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THE HHL ALGORITHM

o Utilize intrinsic linear algebra capabilities of quantum
computers for exponential speedups.

e Vector state |x) = >, x;|i) where x € R" is a unit vector.

e Given sparse matrix A € R"*" and |b) there is a quantum
algorithm to prepare |A~1b) in time polylog(n). [Harrow,
Hassidim, Lloyd|

@ Assumptions: |b) can be prepared polylog(n) time and A is
polylog(n) sparse.

@ Incomparable to classical linear system solver which returns
vector x € R" as opposed to |x).
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QUANTUM MACHINE LEARNING

@ HHL led to several proposals for quantum machine learning
algorithms.

@ Principal components analysis, classification with £>-SVMs,
k-means clustering, perceptron, nearest neighbors... [Lloyd,
Mohseni, Rebentrost, Wiebe, Kapoor, Svore]

@ Algorithms achieve exponential speedups only for
sparse/well-conditioned data.

@ Sometimes a variant of the classical problem is solved: /1 vs
{>-SVM.

@ Incomparable with classical.
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QUANTUM RECOMMENDATION SYSTEMS

@ Open problem: A quantum machine learning algorithm with
exponential worst case speedup for classical problem.

o Quantum recommendation systems.

@ An exponential speedup over classical with similar
assumptions and guarantees.

@ An end to end application with no assumptions on the data
set.

@ Solves the 'same’ problem as a classical recommendation
system.
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THE RECOMMENDATION PROBLEM

@ The preference matrix P.

Pr P, P3 Py --- - P Py
Ul 1422|7219
b2 ?2(6]7?2 |- ].857
Us| 2289 ||7].2
Un| 2 1250 2 | 2 ||| 7] .2
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THE RECOMMENDATION PROBLEM

@ The preference matrix P.

Pr P, P3 Py --- - Py Py
Ul 142127219
2?2672 |]-].8]7
Us| 2289 ||7].2
Un| 2 |75 2 | 2 ||| 7] .2

e Pj is the value of item j for user i. Samples from P arrive in

an online manner.
@ The assumption that P has a good rank-k approximation for
small k is widely used.
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THE NETFLIX PROBLEM

What we were interested in: { i 4 |] 57
High quality recommendations
Proxy question: Results
Accuracy in predicted rating « Top 2 algorithms still in
Improve by 10% = $1million! production L
“Pf’\;“\'i&'\ -
-BE-
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RECONSTRUCTION VS SAMPLING

Matrix reconstruction algorithms reconstruct P~P using the
low rank assumption and require time poly(mn).

@ A reconstruction based recommendation system requires time
poly(n), even with pre-computation.

(]

Matrix sampling suffices to obtain good recommendations.

(]

Quantum algorithms can perform matrix sampling.

THEOREM

There is a quantum recommendation algorithm with running time
O(poly( k) polylog(mn)).
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COMPUTATIONAL MODEL

@ Samples from P arrive in an online manner and are stored in
data structure with update time O(log® mn).

@ The quantum algorithm has oracle access to binary tree data
structure storing additional metadata.

0.3 0.7

[02] [0.1] 06| [0.1]

o We use the standard memory model used for algorithms like
Grover search.

@ Users arrive into system in an online manner and system
provides recommendations in time poly(k)polylog(mn).
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SINGULAR VALUE ESTIMATION

@ The singular value decomposition for matrix A is written as
A=Y ojuivt.

@ The rank-k approximation Ay = Zie[k] a,-u,-v,-t minimizes
[A = Axllg.

@ Quantum singular value estimation:

THEOREM

There is an algorithm with running time O(polylog(mn)/e) that
transforms ) a |vi) — > aj|v;) |07) where Gj € o £ €| Allg
with probability at least 1 — 1/poly(n).
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MATRIX SAMPLING

@ Let T be a 0/1 matrix such that T;; = 1 if item j is 'good’
recommendation for user i.

