Information-Theoretic Tools for Interactive Quantum Protocols, and Applications: Flow of Information, Augmented Index, and DYCK(2)

MATHIEU LAURIÈRE, ASHWIN NAYAK, AND <u>DAVE TOUCHETTE</u>

Interactive Quantum Protocols,

MATHIEU LAURIÈRE, ASHWIN NAYAK, AND <u>DAVE TOUCHETTE</u>

Information-Theoretic Tools for Interactive Quantum Protocols,

MATHIEU LAURIÈRE, ASHWIN NAYAK, AND <u>DAVE TOUCHETTE</u>

Information-Theoretic Tools for Interactive Quantum Protocols, and Applications: Flow of Information, Augmented Index, and DYCK(2)

MATHIEU LAURIÈRE, ASHWIN NAYAK, AND <u>DAVE TOUCHETTE</u>

Quantum Advantage for Disjointness

- Disjointness: $x, y \subseteq \{1, 2, ..., n\}$, is $x \cap y = \emptyset$?
- $x = x_1 \cdots x_n$, $y = y_1 \cdots y_n \in \{0, 1\}^n$, looking for i such that $x_i = y_i = 1$
- Quantum Protocol [BCW98]: distributed version of Grover search
- QCC(Disj) = $\Theta(\sqrt{n})$ [BCW98, Razb03, AA03]
- CC(Disj) = $\Omega(n)$ [KS92]

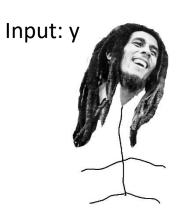
Initialize: $\frac{1}{n} \sum_{i} |i\rangle$

Oracle call:
$$\frac{1}{n} \sum_{i} |i\rangle |x_{i}\rangle$$

$$\frac{1}{n} \sum_{i} (-1)^{x_{i} \wedge y_{i}} |i\rangle$$

$$\frac{1}{n} \sum_{i} (-1)^{x_i \wedge y_i} |i\rangle |x_i\rangle$$

Inversion about the mean Repeat $\approx \sqrt{n}$ times Measure to get desired i if intersection

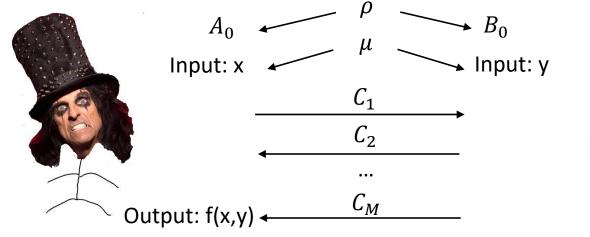


Quantum Advantage for Disjointness

- Disjointness: $x, y \subseteq \{1, 2, ..., n\}$, is $x \cap y = \emptyset$?
- $x = x_1 \cdots x_n, y = y_1 \cdots y_n \in \{0, 1\}^n$, looking for i such that $x_i = y_i = 1$
- Quantum Protocol [BCW98]: distributed version of Grover search
- QCC(Disj) = $\Theta(\sqrt{n})$ [BCW98, Razb03, AA03]
- CC(Disj) = $\Omega(n)$ [KS92]
- How does information flow in this protocol?
- Can we avoid transmitting back/forgetting information?

Interactive Communication

Communication Complexity setting:



