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Quantum Advantage for Disjointness
◦ Disjointness: 𝑥, 𝑦 ⊆ {1,2, … , 𝑛}, is 𝑥 ∩ 𝑦 = ∅?

◦ 𝑥 = 𝑥1⋯𝑥𝑛, 𝑦 = 𝑦1⋯𝑦𝑛 ∈ { 0, 1 }𝑛, looking for i such that 𝑥𝑖 = 𝑦𝑖 = 1

◦ Quantum Protocol [BCW98]: distributed version of Grover search

◦ QCC(Disj) = Θ( 𝑛) [BCW98, Razb03, AA03]

◦ CC(Disj) = Ω(𝑛) [KS92]

Initialize: 
1

𝑛
σ𝑖 | 𝑖 〉

Oracle call: 
1

𝑛
σ𝑖 𝑖 | 𝑥𝑖〉

1

𝑛
σ𝑖 −1

𝑥𝑖∧𝑦𝑖 𝑖 | 𝑥𝑖〉1

𝑛
σ𝑖 −1

𝑥𝑖∧𝑦𝑖 𝑖

Inversion about the mean
Repeat ≈ 𝑛 times
Measure to get desired i if intersection

Input: x Input: y

[Buhrman, Cleve and Wigderson 1998; Razborov 2003; Aaronson and Ambainis 2003; Kalyanasundaram and Schnitger 1992]



Quantum Advantage for Disjointness
◦ Disjointness: 𝑥, 𝑦 ⊆ {1,2, … , 𝑛}, is 𝑥 ∩ 𝑦 = ∅?

◦ 𝑥 = 𝑥1⋯𝑥𝑛, 𝑦 = 𝑦1⋯𝑦𝑛 ∈ { 0, 1 }𝑛, looking for i such that 𝑥𝑖 = 𝑦𝑖 = 1

◦ Quantum Protocol [BCW98]: distributed version of Grover search

◦ QCC(Disj) = Θ( 𝑛) [BCW98, Razb03, AA03]

◦ CC(Disj) = Ω(𝑛) [KS92]

◦ How does information flow in this protocol?

◦ Can we avoid transmitting back/forgetting information?



Interactive Communication
◦ Communication Complexity setting:

◦ How much communication to compute f on x, y ∼ 𝜇

◦ Take information-theoretic view: Information Complexity
◦ How much information to compute f on x, y ∼ 𝜇

◦ Information content of interactive protocols?

◦ Classical vs. Quantum?

𝐴0 𝐵0
𝜌

𝜇
Input: x Input: y

𝐶1

𝐶2

𝐶𝑀

…

Output: f(x,y)



Overview
Based on 2 papers

◦ 1701.02062: ML & DT, Info. Flow & Cost of Forgetting
◦ Th 1: HIC = CIC – CRIC, QIC = CIC + CRIC

◦ Tool 1 : Information Flow Lemma

◦ Th 2: Π not forgetting for Disjointness => QCC Π ∈ Ω 𝑛

◦ Th 3: Can maintain IC for quantum simulation of classical protocols, and then IC(𝑓𝑟𝑑𝑚) = n (1 - o(1))

◦ 1610.04937: AN & DT, Aug. Index & Streaming algo. for DYCK(2)

◦ Th 4: Any T-pass one-way qu. Streaming algorithm for DYCK(2) requires space 𝑠 𝑁 ∈ Ω(
𝑁

𝑇3
) on length N inputs 

◦ Th 5: Any t-round protocol for Augmented Index satisfies a QIC trade-off 𝑄𝐼𝐶𝐴→𝐵 Π, 𝜇0 ∈ Ω
𝑛

𝑡2
or 𝑄𝐼𝐶𝐵→𝐴 Π, 𝜇0 ∈ Ω

1

𝑡2

◦ Tool 2: Superposition-Average Encoding Theorem

◦ Tool 3: Quantum Cut-and-Paste

◦ Application of Tool 1



Quantum Communication Complexity

𝑈1

𝑈2

𝑈3 𝑈𝑓

𝑈𝑀

𝜇

Protocol Π: 𝑋

𝑌

𝐴0

| 𝜓〉

𝐵0

𝑋𝐴1

𝐶1

𝐶2

𝐶3

𝑌𝐵2

𝑋𝐴2 𝑋𝐴3

𝐶𝑀−1

𝐶𝑀

𝑋𝐴𝑀

𝑌𝐵𝑀−1

𝑋

𝐴𝑓

𝐵𝑓

𝑌

Output: f(X,Y)



