Quantum Speed-ups for
Semidefinite Programming

Fernando G.S.L. Brandao
Caltech

Krysta Svore
Microsoft Research

QlP 2017

Quantum Algorithms

Exponential speed-ups:
Simulate quantum physics, factor big numbers (Shor’s algorithm), ...,

Polynomial Speed-ups:
Searching (Grover’s algorithm), ...

Heuristics:
Quantum annealing, adiabatic optimization, ...

Quantum Algorithms

Exponential speed-ups:
Simulate quantum physics, factor big numbers (Shor’s algorithm), ...,

: Polynomial Speed-ups:
1 Searching (Grover’s algorithm), ...
|

'Heuristics:
Quantum annealing, adiabatic optimization, ...

!

This Talk:
Solving Semidefinite Programming belongs here

Semidefinite Programming

... 1S an important class of convexoptimization problems

max tr(CX)
Vj € [m], tI‘(AjX) = bj
X >0.

Input: n x n, s-sparse matrices C, A, ..., A, and numbersb,, ..., b,
Output: X

Semidefinite Programming

... 1S an important class of convexoptimization problems

max tr(CX)
Vj € [m], tr(A4;X) <b,
X 240,

Input: n x n, s-sparse matrices C, A, ..., A, and numbersb,, ..., b,
Output: X

Linear Programming: special case
Many applications (combinatorial optimization, operational research,)
Natural in quantum (density matrices, ...)

Semidefinite Programming

... 1S an important class of convexoptimization problems

max tr(CX)
Vi € [m], tI‘(AjX) = bj
X > 0.

Input: n x n, s-sparse matrices C, A, ..., A, and numbersb,, ..., b,
Output: X

Linear Programming: special case
Many applications (combinatorial optimization, operational research,)
Natural in quantum (density matrices, ...)

Algorithms Interior points: O((m?ns + mn?)log(1/6))
Multiplicative Weights: O((mns (wR)/62))
width / I

size of solution

error

Semidefinite Programming

... 1S an important class of convexoptimization problems

max tr(CX)
Vi € [m], tr(AjX) < b;

Input: n
Output:

Linear P
Many ap
Natural in

Algorithms Interior points: O((m?ns + mn?)log(1/6))
Multiplicative Weights: O((mns (wR)/62))

width — 1 ™~

size of solution

error

SDP Duality

max tr(CX)
Primal: Vj ¢ [m], tr(A4;X) <b,
X > 0.

min b.y

Dual: ZyjAj 26

g=1
U= O

y: m-dimensional vector

Under mild conditions: Opt,;,.;= Opty,

Size of Solutions

max tr(CX)
Primal: Vj ¢ [m], tr(A4;X) <b;
X > 0.

R parameter: Tr(X,,) <R

min b.y

D YA =0

j=1
U= O

Dual:

rparameter: 3 (Yopt)i ST

SDP Lower Bounds

Even to write down optimal solutions take time:

Primal (n x n PSD matrix X): Q(n?)
Dual (m dim vector y): Q(m)

SDP Lower Bounds

Even to write down optimal solutions take time:

Primal (n x n PSD matrix X): Q(n?)
Dual (m dim vector y): Q(m)

Even just to compute optimal value requires:

Classical: Q(n+m) (for constantr, R, s, 6)
Quantum: Q(n/2 + m?/2) (for constantr, R, s, 6)

Easy reduction to search problem
(Apeldoorn, Gilyen, Gribling, de Wolf) See poster this afternoon

Quantum: Q(nm) if n=m (R, s, 5 =0(1) but notr)
min(m, n) (max(m, n))/2 (R, s, 6= 0(1) but notr)

Quantum Algorithm for SDP

Result 1: There is a quantum algorithm for solving SDPs
running in time n*/2m/2s2 poly(log(n, m), R, r, &)

Input: n x n, s-sparse matrices C, A4, ..., A, and numbers b, ..., b,

Quantum Algorithm for SDP

Result 1: There is a quantum algorithm for solving SDPs
running in time n*/2m/2s2 poly(log(n, m), R, r, &)

Input: n x n, s-sparse matrices C, A,, ..., A, and numbers b, ..., b,
Normalization: | |A|], ||C|| £1