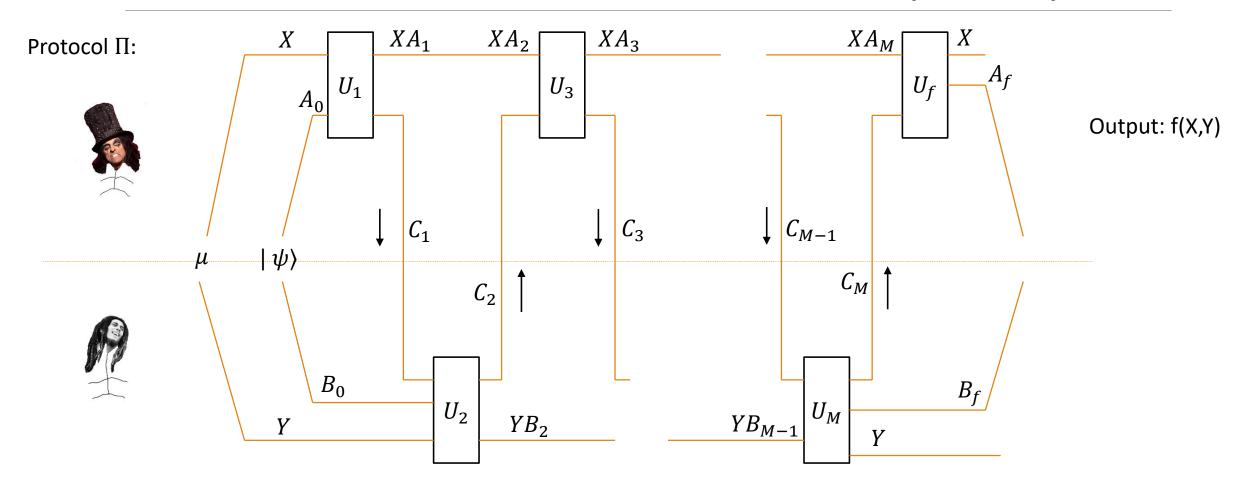
- How much **communication** to compute f on $(x, y) \sim \mu$
- Take information-theoretic view: Information Complexity
 - How much **information** to compute f on $(x,y) \sim \mu$
- Information content of interactive protocols?
- Classical vs. Quantum?

Overview

Based on 2 papers

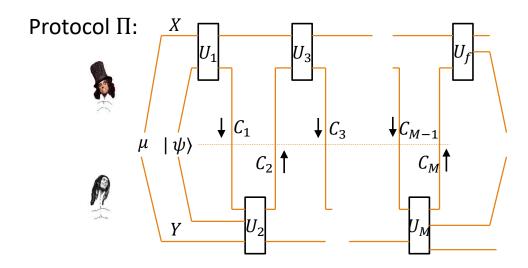
- 1701.02062: ML & DT, Info. Flow & Cost of Forgetting
 - Th 1: HIC = CIC CRIC, QIC = CIC + CRIC
 - Tool 1: Information Flow Lemma
 - Th 2: Π not forgetting for Disjointness => QCC(Π) $\in \Omega(n)$
 - Th 3: Can maintain IC for quantum simulation of classical protocols, and then $IC(f_{rdm}) = n (1 o(1))$
- 1610.04937: AN & DT, Aug. Index & Streaming algo. for DYCK(2)
 - Th 4: Any T-pass one-way qu. Streaming algorithm for DYCK(2) requires space $s(N) \in \Omega(\frac{\sqrt{N}}{T^3})$ on length N inputs
 - Th 5: Any t-round protocol for Augmented Index satisfies a QIC trade-off $QIC_{A \to B}(\Pi, \mu_0) \in \Omega\left(\frac{n}{t^2}\right)$ or $QIC_{B \to A}(\Pi, \mu_0) \in \Omega\left(\frac{1}{t^2}\right)$
 - Tool 2: Superposition-Average Encoding Theorem
 - Tool 3: Quantum Cut-and-Paste
 - Application of Tool 1

Quantum Communication Complexity



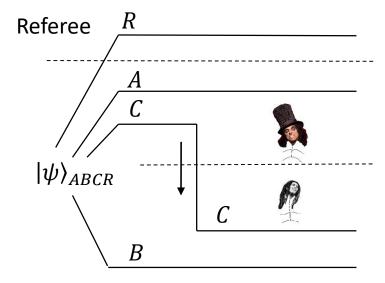
Quantum Communication Complexity

- QCC(f) = \min_{Π} QCC(Π)
- Minimization over all Π computing f
- QCC(Π) = \sum_{i} log (dim(C_i)); total number of qubits exchanged



