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Motivations

Work and heat
as resources

Finite size engines!t Work and heat for

. finite size baths
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Work and heat

Work : ordered energy transfer between system and battery

 Work is the energy stored in the battery
* Classical case W = AFj3, where Fg = E — 3718

Heat : disordered energy transfer between system and reservoir
* Heat is the energy exchanged with the bath

 Classical case Q = B~1AS

[3] M. Horodecki and J. Oppenheim, Nat. Comm. 4, 2059 (2013). 3



Resource theory
e.g. Thermal Operations!*-]

e All states describing the

* State space quantum system S

e Energy-preserving unitaries
* Allowed operations e Addition of thermal states
e Forgetting part of the system

Thermal states at a given 3

* Free states
T8 = e_ﬁH/Z

[4] D. Janzing et al., Int. J. Theor. Phys. 39, 2717-2753 (2000)
[5] F. G.S. L. Branddo et al., Phys. Rev. Lett. 111, 250404 (2013).



Goals

e Formulation of a theory without free thermal states
- Asymptotic equivalence of quantum states

- Microscopic to macroscopic description
- State space as an energy-entropy diagram
e Definition of work and heat in the theory

- Corrections for finite size bath

- Limitations to efficiency of microscopic engines
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Framework and allowed operations

e Closed qudit system

e Fixed Hamiltonian H

-

. subsystems

OPERATIONS h

e Energy-preserving
unitary operations U

(H,U] =0

e Tracing out of any

)
Asymptotic Limit

p— p®"
H — Z?:l HE

|

Non-interacting
systems




Asymptotic equivalence

Consider a quantum system with Hamiltonian H, and
two states P and 7.

1.The states have same energy and entropy
S(p) = S(o) (H)p=(H)o

2.There exists:
- energy-preserving unitary operator [J

- sub-linear ancilla (f,

H'I‘rA[U(p'@”@n)UT]—J®”’H1—>O as 1. — 00



Remarks on asymptotic equivalence

e [0 (6" @n) U] —0®7, 50 a5 00

e The ancilla has:
. sub-linear size: dim (Hanc) = dP(Vn1ogn)

ii. bounded Hamiltonian: || Hanc|| < O(n3)
e Equivalence classes = energy-entropy diagram

e Apply to different conserved quantities

10



Composition of the ancillary system

1. Randomness Source : ——, with n; = O(y/nlogn)

@
Modify the probability distribution of 0= "into O

2. Register : |0)®"2, with ny = O(y/nlogn)

&

Make the operation which maps p®n into 02" reversible

3. Energy/Coherence Storage :

Make the unitary operation energy-preserving [H, U] =0
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The energy-entropy diagram

(" )
S(p) quantum state QO

((H)p,S(p))

5 . J

E . \@ Ema. <H>P

[6] T. Fritz, Mathematical Structures in Computer Science, 1-89 (2015)
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Linear ineq. and energy-entropy diagram

S(p) B : [3-ATHERMALITY
Ag(p) = B{H), — S(p) + log Zg
‘ = D(pllm) )
7
T A . \Hp

A. Entropy inequality: S(p) > ()

B. B-athermality inequality: Aﬁ(p) >0, Vﬁ
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Excited and thermal state conversion

5(p) Thermal State
T3 T8 = e PR /7
Pure State
p E) : (E|H|E)=E
) Emin |E) Emax <H>p
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Rate of conversion

Given 7 copies of O, how many copies of 0 do we get?

4 )
p%" < 0™ ® Ygarbage RATE 0 — O
R(p o) =

[ S(p) . . Ap(p)
Rlo—0)=min{ 505 B 2o

Ygarbage = T3
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From closed systems to finite reservoirs

e N
Finite-sized thermal bath

O(1) ; n,m — o0
J

For the asymptotic equivalence theorem
S(win) — S(wout)
E(win) — E(wout)

[7] P. Ehrenfest and T. Ehrenfest, The Conceptual Foundations of the Statistical Approach in Mechanics (2015). 18
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Work and heat with finite size bath

6™ ® P ® | Bmin) (Brmin|® = 76" ® 0®" ® | Emax) {Bmax|®

B

/ WORK EXTRACTED
[

HEAT PROVIDED \

m

W = - (Bmax — Emin) Q= . ((H) g, — (H)rg,)
\_ /
We get where:

Fg(p) = (H), — B~"S(p)
and:

,Bﬂ-‘: 8(7-131)_8(7-,32)
7 (H)ry, — (H)

Tﬁ 1 TBZ 19



Heat engines and finite thermal reservoirs

RESERVOIR : T61 —7 TBuor TBa ~ TBLEss HOT
SYSTEM : P — TBcoLp 0 —7 TALEss cOLD

_ X! ® ®!
[,BHOT ® TECOLD ® |Emm) (Emin| " ¢ T,BLT;}LSS o B ;BLESS o B |Emax) (Emax| j

. . Efficiency
HE _ W

ouor] | "= G
- — 0w
Qcorp | HE _ ; LOOLD _ HE
n <1 THOT = TlCarnot

o —
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Conclusions

e Introduced a theory without infinite thermal bath

- Classification of states in terms of (H), and S(p)

- Resource space as energy-entropy diagram

e Thermodynamics with finite size thermal bath

- Work and heat exchanged for p — 0
W = F/Beff(p) — Fﬁeff(o-) Q= /Be_ﬂ-'l (S(o) — S(p))

- Efficiency of heat engines is Sub-Carnot
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Outlook

e Improve our idealized theory

- Many copies limit, non-interacting particles

- Finite-grained operations are allowed!®

e Using the energy-entropy diagram to describe
- work and heat e
- efficiency of engines

[8] C. Perry et al., arXiv:1511.06553 (2015). 23
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Sketch of the proof asymptotic equivalence
o If p®" — o®" then S(p) = S(o) and (H), = (H),

Follow from asymptotic continuity of S and (H)

e If S(p) = S(0) and (H), = (H), then p©" — o®"

Protocol based on the central limit theorem

AN =] N

Ptyp type Otyp type
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Work and heat: classical case

m n [ m n :
TE‘? ®P® ® |Emin) (Emin|® — T[?; Q%" ® |Emax) (Emm('@

The bath temperature changes infinitesimally:

J

Ba=p1+¢€
r N
Work extracted Heat provided
1
W = Fy,(p) = Fs,(0) + 0) | | Q=5 (5(c) = S(p)) + O€)
\_ J U 1
f Bath size b
m ‘sm —5(p)| 1
\_ " ﬂ(Azﬂ)Tﬁ © J 26



Work and heat: an example

Hamiltonian m  BATH SIZE
H=1[1)(1]+22) (2| 2l
Quantum states 2.4}

p=0.2]0) (0] +0.4|1) (1| +0.4|2) (2|  al
o =0.7]0) (0] + 0.3 |1) (1] 46 8 102"
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Efficiency of finite size engines

'f] — 1 — ﬁHOT//@COLD

T

HE COLD HE

[77 <1- T — nCarnot]
HOT

Efficiency is lower than Carnot

X _ S(7ax ) =5(T81 pss x )
eff <H>TBX_<H

X = HOT, COLD

>TBLESS X
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