

Resource Theory of Work and Heat

- C. Sparaciari and
- J. Oppenheim T. Fritz

ArXiv

1607.01302

University College London - Dep. Physics and Astrophysics

Motivations

Work and heat as resources

Finite size engines^[1]

Work and heat for finite size baths

- [1] H. Tajima and M. Hayashi, arXiv:1405.6457 (2014)
- [2] D. Reeb and M. Wolf, New J. Phys. 16, 103011 (2014)

Work and heat

: thermal reservoir

: battery^[3]

Work: ordered energy transfer between system and battery

- Work is the energy stored in the battery
- Classical case $W=\Delta F_{\beta}$, where $F_{\beta}=E-\beta^{-1}S$

Heat: disordered energy transfer between system and reservoir

- Heat is the energy exchanged with the bath
- Classical case $Q = \beta^{-1} \Delta S$

Resource theory

State space

Allowed operations

Free states

e.g. Thermal Operations^[4-5]

 All states describing the quantum system S

- Energy-preserving unitaries
- Addition of thermal states
- Forgetting part of the system

• Thermal states at a given eta

$$au_{eta} = e^{-eta H}/Z$$

Goals

- Formulation of a theory without free thermal states
 - Asymptotic equivalence of quantum states
 - Microscopic to macroscopic description
 - State space as an energy-entropy diagram
- Definition of work and heat in the theory
 - Corrections for finite size bath
 - Limitations to efficiency of microscopic engines

- Framework and asymptotic equivalence
- Energy-entropy diagram
- Work and heat with finite size bath
- Conclusions and outlooks

- Framework and asymptotic equivalence
- Energy-entropy diagram
- Work and heat with finite size bath
- Conclusions and outlooks

Framework and allowed operations

- Closed qudit system
- ullet Fixed Hamiltonian H

OPERATIONS

ullet Energy-preserving unitary operations U

$$[H,U]=0$$

 Tracing out of any subsystems

Asymptotic Limit

$$\rho \to \rho^{\otimes n}$$

$$H \to \sum_{i=1}^n H_i$$

Non-interacting systems

Asymptotic equivalence

Consider a quantum system with Hamiltonian H, and two states ho and σ .

1. The states have same energy and entropy

$$S(\rho) = S(\sigma)$$
 $\langle H \rangle_{\rho} = \langle H \rangle_{\sigma}$

- 2. There exists:
 - energy-preserving unitary operator U
 - sub-linear ancilla η

$$\left\| \operatorname{Tr}_A \left[U \left(
ho^{\otimes n} \otimes \eta \right) U^\dagger \right] - \sigma^{\otimes n} \right\|_1 o 0 \quad \text{as} \quad n o \infty$$

Remarks on asymptotic equivalence

$$\left\| \operatorname{Tr}_A \left[U \left(\rho^{\otimes n} \otimes \eta \right) U^\dagger \right] - \sigma^{\otimes n} \right\|_1 \to 0 \quad \text{as} \quad n \to \infty$$

- The ancilla has:
 - i. sub-linear size: $\dim (\mathcal{H}_{\mathrm{anc}}) = d^{O(\sqrt{n \log n})}$
 - ii. bounded Hamiltonian: $||H_{\rm anc}|| \leq O(n^{\frac{2}{3}})$
- Equivalence classes ⇒ energy-entropy diagram
- Apply to different conserved quantities

Composition of the ancillary system

- 1. Randomness Source : $\frac{\mathbb{I}}{d^{n_1}}$, with $n_1 = O(\sqrt{n\log n})$ Modify the **probability** distribution of $\rho^{\otimes n}$ into $\sigma^{\otimes n}$
- 2. Register : $|0\rangle^{\otimes n_2}$, with $n_2=O(\sqrt{n\log n})$ Make the operation which maps $\rho^{\otimes n}$ into $\sigma^{\otimes n}$ reversible
- 3. Energy/Coherence Storage:
 - Make the unitary operation energy-preserving $\left[H,U
 ight]=0$

- Framework and asymptotic equivalence
- Energy-entropy diagram
- Work and heat with finite size bath
- Conclusions and outlooks