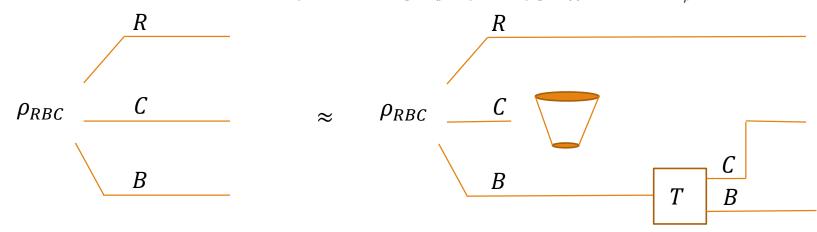
Quantum Information Theory

- Conditional Quantum Mutual Information
 - I(R:C|B) = I(R:BC) I(R:B) = H(R|B) H(R|BC) = H(RB) + H(BC) H(B) H(RBC)
 - Non-negativity: $I(R: C|B) \ge 0$ [LR73]
 - Chain rule: I(A:BD|C) = I(A:B|C) + I(A:D|BC)
 - Invariance under local isometry, satisfies a data processing inequality...
 - Operational interpretation [DY08, YD09]: Quantum state redistribution, optimal communication rate I(R: C|B) = I(R: C|A)



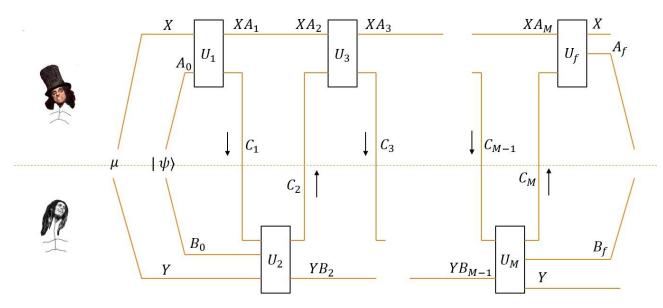
Quantum Information Theory

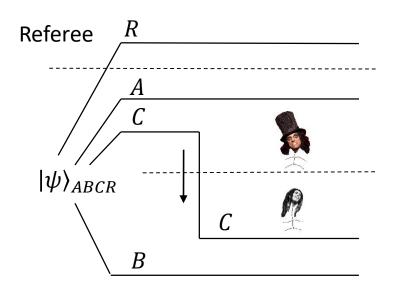
- Conditional Quantum Mutual Information
 - I(R:C|B) = I(R:BC) I(R:B) = H(R|B) H(R|BC) = H(RB) + H(BC) H(B) H(RBC)
 - Non-negativity: $I(R:C|B) \ge 0$ [LR73]
 - Chain rule: I(A:BD|C) = I(A:B|C) + I(A:D|BC)
 - Invariance under local isometry, satisfies a data processing inequality...
 - Operational interpretation [DY08, YD09]: Quantum state redistribution, optimal communication rate I(R:C|B) = I(R:C|A)
 - Recoverability [FR15]
 - There exists a recovery map $T_{B\to BC}$ such that $-\lg F\left(\rho_{RBC}, T_{B\to BC}(\rho_{RB})\right) \leq I(R:C|B)_{\rho}$



Quantum Information Complexity (QIC)

- QIC(f, μ) = \inf_{Π} QIC(Π , μ)
- Optimization over all Π computing f
- QIC(Π , μ) = $\sum_{i \text{ odd}} I(R_X R_Y : C_i | Y B_i) + \sum_{i \text{ even}} I(R_X R_Y : C_i | X A_i)$
 - Motivated by quantum state redistribution, with $R_X R_Y$ purifying the XY input registers: $|\rho_{\mu}\rangle_{R_X X R_Y Y} = \sum_{x,y} \sqrt{\mu(x,y)} \, |xxyy\rangle_{R_X X R_Y Y}$