Quantum Communication Complexity
◦ QCC(f) = min

Π
QCC(Π)

◦ Minimization over all Π computing f

◦ QCC(Π) =σ𝑖 log (dim(𝐶𝑖)); total number of qubits exchanged

𝑈1

𝑈2

𝑈3 𝑈𝑓

𝑈𝑀

𝜇

𝑋

𝑌

| 𝜓〉
𝐶1

𝐶2

𝐶3 𝐶𝑀−1

𝐶𝑀

Protocol Π:



Quantum Information Theory
◦ Conditional Quantum Mutual Information

◦ 𝐼 𝑅: 𝐶 𝐵 = 𝐼 𝑅: 𝐵𝐶 − 𝐼 𝑅: 𝐵 = 𝐻 𝑅 𝐵 − 𝐻 𝑅 𝐵𝐶 = 𝐻 𝑅𝐵 + 𝐻 𝐵𝐶 − 𝐻 𝐵 − 𝐻(𝑅𝐵𝐶)

◦ Non-negativity: 𝐼 𝑅: 𝐶 𝐵 ≥ 0 [LR73]

◦ Chain rule: 𝐼 𝐴: 𝐵𝐷 𝐶 = 𝐼 𝐴: 𝐵 𝐶 + 𝐼(𝐴:𝐷|𝐵𝐶)

◦ Invariance under local isometry, satisfies a data processing inequality…

◦ Operational interpretation [DY08, YD09]: Quantum state redistribution, optimal communication rate 𝐼 𝑅: 𝐶 𝐵 = 𝐼(𝑅: 𝐶|𝐴)

𝜓 𝐴𝐵𝐶𝑅

𝑅Referee

𝐴
𝐶

𝐵

𝐶

[Lieb and Ruskai 1973; Devetak and Yard 2008; Yard and Devetak 2009]
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◦ Invariance under local isometry, satisfies a data processing inequality…

◦ Operational interpretation [DY08, YD09]: Quantum state redistribution, optimal communication rate 𝐼 𝑅: 𝐶 𝐵 = 𝐼(𝑅: 𝐶|𝐴)

◦ Recoverability [FR15]

◦ There exists a recovery map 𝑇𝐵→𝐵𝐶 such that −lg𝐹 (𝜌𝑅𝐵𝐶 , 𝑇𝐵→𝐵𝐶(𝜌𝑅𝐵)) ≤ 𝐼 𝑅: 𝐶 𝐵 𝜌

𝜌𝑅𝐵𝐶 𝜌𝑅𝐵𝐶

𝑇

𝑅

𝐶

𝐵

𝑅

𝐶

𝐵
𝐶

𝐵

[Lieb and Ruskai 1973; Devetak and Yard 2008; Yard and Devetak 2009; Fawzi and Renner 2015]

≈



Quantum Information Complexity (QIC)
◦ QIC(f,𝜇) = inf

Π
QIC(Π, 𝜇)

◦ Optimization over all Π computing f

◦ QIC(Π, 𝜇) = σ𝑖 𝑜𝑑𝑑 𝐼( 𝑅𝑋𝑅𝑌: 𝐶𝑖 𝑌𝐵𝑖 +σ𝑖 𝑒𝑣𝑒𝑛 𝐼( 𝑅𝑋𝑅𝑌: 𝐶𝑖 𝑋𝐴𝑖
◦ Motivated by quantum state redistribution, with 𝑅𝑋𝑅𝑌 purifying the 𝑋𝑌 input registers: 𝜌𝜇 𝑅𝑋𝑋𝑅𝑌𝑌 = σ𝑥,𝑦 𝜇 𝑥, 𝑦 𝑥𝑥𝑦𝑦 𝑅𝑋𝑋𝑅𝑌𝑌