Output: Samples fromvy/||y||,and value | |y]||; and/or
Quantum Samples from X/tr(X) and value tr(X)

Value opt + 6

(output form similar to HHL Q. Algorithm for linear equations)

Quantum Algorithm for SDP

Result 1: There is a quantum algorithm for solving SDPs
running in time n*/2m/2s2 poly(log(n, m), R, r, &)

Oracle Model: We assume there’s an oracle that outputs a
chosen non-zero entry of C, A4, ..., A, at unit cost:

3 k0 2) = 5,k L2 ® (Aj)ks,) fix : [r] = [n]

[N

choice of A; row k [non-zero element

Quantum Algorithm for SDP

Result 1: There is a quantum algorithm for solving SDPs
running in time n*/2m/2s2 poly(log(n, m), R, r, &)

The good:
Unconditional Quadratic speed-ups in terms of n and m

Close to optimal: Q(n'/2 + m%/2) lower bound

Quantum Algorithm for SDP

Result 1: There is a quantum algorithm for solving SDPs
running in time n*/2m/2s2 poly(log(n, m), R, r, &)

The good:
Unconditional Quadratic speed-ups in terms of n and m

Close to optimal: Q(n'/2 + m%/2) q. lower bound

The bad:
Terrible dependence on other parameters:
poly(log(n, m), R’ r, 6) < (Rr)32 5-18

Close to optimal: no general super-polynomial speed-ups

Quantum Algorithm for SDP

Result 1: There is a quantum algorithm for solving SDPs
running in time n*/2m/2s2 poly(log(n, m), R, r, &)

Special case:

If the SDP is s.t. b;> 1 for all j,
there is no dependence on r (size of dual solution)

Larger Speed-ups?

Result 2: There is a quantum algorithm for solving SDPs
running in time Tgi,,. mY/2poly(log(n, m), s, R, r, &)

Larger Speed-ups?

Result 2: There is a quantum algorithm for solving SDPs
running in time Tgi,,. mY/2poly(log(n, m), s, R, r, &)

TGibbs .= Time to prepare on quantum computer Gibbs states of the form

exp (Z v A; + I/OC> e[.)

1=1
for real numbers |v;| < O(log(n), poly(1/6))

Larger Speed-ups?

Result 2: There is a quantum algorithm for solving SDPs
running in time Tgi,,. mY/2poly(log(n, m), s, R, r, &)

TGibbs .= Time to prepare on quantum computer Gibbs states of the form

exp (Z v A; + I/OC> e[.)

1=1
for real numbers |v;| < O(log(n), poly(1/6))

Can use Quantum Gibbs Sampling (e.g. Quantum Metropolis) as heuristic.
Exponential Speed-up if thermalizationis quick (poly #qubits = polylog(n))

Gives application of quantum Gibbs sampling outside simulating physical
systems

Larger Speed-ups with “quantum data”

Result 3: There is a quantum algorithm for solving SDPs
running in time m*/2poly(log(n, m), s, R, r, 8, rank) with
data in quantum form

Quantum Oracle Model: There is an oracle that given i, outputs
the eigenvalues of A and its eigenvectors as quantum states

rank := max (max; rank(A:), rank(C))

Larger Speed-ups with “quantum data”

Result 3: There is a quantum algorithm for solving SDPs
running in time m*/2poly(log(n, m), s, R, r, 8, rank) with
data in quantum form

Quantum Oracle Model: There is an oracle that given i, outputs
the eigenvalues of A and its eigenvectors as quantum states

rank := max (max; rank(A:), rank(C))

ldea: in this case one can easily perform the Gibbs sampling in
poly(log(n), rank) time

Limitation: Not clear the relevance of the model.
How to compare with classical methods in a meaningful way?