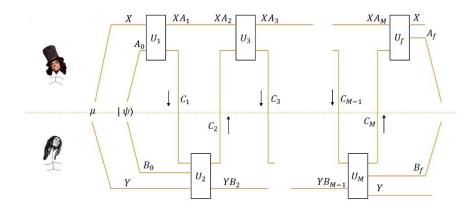




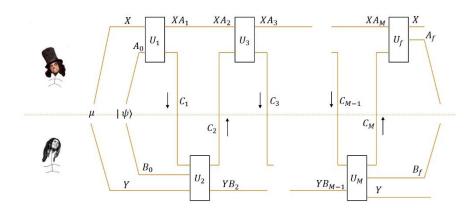
Quantum Information Complexity (QIC)

- QIC(f, μ) = \inf_{Π} QIC(Π , μ)
- Optimization over all Π computing f
- QIC(Π , μ) = $\sum_{i \text{ odd}} I(R_X R_Y : C_i | Y B_i) + \sum_{i \text{ even}} I(R_X R_Y : C_i | X A_i)$
- Properties [T15]:
 - Information equals amortized communication
 - Additivity
 - QIC ≤ QCC
 - Continuity, ...

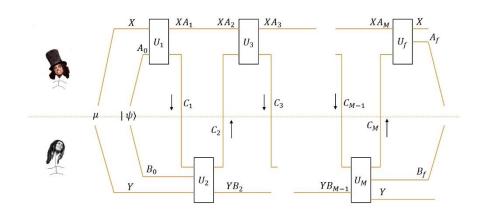
- QIC measures information about what?
 - Satisfies Information equals amortized communication
 - What about these purification registers for classical inputs?



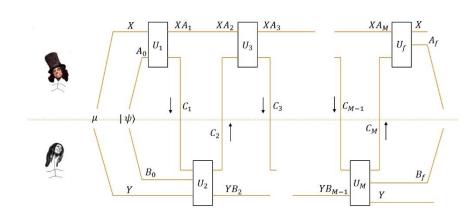
- QIC measures information about what?
 - Satisfies Information equals amortized communication
 - What about these purification registers for classical inputs?
- Can we simply measure the final information?
 - HIC(Π , μ) = $I(X: B_f | Y) + I(Y: A_f | X)$
 - Compare to classical IC(Π_C , μ) = $I(X:\Pi_C|Y)+I(Y:\Pi_C|X)$, with $\Pi_C=M_1M_2\cdots$ the transcript of messages
 - But reversible computing makes HIC(f) trivial...



- QIC measures information about what?
 - Satisfies Information equals amortized communication
 - What about these purification registers for classical inputs?
- Can we simply measure the final information?
 - HIC(Π , μ) = $I(X: B_f | Y) + I(Y: A_f | X)$
 - Compare to classical IC(Π_C , μ) = $I(X:\Pi_C|Y)+I(Y:\Pi_C|X)$, with $\Pi_C=M_1M_2\cdots$ the transcript of messages
 - But reversible computing makes HIC(f) trivial...
- Can we measure only new classical information?
 - CIC(Π , μ) = $\sum_{i \text{ odd}} I(X: C_i | YB_i) + \sum_{i \text{ even}} I(Y: C_i | XA_i)$ [KLLGR16]
 - Compare to classical IC(Π_C , μ) = $\sum_{i \ odd} I(X: M_i | YM_{< i}) + \sum_{i \ even} I(Y: M_i | XM_{< i})$
 - Motivated by privacy concerns