The energy-entropy diagram

Linear ineq. and energy-entropy diagram

- A. Entropy inequality: $S(\rho) \geq 0$
- B. eta-athermality inequality: $A_eta(
 ho) \geq 0$, orall eta

Excited and thermal state conversion

Thermal State

$$au_{eta} = e^{-eta H}/Z$$

Pure State

$$|E\rangle$$
: $\langle E|H|E\rangle = E$

$$\langle H \rangle_{\rho}$$

$$\rho^{\otimes n} \leftrightarrow \tau_{\beta}^{\otimes k} \otimes |E\rangle \langle E|^{\otimes n-k}$$

Rate of conversion

Given n copies of ho, how many copies of σ do we get?

- Framework and asymptotic equivalence
- Energy-entropy diagram
- Work and heat with finite size bath
- Conclusions and outlooks

From closed systems to finite reservoirs

For the asymptotic equivalence theorem

$$\omega_{\text{in}}^{\otimes N} \leftrightarrow \omega_{\text{out}}^{\otimes N} , N \to \infty \quad \iff \begin{array}{c} S(\omega_{\text{in}}) = S(\omega_{\text{out}}) \\ E(\omega_{\text{in}}) = E(\omega_{\text{out}}) \end{array}$$

Work and heat with finite size bath

$$\tau_{\beta_1}^{\otimes m} \otimes \rho^{\otimes n} \otimes |E_{\min}\rangle \left\langle E_{\min} \right|^{\otimes l} \to \tau_{\beta_2}^{\otimes m} \otimes \sigma^{\otimes n} \otimes |E_{\max}\rangle \left\langle E_{\max} \right|^{\otimes l}$$

$$W = \frac{l}{n} \left(E_{\text{max}} - E_{\text{min}} \right)$$

$$W = rac{l}{n} \left(E_{
m max} - E_{
m min}
ight) \qquad Q = rac{m}{n} \left(\langle H
angle_{ au_{eta_1}} - \langle H
angle_{ au_{eta_2}}
ight)$$

We get:

$$W = F_{\beta_{\text{eff}}}(\rho) - F_{\beta_{\text{eff}}}(\sigma)$$

$$Q = \beta_{\text{eff}}^{-1} \left(S(\sigma) - S(\rho) \right)$$

where:

$$F_{\beta}(\rho) = \langle H \rangle_{\rho} - \beta^{-1} S(\rho)$$

and:

$$eta_{ ext{eff}} = rac{S(au_{eta_1}) - S(au_{eta_2})}{\langle H
angle_{ au_{eta_1}} - \langle H
angle_{ au_{eta_2}}}$$

Heat engines and finite thermal reservoirs

RESERVOIR: $au_{\beta_1} o au_{\beta_{\mathrm{HOT}}}$

 $au_{eta_2}
ightarrow au_{eta_{
m LESS\ HOT}}$

SYSTEM:

 $\rho \to au_{\beta_{\mathrm{COLD}}}$

 $\sigma \to \tau_{\beta_{\mathrm{LESS\ COLD}}}$

$$\tau_{\beta_{\text{HOT}}}^{\otimes m} \otimes \tau_{\beta_{\text{COLD}}}^{\otimes n} \otimes \left| E_{\text{min}} \right\rangle \left\langle E_{\text{min}} \right|^{\otimes l} \leftrightarrow \tau_{\beta_{\text{LESS HOT}}}^{\otimes m} \otimes \tau_{\beta_{\text{LESS COLD}}}^{\otimes n} \otimes \left| E_{\text{max}} \right\rangle \left\langle E_{\text{max}} \right|^{\otimes l}$$

Efficiency

$$\eta^{
m HE} = rac{W}{Q_{
m HOT}}$$

$$\eta^{\mathrm{HE}} < 1 - \frac{T_{\mathrm{COLD}}}{T_{\mathrm{HOT}}} = \eta_{\mathrm{Carnot}}^{\mathrm{HE}}$$

- Framework and asymptotic equivalence
- Energy-entropy diagram
- Work and heat with finite size bath
- Conclusions and outlooks

