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1CNRS, Université Paris Diderot, Paris, France.

2Nanyang Technological University, Singapore.

January 17, 2017

Iordanis Kerenidis , Anupam Prakash QIP-2017, Seattle



The HHL algorithm

Utilize intrinsic linear algebra capabilities of quantum
computers for exponential speedups.

Vector state |x〉 =
∑

i xi |i〉 where x ∈ Rn is a unit vector.

Given sparse matrix A ∈ Rn×n and |b〉 there is a quantum
algorithm to prepare |A−1b〉 in time polylog(n). [Harrow,
Hassidim, Lloyd]

Assumptions: |b〉 can be prepared polylog(n) time and A is
polylog(n) sparse.

Incomparable to classical linear system solver which returns
vector x ∈ Rn as opposed to |x〉.
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Quantum Machine Learning

HHL led to several proposals for quantum machine learning
algorithms.

Principal components analysis, classification with `2-SVMs,
k-means clustering, perceptron, nearest neighbors... [Lloyd,
Mohseni, Rebentrost, Wiebe, Kapoor, Svore]

Algorithms achieve exponential speedups only for
sparse/well-conditioned data.

Sometimes a variant of the classical problem is solved: `1 vs
`2-SVM.

Incomparable with classical.
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Quantum Recommendation Systems

Open problem: A quantum machine learning algorithm with
exponential worst case speedup for classical problem.

Quantum recommendation systems.

An exponential speedup over classical with similar
assumptions and guarantees.

An end to end application with no assumptions on the data
set.

Solves the ’same’ problem as a classical recommendation
system.
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The Recommendation Problem

The preference matrix P.

P1 P2 P3 P4 · · · · · · Pn−1 Pn

U3

U2

U1

...

Um

.8 .9 · · · .2

.2 .6 · · · .85

.75 .2

.1 .4 · · · .9

? ? ?

? ??

? ??

? ? ??

· · · · · · · · · · · · · · · · · · · · · · · ·

· · · · · ·

· · · · · ·

· · · · · ·

· · · · · ·

· · · · · ·

Pij is the value of item j for user i . Samples from P arrive in
an online manner.

The assumption that P has a good rank-k approximation for
small k is widely used.
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The Netflix problem
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Reconstruction vs sampling

Matrix reconstruction algorithms reconstruct P̃ ≈ P using the
low rank assumption and require time poly(mn).

A reconstruction based recommendation system requires time
poly(n), even with pre-computation.

Matrix sampling suffices to obtain good recommendations.

Quantum algorithms can perform matrix sampling.

Theorem

There is a quantum recommendation algorithm with running time
O(poly(k)polylog(mn)).
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Computational Model

Samples from P arrive in an online manner and are stored in
data structure with update time O(log2 mn).

The quantum algorithm has oracle access to binary tree data
structure storing additional metadata.

1

0.3

0.2 0.1

0.7

0.6 0.1

We use the standard memory model used for algorithms like
Grover search.

Users arrive into system in an online manner and system
provides recommendations in time poly(k)polylog(mn).
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Singular value estimation

The singular value decomposition for matrix A is written as
A =

∑
i σiuiv

t
i .

The rank-k approximation Ak =
∑

i∈[k] σiuiv
t
i minimizes

‖A− Ak‖F .

Quantum singular value estimation:

Theorem

There is an algorithm with running time O(polylog(mn)/ε) that
transforms

∑
i αi |vi 〉 →

∑
i αi |vi 〉 |σi 〉 where σi ∈ σi ± ε ‖A‖F

with probability at least 1− 1/poly(n).
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Matrix Sampling

Let T be a 0/1 matrix such that Tij = 1 if item j is ’good’
recommendation for user i .

P1 P2 P3 P4 · · · · · · Pn−1 Pn

U3

U2

U1

...

Um

1 1 · · · 0

0 0 · · · 1

1 0

0 0 · · · 1

? ? ?

? ??

? ??

? ? ??

· · · · · · · · · · · · · · · · · · · · · · · ·

· · · · · ·

· · · · · ·

· · · · · ·

· · · · · ·

· · · · · ·

Set the ?s to 0 and rescale to obtain a subsample matrix T̂ .
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Matrix Sampling

Tk

TP
Rounding

Low rank
assumption

[Achlioptas, McSherry]
extended

Uniform subsample

T̂k

T̂

SVD,QSVE

Figure: Matrix sampling based recommendation system.
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Matrix Sampling

T is the binary recommendation matrix obtained by rounding
P.

T̂ is a uniform subsample of T :

Âij =

{
Aij/p [with probability p]

0 [otherwise]

Tk and T̂k are rank-k approximations for T and T̂ .

The low rank assumption implies that ‖T − Tk‖ ≤ ε ‖T‖F for
small k .

Analysis: Sampling from matrix ’close to’ T̂k yields good
recommendations.
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Analysis

Samples from Tk are good recommendations, for large
fraction of ’typical’ users.

Sampling from T̂k suffices.

Theorem (AM02)

If Â is obtained from a 0/1 matrix A by subsampling with
probability p = 16n/η ‖A‖2

F then with probability at least
1− exp(−19(log n)4), for all k,

||A− Âk ||F ≤ ||A− Ak ||F + 3
√
ηk1/4||A||F
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Analysis

The quantum algorithm samples from T̂≥σ,κ, a projection onto
all singular values ≥ σ and some in the range [(1− κ)σ, σ).

We extend AM02 to this setting showing that:

||T − T̂σ,κ||F ≤ 9ε ‖T‖F

For most typical users, samples from (T̂σ,κ)i are good
recommendations with high probability.
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Quantum Recommendation Algorithm

Prepare state |T̂i 〉 corresponding to row for user i .

Apply quantum projection algorithm to |T̂i 〉 to obtain
|(T̂≥σ,κ)i 〉.
Measure projected state in computational basis to get
recommendation.

The threshold σ =
ε
√
p‖A‖F√

2k
and κ = 1

3 .

Running time depends on the threshold and not the condition
number.
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The projection algorithm

Let A =
∑

i σiuiv
t
i be the singular value decomposition, write

input |x〉 =
∑

i αi |vi 〉.

Estimate singular values
∑

i αi |vi 〉 |σi 〉 to additive error κσ/2.

Map to
∑

i αi |vi 〉 |σi 〉 |t〉 where t = 1 if σi ≥ (1− κ/2)σ and
erase σi .

Post-select on t = 1.

The output |A≥σ,κx〉 a projection the space of singular vectors
with singular values ≥ σ and some in the range [(1− κ)σ, σ).
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Open Questions

Find a classical algorithm matrix sampling based
recommendation algorithm that runs in time
O(poly(k)polylog(mn)).

OR

Prove a lower bound to rule out such an algorithm.

Find more quantum machine learning algorithms.

Iordanis Kerenidis , Anupam Prakash QIP-2017, Seattle