𝜓 𝐴𝐵𝐶𝑅

𝑅Referee

𝐴
𝐶

𝐵

𝐶



Quantum Information Complexity (QIC)
◦ QIC(f,𝜇) = inf

Π
QIC(Π, 𝜇)

◦ Optimization over all Π computing f

◦ QIC(Π, 𝜇) = σ𝑖 𝑜𝑑𝑑 𝐼( 𝑅𝑋𝑅𝑌: 𝐶𝑖 𝑌𝐵𝑖 +σ𝑖 𝑒𝑣𝑒𝑛 𝐼( 𝑅𝑋𝑅𝑌: 𝐶𝑖 𝑋𝐴𝑖
◦ Properties [T15]:

◦ Information equals amortized communication

◦ Additivity

◦ QIC ≤ QCC

◦ Continuity, …

[T. 2015]



Alternative Notions of QIC
◦ QIC measures information about what?

◦ Satisfies Information equals amortized communication

◦ What about these purification registers for classical inputs?



Alternative Notions of QIC
◦ QIC measures information about what?

◦ Satisfies Information equals amortized communication

◦ What about these purification registers for classical inputs?

◦ Can we simply measure the final information?

◦ HIC(Π, 𝜇) = 𝐼 𝑋: 𝐵𝑓 𝑌 + 𝐼(𝑌: 𝐴𝑓|𝑋)

◦ Compare to classical IC(Π𝐶 , 𝜇) = 𝐼 𝑋: Π𝐶 𝑌 + 𝐼(𝑌: Π𝐶|𝑋), with ΠC = M1M2⋯ the transcript of messages

◦ But reversible computing makes HIC(f) trivial…
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◦ Motivated by privacy concerns

[Kerenidis, Lauriere, Le Gall and Rennela 2016]
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◦ Satisfies Information equals amortized communication

◦ What about these purification registers for classical inputs?

◦ Can we simply measure the final information?
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◦ But reversible computing makes HIC(f) trivial…

◦ Can we simply measure new classical information?
◦ CIC(Π, 𝜇) = σ𝑖 𝑜𝑑𝑑 𝐼( 𝑋: 𝐶𝑖 𝑌𝐵𝑖 + σ𝑖 𝑒𝑣𝑒𝑛 𝐼( 𝑌: 𝐶𝑖 𝑋𝐴𝑖 [KLLGR16]

◦ Compare to classical IC(Π𝐶 , 𝜇) = σ𝑖 𝑜𝑑𝑑 𝐼( 𝑋:𝑀𝑖 𝑌𝑀<𝑖 + σ𝑖 𝑒𝑣𝑒𝑛 𝐼( 𝑌:𝑀𝑖 𝑋𝑀<𝑖

◦ Motivated by privacy concerns

◦ HIC(Π, 𝜇) ≤ CIC(Π, 𝜇) ≤ QIC(Π, 𝜇)
◦ Is there a deeper relationship?

[Kerenidis, Lauriere, Le Gall and Rennela 2016]



Tool 1: Information Flow Lemma
◦ Lemma: 𝐼 𝑋: 𝑌𝐵𝑓 − 𝐼 𝑋: 𝑌 = 𝐼(𝑋: 𝐵𝑓|𝑌) = σ𝑖 𝑜𝑑𝑑 𝐼 𝑋: 𝐶𝑖 𝑌𝐵𝑖 − σ𝑖 𝑒𝑣𝑒𝑛 𝐼 𝑋: 𝐶𝑖 𝑌𝐵𝑖

◦ Can also handle fully quantum processes and arbitrary extension of inputs



Th. 1: Cost of Forgetting
◦ Rewrite QIC(Π, 𝜇) = σ𝑖 𝐼( 𝑋: 𝐶𝑖 𝑌𝐵𝑖 + 𝐼(𝑌: 𝐶𝑖 𝑋𝐴𝑖

◦ What are those extra terms compared to CIC?