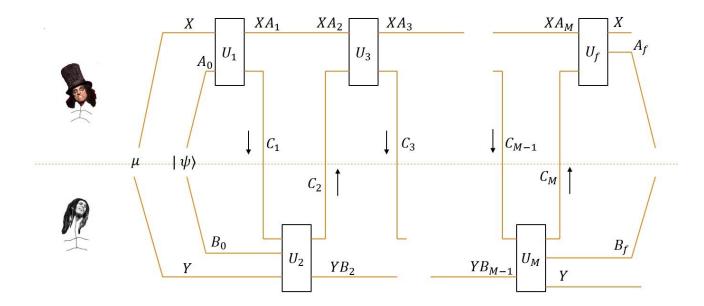


- QIC measures information about what?
 - Satisfies Information equals amortized communication
 - What about these purification registers for classical inputs?
- Can we simply measure the final information?
 - HIC(Π , μ) = $I(X: B_f | Y) + I(Y: A_f | X)$
 - Compare to classical IC(Π_C , μ) = $I(X:\Pi_C|Y) + I(Y:\Pi_C|X)$, with $\Pi_C = M_1M_2 \cdots$ the transcript of messages
 - But reversible computing makes HIC(f) trivial...
- Can we simply measure new classical information?
 - CIC(Π , μ) = $\sum_{i \text{ odd}} I(X: C_i|YB_i) + \sum_{i \text{ even}} I(Y: C_i|XA_i)$ [KLLGR16]
 - Compare to classical IC(Π_C , μ) = $\sum_{i \ odd} I(X: M_i | YM_{< i}) + \sum_{i \ even} I(Y: M_i | XM_{< i})$
 - Motivated by privacy concerns
- $HIC(\Pi, \mu) \leq CIC(\Pi, \mu) \leq QIC(\Pi, \mu)$
 - Is there a deeper relationship?



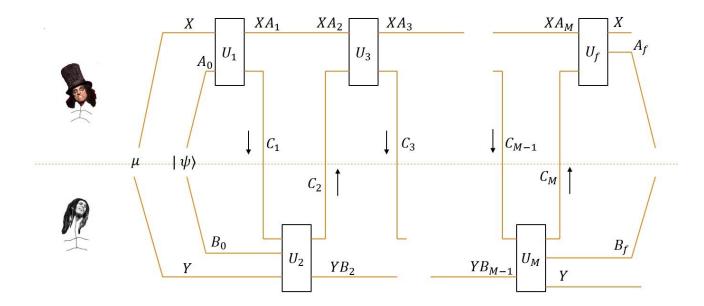
Tool 1: Information Flow Lemma

- Lemma: $I(X:YB_f) I(X:Y) = I(X:B_f|Y) = \sum_{i \text{ odd}} I(X:C_i|YB_i) \sum_{i \text{ even}} I(X:C_i|YB_i)$
 - Can also handle fully quantum processes and arbitrary extension of inputs



Th. 1: Cost of Forgetting

- Rewrite QIC(Π , μ) = $\sum_i I(X: C_i | YB_i) + I(Y: C_i | XA_i)$
 - What are those extra terms compared to CIC?
 - CRIC(Π , μ) = $\sum_{i \ even} I(X: C_i | YB_i) + \sum_{i \ odd} I(Y: C_i | XA_i)$