Special Case: Max Eigenvalue

Computing the max eigenvalue of Cis a SDP

max tr(CX): tr(X)=1 X >0

Special Case: Max Eigenvalue

Computing the max eigenvalue of Cis a SDP

max tr(CX): tr(X)=1 X >0

This is a well studied problem:

Quantum Annealing (cool down -C):

If we can prepareeﬁc/tr(eﬁc) for = O(log(n)/8) can compute
max eigenvalueto error &

Special Case: Max Eigenvalue

(Poulin, Wocjan ‘09) Can prepare ¢°C /tr(eP¢) for s-sparse C
in time O(s n¥2) on quantum computer

Idea: Phase estimation + Amplitude amplification

D> lwadlyi) f—> D W DIE) = D e B2 [EI0) + ...

phase estimation

Post-selecting on “0” gives a purification of Gibbs state with
Pr>0(1/n)

Using amplitude amplification can boost Pr > 1-0(1) with
O(n/2) iterations

General Case:
Quantizing Arora-Kale Algorithm

The quantum algorithm is based on a classical algorithm for
SDP due to Arora and Kale (2007) based on the multiplicative
weight method. Let’s review their method

Assumptions:

We assume b, > 1.
Can reduce general case to this with blow up of poly(r) in
complexity

We also assumew.l.og. Ay =1,b; = R

The Oracle

The Arora-Kale algorithm has an auxiliary algorithm
(the ORACLE) which solves a simple linear programming:

ORACLE(p)

Searchesfor a vector y s.t.

i) yEDa::{y:yZOa byga}

i) Y tr(A;p)y; — tr(Cp) > 0
j=1

Arora-Kale Algorithm

) 8R? In(n)
i}

P :I/’ﬂ,c‘f:ﬁ, 8,:—111(1—6),T: 52
Bort = lssuy 0l

1. y' « ORACLE(p")

3=1

/
3. W =exp (—gl (Z MT>)
7=1

A4 pt+1 — Wt+1/tr(wt—|—1)

e T
Output y — %61 + % Zt:]_ yt €1

(1,0,. ..

Arora-Kale Algorithm

4 pt+1 — Wt+1/t1‘(Wt+1)

: T
Output: y = %’61 < % Zt:l Y’ er = (1,0,...

Why Arora-Kale works?

Since y; € D :={y:y>0,by < a}

Yo"

y.b < b b< (149
] R1+ tz:ly (1+9)c

Must check g is feasible

From Oracle, for all t: tr Zy;fAj —Clp'] >0
j=1
m 1 €T
We need: A\ Z (T Zyﬁ) A;,-C =0
= =1

Matrix Multiplicative Weight

MMW (Arora, Kale ‘07) Given n x n matrices 0< M<| and € < %,

Zf: M”)§<H€> (ZM))

exp(—¢'(3X72, M7)))
tr(...) and £ = —hl(l — 6)

with pt —

A, : min eigenvalue

2-player zero-sum game interpretation:

- Player A chooses density matrix X'
- Player B chooses matrix 0 < M|
Pay-off: tr(Xt M)

“Xt = p' strategy almost as good as global strategy”

Matrix Multiplicative Weight

MMW (Arora,Kale ‘07) Given n x n matrices Mt and € < %,

3= () (Sor) o2

From Oracle: tr ((Z YA — C) pt> >0
j=1

Quantizing Arora-Kale Algorithm

We make it quantum as follows:

1.

Implement ORACLE by Gibbs Sampling to produce yt and apply
amplitude amplification to solve it in time O(s? n%/2 m'/2)

Sparsify Mt to be a sum of O(log(m)) terms:
—t o s -
M= {lly'hQ 'Y A, ~C+RI| 2R M =M
j=1

(i15---53Q) ~¥'/lly' 1, @ = O(log(m))
Quantum Gibbs Sampling + amplitude amplification to prepare

t
P’ = exp (—5' ZMT) /tr(...) ﬁt ~ pt

=1

in time O(s2 n/2).

Quantizing Arora-Kale Algorithm

We make it quantum as follows:

1. Implement ORACLE by Gibbs Sampling to produce yt and apply
amplitude amplification to solve it in time O(s? n%/2 m1/2)

We'll show there is a feasible y' of the form y' = Nq* with
qt := exp(h)/tr(exp(h)) and

ho=">" (Mr(Asp) + pbs) i) (i

i=1
We need to simulate an oracle to the entries of h. We do it by
measuring pt with A.