◦ CRIC(Π, 𝜇) = σ𝑖 𝑒𝑣𝑒𝑛 𝐼( 𝑋: 𝐶𝑖 𝑌𝐵𝑖 + σ𝑖 𝑜𝑑𝑑 𝐼( 𝑌: 𝐶𝑖 𝑋𝐴𝑖
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◦ Rewrite QIC(Π, 𝜇) = σ𝑖 𝐼( 𝑋: 𝐶𝑖 𝑌𝐵𝑖 + 𝐼(𝑌: 𝐶𝑖 𝑋𝐴𝑖

◦ What are those extra terms compared to CIC?

◦ CRIC(Π, 𝜇) = σ𝑖 𝑒𝑣𝑒𝑛 𝐼( 𝑋: 𝐶𝑖 𝑌𝐵𝑖 + σ𝑖 𝑜𝑑𝑑 𝐼( 𝑌: 𝐶𝑖 𝑋𝐴𝑖

◦ Using Info. Flow Lemma, rewrite 
◦ Th. 1.1: HIC(Π, 𝜇) = CIC(Π, 𝜇) - CRIC(Π, 𝜇)

◦ QIC(Π, 𝜇)  = CIC(Π, 𝜇)  + CRIC(Π, 𝜇)

◦ CRIC corresponds to cost of forgetting
◦ Exactly assess back-flow of information

◦ No need to introduce purification registers 𝑅𝑋𝑅𝑌 to define QIC (for classical tasks)



Tool 2: Superposition-Average Encoding Th.
◦ Average encoding theorem [KNTZ07]: E𝑋 ℎ2 𝜌𝐵

𝑋, 𝜌𝐵 ≤ 𝐼 𝑋: 𝐵 𝜌

◦ 𝜌𝑋𝐵 = σ𝑥 𝑝𝑋 𝑥 𝑥 〈𝑥|𝑋 ⊗𝜌𝐵
𝑥

◦ 𝜌𝐵 = E𝑋[𝜌𝐵
𝑋], average state

◦ h2 𝜎, 𝜃 = 1 − 𝐹(𝜎, 𝜃), Bures distance, with 𝐹 𝜎, 𝜃 = || 𝜎 𝜃||1

◦ Follows from Pinsker’s inequality

◦ Many applications, e.g. together with a round-by-round variant of HIC [JRS03]

[Klauck, Nayak, Ta-Shma and Zuckerman 2007; Jain, Radhakrishnan and Sen 2003]



Tool 2: Superposition-Average Encoding Th.
◦ Average encoding theorem [KNTZ07]: E𝑋 ℎ2 𝜌𝐵

𝑋, 𝜌𝐵 ≤ 𝐼 𝑋: 𝐵 𝜌

◦ What about superposition over (part of) X?

◦ Recall F-R theorem (stated in terms of h)

◦ There exists a recovery map 𝑇𝐵→𝐵𝐶 such that ℎ2(𝜌𝑅𝐵𝐶 , 𝑇𝐵→𝐵𝐶(𝜌𝑅𝐵)) ≤ 𝐼 𝑅: 𝐶 𝐵 𝜌

◦ Theorem: If for odd i then  ℎ2 𝜌𝑅𝑋𝑅𝑌𝑌𝐵𝑓
𝑓

, 𝜎𝑅𝑋𝑅𝑌𝑌𝐵𝑓
𝑓

≤ 𝑀 σ𝑖 𝜀𝑖

𝐼 𝑅𝑋𝑅𝑌: 𝐶𝑖 𝑌 𝐵𝑖 = 𝜀𝑖

𝜌𝑅𝑋𝑅𝑌𝑌𝐵𝑓
𝑓

𝜎𝑅𝑋𝑅𝑌𝑌𝐵𝑓
𝑓

𝑅𝑖: F-R maps

[Klauck, Nayak, Ta-Shma and Zuckerman 2007]



Tool 3: Quantum Cut-and-Paste Lemma
◦ Variant of a tool developed in [JRS03, JN14]