Th. 1: Cost of Forgetting

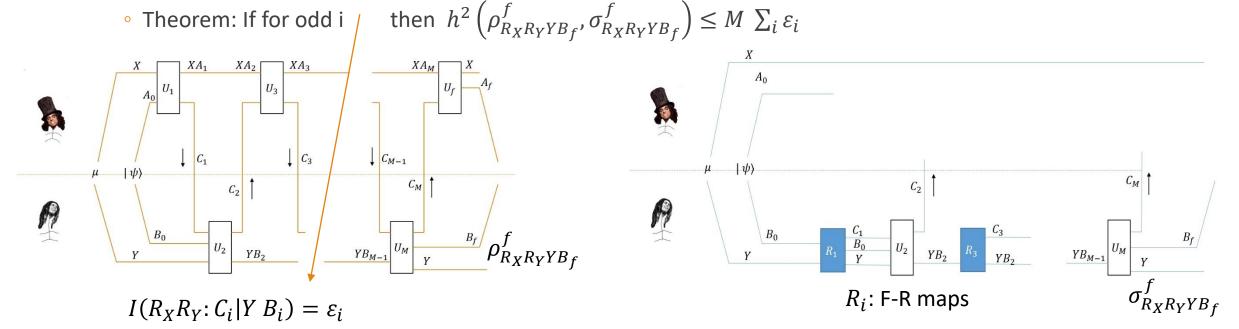
- Rewrite QIC(Π , μ) = $\sum_i I(X: C_i | YB_i) + I(Y: C_i | XA_i)$
 - What are those extra terms compared to CIC?
 - CRIC(Π , μ) = $\sum_{i even} I(X: C_i | YB_i) + \sum_{i odd} I(Y: C_i | XA_i)$
- Using Info. Flow Lemma, rewrite
 - Th. 1.1: $HIC(\Pi, \mu) = CIC(\Pi, \mu) CRIC(\Pi, \mu)$
 - QIC(Π , μ) = CIC(Π , μ) + CRIC(Π , μ)
- CRIC corresponds to cost of forgetting
 - Exactly assess back-flow of information
 - No need to introduce purification registers $R_X R_Y$ to define QIC (for classical tasks)

Tool 2: Superposition-Average Encoding Th.

- Average encoding theorem [KNTZ07]: $\mathbb{E}_X[h^2(\rho_B^X, \rho_B)] \leq I(X:B)_\rho$
 - $\rho_{XB} = \sum_{x} p_{X}(x) |x\rangle \langle x|_{X} \otimes \rho_{B}^{x}$
 - $\rho_B = \mathbb{E}_X[\rho_B^X]$, average state
 - $h^2(\sigma, \theta) = 1 F(\sigma, \theta)$, Bures distance, with $F(\sigma, \theta) = ||\sqrt{\sigma}\sqrt{\theta}||_1$
 - Follows from Pinsker's inequality
 - Many applications, e.g. together with a round-by-round variant of HIC [JRS03]

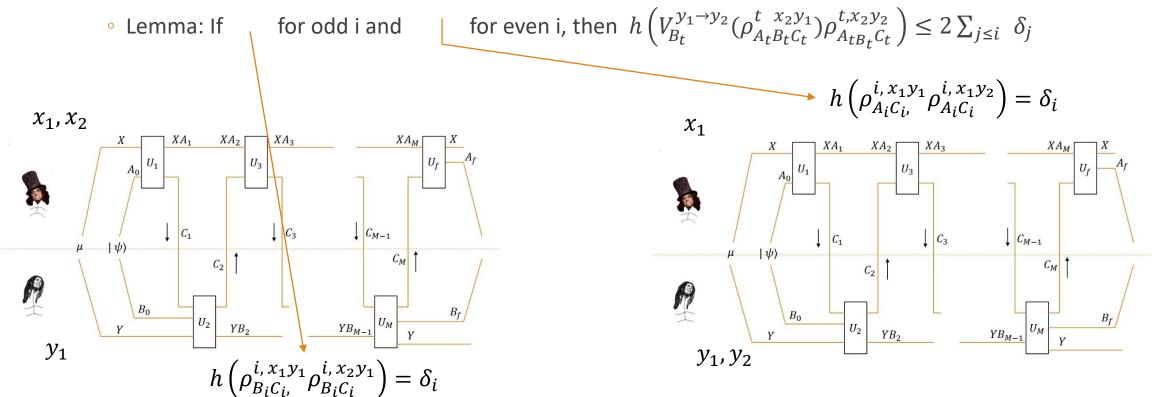
Tool 2: Superposition-Average Encoding Th.