To prepare each p' takes time O(s? n'/2). To sample from gt
requires O(m?*/2) calls to oracle for h. So total time is O(s2 n'/2 m*/2)

Quantizing Arora-Kale Algorithm

We make it quantum as follows:

1. Implement ORACLE by Gibbs Sampling to produce yt and apply
amplitude amplification to solve it in time O(s? n%/2 m'/2)

2. Sparsify M to be a sum of O(log(m)) terms:

Q
M = (ytllleAiJ ~ C+RI> /2R M ~ M

j=1

(i1, .-, iqQ) ~y/lly'lli, Q= O(log(m))

Can show it works by Matrix Hoeffding bound: Z, ..., Z, independent
n x n Hermitian matrices s.t. E(Z)=0, | |Z||<A. Then

1 o ke?
Pl"(E;ZZ ZE) Sn.exp (—8?>

Quantum Arora-Kale, Roughly

Let '01 o I/n’ o 5_01 5/ — —ln(]. L 5)’ T - 80.)2R2 ln(’n,)

2wR’ 32 2
Bort = lssuy 0l

1. y' < ORACLE(p") Gibbs Sampling
2. M'=) (yiA; — C +wl)/2w
j=1

3. Sparsify Mtto (M’)t

4. p'tl = exp (—s’ (Z(M’)T)) /tr(...) Gibbs Sampling

=1

_ T
Output: 7y = %61 +E Y Y

Implementing Oracle by Gibbs
Sampling

ORACLE(p)

Searches for a vector y s.t.

i) y€Do:={y:y >0, by < a}

i) Ztr iP)y; — tr(Cp) >

Implementing Oracle by Gibbs
Sampling

Searches for (non-normalized) probability distribution y satisfying
two linear constraints:

tr(BY) < a, tr(AY) > tr(Cp)

Y =3 wlidil, B = 38l A = Al

Claim: We can take Y to be Gibbs: There are constants N, A, u s.t.
exp(AA + uB)

=N

Jaynes’ Principle

(Jaynes57) Let p be a quantum state s.t. tl‘(pM?;) = C;

Then there is a Gibbs state of the form exp (Z)\iMi) 165

with same expectation values.

Drawback: no control over size of the A/'s.

Finitary Jaynes’ Principle

(Lee, Raghavendra, Steurer ‘15) Let p s.t. tr(pM,,;) = C;

CXP (Zz)‘iMi)

tr(...)
with |\;| < 21In(dim(p))/e

s.t. |tr(MZO') — Cz'l <€

Thenthereisa o =

(Note: Used to prove limitations of SDPs for approximating
constraints satisfaction problems; see James Lee’s talk)

Implementing Oracle by Gibbs
Sampling

exp(AA + uB)
tr(...)

Claim ThereisaYoftheform Y = N

with A, p < log(n)/eand N < a s.t.

tr(BY) < a+ Ne, tr(AY) > tr(Cp) —

Y =3 wlidil, B = 3o bl A = e Aiplini

Implementing Oracle by Gibbs
Sampling

exp(AA + uB)
tr(...)

Claim ThereisaYoftheform Y = N

with A, u < log(n)/eand N < as.t.

tr(BY) < a+ Ne, tr(AY) > tr(Cp) — N¢

Can implement oracle by exhaustive searching over x, y, N for a
Gibbs distribution satisfying constraints above

(only a log?(n)/e3 different triples needed to be checked)

Conclusion and Open Problems

Quantum computers provide speed-up for SDPs

Many open questions:

- Can we improve the parameters (in terms of R, r, §)?

- Can we find optimal algorithm in terms of n, mand s?

- Can we find relevant settings with superpoly speed-ups?
- Robustness to error?

- Q. computer only used for Gibbs Sampling. Application of
small-sized q. computer?

Conclusion and Open Problems

Quantum computers provide speed-up for SDPs

Many open questions:

- Can we improve the parameters (in terms of R, r, §)?

- Can we find optimal algorithm in terms of n, mand s?

- Can we find relevant settings with superpoly speed-ups?
- Robustness to error?

- Q. computer only used for Gibbs Sampling. Application of
small-sized g. computer? Thanks!