◦ Consider input subset {𝑥1, 𝑥2} × {𝑦1, 𝑦2}

◦ Lemma: If for odd i and for even i, then  ℎ 𝑉𝐵𝑡
𝑦1→𝑦2(𝜌𝐴𝑡𝐵𝑡𝐶𝑡

𝑡 𝑥2𝑦1)𝜌𝐴𝑡𝐵𝑡𝐶𝑡
𝑡,𝑥2𝑦2 ≤ 2σ𝑗≤𝑖 𝛿𝑗

𝑥1, 𝑥2

𝑦1
ℎ 𝜌𝐵𝑖𝐶𝑖,

𝑖, 𝑥1𝑦1𝜌𝐵𝑖𝐶𝑖
𝑖, 𝑥2𝑦1 = 𝛿𝑖

𝑥1

𝑦1, 𝑦2

ℎ 𝜌𝐴𝑖𝐶𝑖,
𝑖, 𝑥1𝑦1𝜌𝐴𝑖𝐶𝑖

𝑖, 𝑥1𝑦2 = 𝛿𝑖

[Jain, Radhakrishnan and Sen 2003; Jain and Nayak 2014]



Applications



Th. 2: Disjointness
◦ Recall Disjointness: 𝑥, 𝑦 ⊆ [𝑛], 𝐷𝑖𝑠𝑗𝑛 𝑥, 𝑦 =? [𝑥 ∩ 𝑦 = ∅]

◦ CC 𝐷𝑖𝑠𝑗𝑛 ∈ Ω(𝑛), QCC 𝐷𝑖𝑠𝑗𝑛 ∈ Ω( 𝑛)

◦ For r rounds, QCC𝑟 𝐷𝑖𝑠𝑗𝑛 ∈ ෩Ω(
𝑛

𝑟
) [BGKMT15]

◦ Number of rounds r appears only through a continuity argument
◦ Not there for classical protocols

◦ Due to possibility of forgetting and retransmitting in quantum protocols

◦ With no-forgetting (NF), QCC𝑁𝐹 𝐷𝑖𝑠𝑗𝑛 ∈ Ω (𝑛)

[Braverman, Garg, Kun Ko, Mao and T. 2015]



Th. 3: QIC and IC of Random functions
◦ Can we simulate classical protocols with quantum ones?

◦ Of course!

◦ What about maintaining IC?

◦ Must be careful with private randomness

◦ Bring Π𝐶 in canonical form first

◦ Then QIC looks classical… almost!



Th. 3: QIC and IC of Random functions
◦ Can we simulate classical protocols with quantum ones?

◦ Of course!

◦ What about maintaining IC?

◦ Must be careful with private randomness

◦ Bring Π𝐶 in canonical form first

◦ Then QIC looks classical… almost!

◦ Known: 𝑄𝐶𝐶 𝐼𝑃𝑛 = 𝑛 [CDNT99], 𝑄𝐶𝐶 𝑓𝑟𝑑𝑚 = 𝑛(1 − 𝑜(1)) [MW07]
◦ 𝐼𝑃𝑛 𝑥, 𝑦 =⊕𝑖 𝑥𝑖 ∧ 𝑦𝑖 , 𝑓𝑟𝑑𝑚 random function on n + n bits

◦ Using Info. Flow Lemma, QCC lower bound transfers to QIC lower bound (at zero error)

◦ Already known: 𝐼𝐶 𝐼𝑃𝑛 = 𝑛 [BGPW], 𝐼𝐶 𝑓𝑟𝑑𝑚 = Ω(𝑛) [BW]

◦ By above simulation, 𝐼𝐶 𝑓𝑟𝑑𝑚 = 𝑛(1 − 𝑜(1))

[Cleve, van Dam, Nielsen and Tapp 1999; Montanaro and Winter 2007; 
Braverman, Garg, Pankratov and Weinstein 2013; Braverman and Weinstein 2012]



Th. 4: Streaming Algorithms for DYCK(2)
◦ DYCK 2 = 𝜖 + 𝐷𝑌𝐶𝐾 2 + 𝐷𝑌𝐶𝐾 2 + 𝐷𝑌𝐶𝐾(2) ⋅ 𝐷𝑌𝐶𝐾(2)