Pi P2 Ps Py --- -+ Poo1 Py
Uglojo (2?2?2721
o2 (0?2 || [1]7
UGs| 2?21 |1 || ]?2]0
Uyl 211|727 210
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MATRIX SAMPLING

o Let T be a 0/1 matrix such that T;; = 1 if item j is 'good’
recommendation for user i.

Pi P P3 Py -+ -+ Ph1 Py
Uil oo 7 P ? 1
Ul o210 2?2 ||| 1]7
Us| 7| 7? 1 1 |---|---|71]0
Un| 7 1|7 2?70

@ Set the 7s to 0 and rescale to obtain a subsample matrix T.
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MATRIX SAMPLING

= Uniform subsample

Rounding
7] (L

Low rank
assumption

[Achlioptas, McSherry]
- extended

H

SVD, QSVE

~

Ty

Ty

FIGURE: Matrix sampling based recommendation system.
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MATRIX SAMPLING

o T is the binary recommendation matrix obtained by rounding
P.

o T is a uniform subsample of T:

A JAilp [with probability p]
’ 0 [otherwise]
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A {A,-j/p [with probability p]
=

o [otherwise]

Ty and 'T'k are rank-k approximations for T and T.
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MATRIX SAMPLING

T is the binary recommendation matrix obtained by rounding
P.

o T is a uniform subsample of T:

A {A,-j/p [with probability p]
=

o [otherwise]

Ty and 'T'k are rank-k approximations for T and T.

(]

The low rank assumption implies that || T — Ty|| < €||T||g for
small k.

Analysis: Sampling from matrix 'close to’ 7A_k yields good
recommendations.

(]
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ANALYSIS

@ Samples from Ty are good recommendations, for large
fraction of 'typical’ users.

@ Sampling from ﬂ suffices.

THEOREM (AMO02)

If A is obtained from a 0/1 matrix A by subsampling with
probability p = 16n/n ||Al|% then with probability at least
1 — exp(—19(log n)*), for all k,

1A — Acllr < [|A — Axllr + 3Tk 4| Al £
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@ The quantum algorithm samples from :I\'zg,n, a projection onto

all singular values > o and some in the range [(1 — k)0, 0).
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ANALYSIS

@ The quantum algorithm samples from ?Zg,ﬁ, a projection onto
all singular values > o and some in the range [(1 — K)o, 0).

o We extend AMO2 to this setting showing that:

T = ToxllF <9l Tl
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ANALYSIS

@ The quantum algorithm samples from ?Zg,ﬁ, a projection onto
all singular values > o and some in the range [(1 — K)o, 0).

o We extend AMO02 to this setting showing that:

1T = Toullr < 9€|I Tl

@ For most typical users, samples from (7107,;,),- are good
recommendations with high probability.
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QUANTUM RECOMMENDATION ALGORITHM

Prepare state \7A_,> corresponding to row for user i.

Apply quantum projection algorithm to \7A_,> to obtain
|(T20,n)i>-

Measure projected state in computational basis to get
recommendation.

_ &/PlA] 1
@ The threshold o = WF and kK = 3
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QUANTUM RECOMMENDATION ALGORITHM

@ Prepare state \7A_,> corresponding to row for user i.

o Apply quantum projection algorithm to \7A_,> to obtain
|(T20,n)i>'

@ Measure projected state in computational basis to get
recommendation.

@ The threshold o = % and kK = %

@ Running time depends on the threshold and not the condition
number.
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THE PROJECTION ALGORITHM
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THE PROJECTION ALGORITHM

o Let A=), 0jujv} be the singular value decomposition, write
input |x) = > i |vi).

o Estimate singular values ). «j |v;) |&7) to additive error ko /2.

e Map to ) ; aj|vi)|aj) |t) where t =1if 57 > (1 — k/2)0 and
erase 7.

o Post-select on t = 1.

@ The output |A>,.x) a projection the space of singular vectors
with singular values > o and some in the range [(1 — k)0, 0).
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OPEN QUESTIONS

o Find a classical algorithm matrix sampling based
recommendation algorithm that runs in time

O(poly(k)polylog(mn)).
OR
Prove a lower bound to rule out such an algorithm.

o Find more quantum machine learning algorithms.
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