Conclusions

- Introduced a theory without infinite thermal bath
 - Classification of states in terms of $\langle H \rangle_{\rho}$ and $S(\rho)$
 - Resource space as energy-entropy diagram

- Thermodynamics with finite size thermal bath
 - Work and heat exchanged for $ho
 ightarrow \sigma$:

$$W = F_{\beta_{\text{eff}}}(\rho) - F_{\beta_{\text{eff}}}(\sigma)$$

$$Q = \beta_{\text{eff}}^{-1} \left(S(\sigma) - S(\rho) \right)$$

- Efficiency of heat engines is Sub-Carnot

Outlook

- Improve our idealized theory
 - Many copies limit, non-interacting particles
 - Finite-grained operations are allowed^[8]
- Using the energy-entropy diagram to describe
 - work and heat
 - efficiency of engines

FIN

Sketch of the proof asymptotic equivalence

- If $\rho^{\otimes n} \to \sigma^{\otimes n}$ then $S(\rho) = S(\sigma)$ and $\langle H \rangle_{\rho} = \langle H \rangle_{\sigma}$ Follow from asymptotic continuity of S and $\langle H \rangle$
- If $S(\rho) = S(\sigma)$ and $\langle H \rangle_{\rho} = \langle H \rangle_{\sigma}$ then $\rho^{\otimes n} \to \sigma^{\otimes n}$

Protocol based on the central limit theorem

Work and heat: classical case

$$\tau_{\beta_1}^{\otimes m} \otimes \rho^{\otimes n} \otimes |E_{\min}\rangle \langle E_{\min}|^{\otimes l} \to \tau_{\beta_2}^{\otimes m} \otimes \sigma^{\otimes n} \otimes |E_{\max}\rangle \langle E_{\max}|^{\otimes l}$$

The bath temperature changes infinitesimally:

$$\beta_2 = \beta_1 + \varepsilon$$

$$W = F_{\beta_1}(\rho) - F_{\beta_1}(\sigma) + O(\varepsilon)$$

Work extracted Heat provided
$$W=F_{\beta_1}(\rho)-F_{\beta_1}(\sigma)+O(arepsilon)$$
 $Q=rac{1}{\beta_1}\left(S(\sigma)-S(
ho)
ight)+O(arepsilon)$

Bath size

$$rac{m}{n} \propto \left| rac{S(\sigma) - S(
ho)}{eta \langle \Delta^2 H
angle_{ au_eta}}
ight| rac{1}{arepsilon}$$

Work and heat: an example

Hamiltonian

$$H = 1 |1\rangle \langle 1| + 2 |2\rangle \langle 2|$$

Quantum states

$$\rho = 0.2 |0\rangle \langle 0| + 0.4 |1\rangle \langle 1| + 0.4 |2\rangle \langle 2|$$

$$\sigma = 0.7 |0\rangle \langle 0| + 0.3 |1\rangle \langle 1|$$

- Framework and asymptotic equivalence
- Energy-entropy diagram
- Work and heat with finite size bath
- Limitation to finite size engines
- Conclusions and outlooks

Efficiency of finite size engines

$$\eta^{\mathrm{HE}} = 1 - \beta_{\mathrm{eff}}^{\mathrm{HOT}}/\beta_{\mathrm{eff}}^{\mathrm{COLD}}$$

$$\eta^{\mathrm{HE}} < 1 - rac{T_{\mathrm{COLD}}}{T_{\mathrm{HOT}}} = \eta^{\mathrm{HE}}_{\mathrm{Carnot}}$$

Efficiency is lower than Carnot

Where:

$$\beta_{\text{eff}}^{X} = \frac{S(\tau_{\beta_{X}}) - S(\tau_{\beta_{LESS|X}})}{\langle H \rangle_{\tau_{\beta_{X}}} - \langle H \rangle_{\tau_{\beta_{LESS|X}}}}$$
 $X = \text{HOT, COLD}$

Quantum Information Group in UCL

← Lluis Masanes

← Mischa Woods

← Thomas Galley

← Alvaro
Alhambra