◦ Reduction from multi-party QCC to streaming algorithm to DYCK(2) [MMN14]
◦ Consider T-pass, one-way quantum streaming algorithms

◦ Space s(N) in algorithm corresponds to communication between parties

◦ Multi-party problem consists of OR of multiple instances of two-party problem

|0𝑠(𝑁)〉 𝑂𝑥1

𝑥1

𝑂𝑥2

𝑥2

… 𝑂𝑥𝑁

𝑥𝑁

Repeat T times

[Magniez, Mathieu and Nayak 2014]



Th. 4: Streaming Algorithms for DYCK(2)
◦ DYCK 2 = 𝜖 + 𝐷𝑌𝐶𝐾 2 + 𝐷𝑌𝐶𝐾 2 + 𝐷𝑌𝐶𝐾(2) ⋅ 𝐷𝑌𝐶𝐾(2)

◦ Reduction from multi-party QCC to streaming algorithm to DYCK(2) [MMN14]
◦ Consider T-pass, one-way quantum streaming algorithms

◦ Space s(N) in algorithm corresponds to communication between parties

◦ Multi-party problem consists of OR of multiple instances of two-party problem

◦ Direct sum argument allows to reduce from a two-party problem
◦ Multi-party QCC lower bounds requires two-party QIC lower bound on “easy distribution”

◦ Th. 2.1: Any T-pass 1-way qu. streaming algo. for DYCK(2) needs space 𝑠 𝑁 ∈ Ω(
𝑁

𝑇3
) on length N inputs

[Magniez, Mathieu and Nayak 2014]



Th. 5: Augmented Index
◦ Index 𝑥1…𝑥𝑖 …𝑥𝑛, 𝑖 = 𝑥𝑖

◦ Augmented Index: 𝐴𝐼𝑛 𝑥1…𝑥𝑛, 𝑖, 𝑥1…𝑥<𝑖 , 𝑏 = 𝑥𝑖 ⊕𝑏

◦ Th. 2.2: For any r-round protocol Π for 𝐴𝐼𝑛, either

◦ 𝑄𝐼𝐶𝐴→𝐵 Π, 𝜇0 ∈ Ω
𝑛

𝑟2
or

◦ 𝑄𝐼𝐶𝐵→𝐴 Π, 𝜇0 ∈ Ω
1

𝑟2
with

◦ 𝜇0 the uniform distribution on zeros of 𝐴𝐼𝑛 (“easy distribution”)

◦ Builds on direct sum approach of [JN14]

◦ General approach uses Tools 2, 3 (Sup.-Average Encoding Th., Qu. Cut-and-Paste)

◦ More specialized approach uses Tool 1 (Info. Flow Lemma)

[Jain and Nayak 2014]



Outlook
◦ Information-Theoretic Tools for Interactive Quantum Protocols

◦ Information Flow Lemma

◦ Superposition-average encoding theorem

◦ Quantum Cut-and-Paste Lemma

◦ Applications
◦ Intuitive interpretation of QIC, links with CIC, HIC (and other notions)

◦ Forgetting an essential feature of quantum protocols for Disjointness

◦ Quantum simulation of classical protocols leads to n(1-o(1)) lower bound on IC of random functions

◦ Space lower bound on quantum streaming algorithms for DYCK(2)

◦ Quantum information trade-off for Augmented Index

◦ Further applications..?



V2: Information Flow Lemma
𝐸𝐴

𝐸𝐵

𝐴0 𝐴1

𝐵0

𝐶1

𝐷1

𝐸𝐴

𝐵1

𝐼 𝐸𝐴: 𝐵𝑓|𝐸𝐵 − 𝐼 𝐸𝐴: 𝐵0 𝐸𝐵 =

෍

𝑖

𝐼 𝐸𝐴: 𝐶𝑖 𝐸𝐵𝐵𝑖

−෍

𝑖

𝐼 𝐸𝐴: 𝐷𝑖 𝐸𝐵𝐵𝑖

𝐴𝑓

𝐴1

𝐶1

𝐷1

𝐵1

𝐵𝑓



ASCENSION

[MMN14]

[Magniez, Mathieu and Nayak 2014]