- Average encoding theorem [KNTZ07]: $\mathbb{E}_X[h^2(\rho_B^X, \rho_B)] \leq I(X:B)_\rho$
- What about superposition over (part of) X?
- Recall F-R theorem (stated in terms of h)
 - There exists a recovery map $T_{B\to BC}$ such that $h^2(\rho_{RBC},T_{B\to BC}(\rho_{RB}))\leq I(R:C|B)_{\rho}$



Tool 3: Quantum Cut-and-Paste Lemma

- Variant of a tool developed in [JRS03, JN14]
- Consider input subset $\{x_1, x_2\} \times \{y_1, y_2\}$



Applications

Th. 2: Disjointness

- Recall Disjointness: $x, y \subseteq [n]$, $Disj_n(x, y) = [x \cap y = \emptyset]$
- $CC(Disj_n) \in \Omega(n)$, $QCC(Disj_n) \in \Omega(\sqrt{n})$
- For r rounds, $QCC^r(Disj_n) \in \widetilde{\Omega}(\frac{n}{r})$ [BGKMT15]
- Number of rounds r appears only through a continuity argument
 - Not there for classical protocols
 - Due to possibility of forgetting and retransmitting in quantum protocols
- With no-forgetting (NF), $QCC^{NF}(Disj_n) \in \Omega(n)$

Th. 3: QIC and IC of Random functions

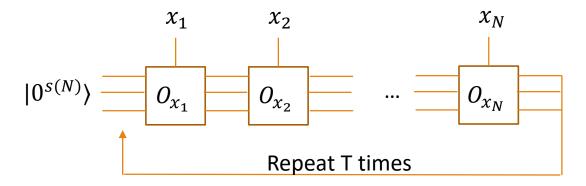
- Can we simulate classical protocols with quantum ones?
 - Of course!
 - What about maintaining IC?
 - Must be careful with private randomness
 - Bring Π_C in canonical form first
 - Then QIC looks classical... almost!

Th. 3: QIC and IC of Random functions

- Can we simulate classical protocols with quantum ones?
 - Of course!
 - What about maintaining IC?
 - Must be careful with private randomness
 - Bring Π_C in canonical form first
 - Then QIC looks classical... almost!
- Known: $QCC(IP_n) = n$ [CDNT99], $QCC(f_{rdm}) = n(1 o(1))$ [MW07]
 - $IP_n(x,y) = \bigoplus_i x_i \wedge y_i$, f_{rdm} random function on n + n bits
 - Using Info. Flow Lemma, QCC lower bound transfers to QIC lower bound (at zero error)
 - Already known: $IC(IP_n) = n$ [BGPW], $IC(f_{rdm}) = \Omega(n)$ [BW]
- By above simulation, $IC(f_{rdm}) = n(1 o(1))$

Th. 4: Streaming Algorithms for DYCK(2)

- DYCK(2) = ϵ + [DYCK(2)] + (DYCK(2)) + DYCK(2) · DYCK(2)
- Reduction from multi-party QCC to streaming algorithm to DYCK(2) [MMN14]
 - Consider T-pass, one-way quantum streaming algorithms
 - Space s(N) in algorithm corresponds to communication between parties
 - Multi-party problem consists of OR of multiple instances of two-party problem



Th. 4: Streaming Algorithms for DYCK(2)

- DYCK(2) = ϵ + [DYCK(2)] + (DYCK(2)) + DYCK(2) · DYCK(2)
- Reduction from multi-party QCC to streaming algorithm to DYCK(2) [MMN14]
 - Consider T-pass, one-way quantum streaming algorithms
 - Space s(N) in algorithm corresponds to communication between parties
 - Multi-party problem consists of OR of multiple instances of two-party problem
- Direct sum argument allows to reduce from a two-party problem
 - Multi-party QCC lower bounds requires two-party QIC lower bound on "easy distribution"
- Th. 2.1: Any T-pass 1-way qu. streaming algo. for DYCK(2) needs space $s(N) \in \Omega(\frac{\sqrt{N}}{T^3})$ on length N inputs

