(X:B)_{\Lambda(\rho)}$

- ▶ 2-party state ρ_{AB} , measurement $\Lambda_{A\to X}$
- (unoptimized) quantum discord: $D(\overline{A}:B)_{\rho,\Lambda} = I(A:B)_{\rho} I(X:B)_{\Lambda(\rho)}$
- original interpretation: decrease of correlations under interaction with environment ("einselection", Zurek '00)

- ▶ 2-party state ρ_{AB} , measurement $\Lambda_{A\to X}$
- (unoptimized) quantum discord: $D(\overline{A}:B)_{\rho,\Lambda} = I(A:B)_{\rho} I(X:B)_{\Lambda(\rho)}$
- original interpretation: decrease of correlations under interaction with environment ("einselection", Zurek '00)

Theorem (Berta, Brandao, CM, Wilde)

 $D(\overline{A}:B)_{\rho,\Lambda}$ is equal to the rate of noise necessary to simulate the loss of correlations incurred by $\rho^{\otimes n}$ under the action of $\Lambda^{\otimes n}$.

- ▶ 2-party state ρ_{AB} , measurement $\Lambda_{A\to X}$
- (unoptimized) quantum discord: $D(\overline{A}:B)_{\rho,\Lambda} = I(A:B)_{\rho} I(X:B)_{\Lambda(\rho)}$
- original interpretation: decrease of correlations under interaction with environment ("einselection", Zurek '00)

Theorem (Berta, Brandao, CM, Wilde)

 $D(\overline{A}:B)_{\rho,\Lambda}$ is equal to the rate of noise necessary to simulate the loss of correlations incurred by $\rho^{\otimes n}$ under the action of $\Lambda^{\otimes n}$.

▶ Squashed entanglement: $E_{sq}(A:B)_{\rho} = \inf_{\sigma} I(A:B|E)_{\sigma}$, inf over all σ_{ABE} with tr_E $\sigma_{ABE} = \rho_{AB}$

- ▶ 2-party state ρ_{AB} , measurement $\Lambda_{A\to X}$
- (unoptimized) quantum discord: $D(\overline{A}:B)_{\rho,\Lambda} = I(A:B)_{\rho} I(X:B)_{\Lambda(\rho)}$
- original interpretation: decrease of correlations under interaction with environment ("einselection", Zurek '00)

Theorem (Berta, Brandao, CM, Wilde)

 $D(\overline{A}:B)_{\rho,\Lambda}$ is equal to the rate of noise necessary to simulate the loss of correlations incurred by $\rho^{\otimes n}$ under the action of $\Lambda^{\otimes n}$.

- ▶ Squashed entanglement: $E_{sq}(A:B)_{\rho} = \inf_{\sigma} I(A:B|E)_{\sigma}$, inf over all σ_{ABE} with tr_E $\sigma_{ABE} = \rho_{AB}$
- \Rightarrow Squashed entanglement is amount of noise necessary to make many i.i.d. copies of ρ_{AB} close to separable by operation on A and arbitrary catalytic side information E