Th. 5: Augmented Index

- Index $(x_1 \dots x_i \dots x_n, i) = x_i$
- Augmented Index: $AI_n(x_1 ... x_n, (i, x_1 ... x_{< i}, b)) = x_i \oplus b$
- Th. 2.2: For any r-round protocol Π for AI_n , either
 - $QIC_{A\to B}(\Pi,\mu_0)\in\Omega\left(\frac{n}{r^2}\right)$ or
 - $QIC_{B\to A}(\Pi,\mu_0)\in\Omega\left(\frac{1}{r^2}\right)$ with
 - \circ μ_0 the uniform distribution on zeros of AI_n ("easy distribution")
- Builds on direct sum approach of [JN14]
- General approach uses Tools 2, 3 (Sup.-Average Encoding Th., Qu. Cut-and-Paste)
- More specialized approach uses Tool 1 (Info. Flow Lemma)

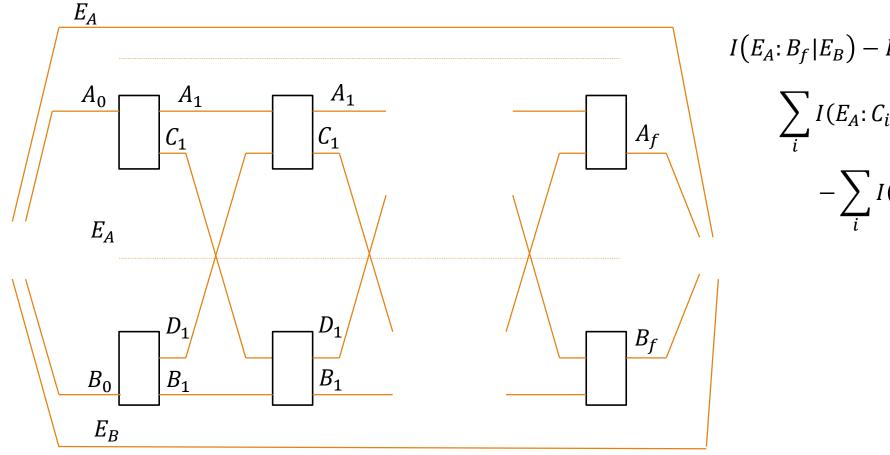
Outlook

- Information-Theoretic Tools for Interactive Quantum Protocols
 - Information Flow Lemma
 - Superposition-average encoding theorem
 - Quantum Cut-and-Paste Lemma

Applications

- Intuitive interpretation of QIC, links with CIC, HIC (and other notions)
- Forgetting an essential feature of quantum protocols for Disjointness
- Quantum simulation of classical protocols leads to n(1-o(1)) lower bound on IC of random functions
- Space lower bound on quantum streaming algorithms for DYCK(2)
- Quantum information trade-off for Augmented Index
- Further applications..?

V2: Information Flow Lemma

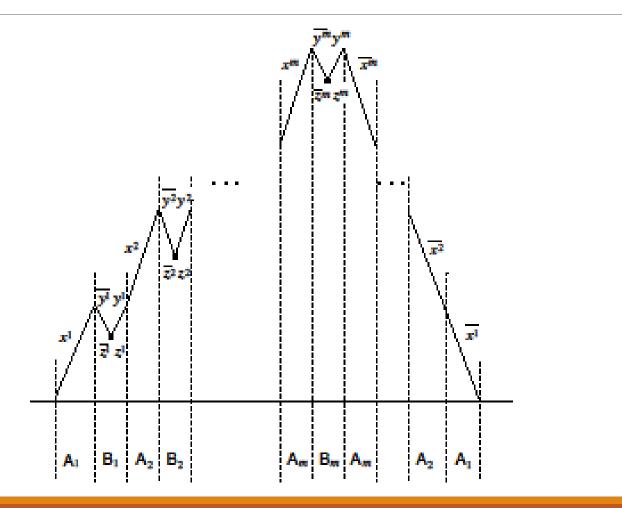


$$I(E_A: B_f | E_B) - I(E_A: B_0 | E_B) =$$

$$\sum_i I(E_A: C_i | E_B B_i)$$

$$-\sum_i I(E_A: D_i | E_B B_i)$$

ASCENSION



[MMN14]