Separations in communication complexity using cheat sheet and information complexity

Anurag Anshu^a, Aleksandrs Belovs^b, Shalev Ben-David^c, Mika Göös^d, Rahul Jain^{a,e,f}, Robin Kothari^c, Troy Lee^{a,f,g}, Miklos Santha^{a,h}

^a CQT, National University of Singapore
 ^b University of Latvia
 ^c Massachusetts Institute of Technology
 ^d SEAS, Harvard University
 ^e Dept. of CS, National University of Singapore
 ^f MajuLab, UMI 3654, Singapore
 ^g SPMS, Nanyang Technological University
 ^h IRIF, Université Paris Diderot, CNRS

January 16, 2017

Roadmap

Some background

2 New separations in communication complexity

Separations in query complexity

- For a function F, Randomized (make an error of 1/3) query complexity $\mathrm{R}^{dt}(F)$, Quantum (make error of 1/3) query complexity $\mathrm{Q}^{dt}(F)$.
- Quadratic separation: using Grover's search algorithm [Grov95] and its variant proved in [BBHT96].
- OR: $\{0,1\}^n \to \{0,1\}$ outputs 1 if the input contains at least one 1.

	Q^{dt}
\mathbf{R}^{dt}	2 [BBHT96]

Communication complexity

- Randomized communication complexity R(F): number of bits communicated in a randomized protocol.
- Quantum communication complexity $\mathrm{Q}(F)$: number of qubits communicated in an entanglement assisted quantum protocol.
- Information complexity IC(F): amount of information about input that must be revealed (to other party) to compute the function.

Porting query separations to communication

- A quantum query algorithm for a function gives rise to a quantum communication protocol for a related function [BCW98].
- Disjointness function DISJ inputs two subsets x, y of the set $\{1, 2, \dots n\}$ and outputs 0 if the subsets are disjoint.
- DISJ $(x, y) = OR(x_1 \text{ AND } y_1, x_2 \text{ AND } y_2, \dots, x_n \text{ AND } y_n) !!$

	Q
R	2 [BCW98] [KS87],[Raz91]

Super-Grover query separation

- Aaronson, Ben-David and Kothari [2016] introduced the technique of cheat sheet.
- F_{cs} has two components: 'c' copies of a parent function F and a cheat sheet cs.
- Compute based on inputs to functions and content at ' $\operatorname{decimal}(b)$ '.

	Q^{dt}
\mathbf{R}^{dt}	2.5 [ABK16]

Separating exact quantum and randomized

- Exact quantum query complexity of F, denoted $Q_E^{dt}(F)$, is number of quantum queries needed to compute F with zero error.
- Similarly we define $Q_E(F)$ for communication complexity.

		Q	$Q_{\it E}$		
R	2.5 [ABK16]	2	1.15 [Amb12]	1.15 [Amb12]	
	dt	com	dt	com	

Separating exact quantum and randomized

- Exact quantum query complexity of F, denoted $Q_E^{dt}(F)$, is number of quantum queries needed to compute F with zero error.
- Similarly we define $Q_E(F)$ for communication complexity.

		Q	$Q_{\it E}$		
R	2.5 [ABK16]	2	1.5 [ABK16]	1.15 [Amb12]	
	dt	com	dt	com	

Partition and Randomized

- \bullet Unambiguous certificate complexity UN^{dt} is a lower bound on deterministic query complexity. Analogously Partition number UN in communication complexity.
- ullet Goos, Pitassi, Watson [2015] presented first super linear separation between UN^{dt} and deterministic query complexity. Similar result in communication complexity.

	Q		$Q_{\it E}$		UN	
R	2.5 [ABK16]	2	1.5 [ABK16]	1.15 [Amb12]	1.5 [GJPW]	1.5 [GJPW]
	dt	com	dt	com	dt	com

Partition and Randomized

- \bullet Unambiguous certificate complexity UN^{dt} is a lower bound on deterministic query complexity. Analogously Partition number UN in communication complexity.
- ullet Goos, Pitassi, Watson [2015] presented first super linear separation between UN^{dt} and deterministic query complexity. Similar result in communication complexity.

	Q		Q_{E}		UN	
R	2.5 [ABK16]	2	1.5 [ABK16]	1.15 [Amb12]	2 [AKK16]	1.5 [GJPW]
	dt	com	dt	com	dt	com

Super-Disjointness in communication world?

- Can we somehow lift these query results to communication? What gadgets should be used?
- AND is not a good: AND $(x_1 \text{ AND } y_1, \dots, x_n \text{ AND } y_n)$ is easy.
- Inner Product lifts a lower bound (junta degree) on $\mathbb{R}^{dt}(F)$ to a lower bound on communication complexity $\mathbb{R}(F)$ (smooth rectangle bound) [GLMWZ, 2015].
- But we have no idea what is junta degree for cheat sheet function.

Look-up function $F_{\mathcal{G}}$

$$F: \mathcal{X} \otimes \mathcal{Y} \to \{0,1\}$$
$$F_1, F_2 \dots F_c \equiv F$$

 $u_0, v_0, u_1, v_1 \dots u_{2^c}, v_{2^c} \in W$

Look-up function $F_{\mathcal{G}}$

$\overline{\text{Look-up function } F_{\mathcal{G}}}$

Look-up function $F_{\mathcal{G}}$

(a) (b) (b) (c) (d)

Lower bound on communication complexity of look-up function

ullet For reasonably non-trivial function \mathcal{G} , we show the following.

Theorem

$$\mathrm{R}(F_{\mathcal{G}}) = \Omega(\mathrm{R}(F)/c^2)$$
 and $\mathrm{IC}(F_{\mathcal{G}}) = \Omega(\mathrm{IC}(F)/c^3)$.

$$F: \mathcal{X} \otimes \mathcal{Y} \to \{0,1\}$$
$$F_1, F_2 \dots F_c \equiv F$$

$$F: \mathcal{X} \otimes \mathcal{Y} \to \{0,1\}$$

 $F_1, F_2 \dots F_c \equiv F$

compute
$$b = (F_1, F_2, \dots F_c)$$

$$F: \mathcal{X} \otimes \mathcal{Y} \to \{0,1\}$$
$$F_1, F_2 \dots F_c \equiv F$$

Output $u_b \oplus v_b$

$$F: \mathcal{X} \otimes \mathcal{Y} \to \{0,1\}$$

 $F_1, F_2 \dots F_c \equiv F$

Hard distribution for F: μ Distribution for pointer: $\mu^{\otimes c} \otimes \operatorname{uniform}_{UV}$

$$F: \mathcal{X} \otimes \mathcal{Y} \to \{0,1\}$$

 $F_1, F_2 \dots F_c \equiv F$

transcript Π

 $I(\Pi : b|UVY)$ small $I(\Pi U : b|VY)$ small

$$F: \mathcal{X} \otimes \mathcal{Y} \to \{0,1\}$$

 $F_1, F_2 \dots F_c \equiv F$

$$F: \mathcal{X} \otimes \mathcal{Y} \to \{0,1\}$$
$$F_1, F_2 \dots F_c \equiv F$$

 $I(\Pi: U_b|VY)$ small b distributed correctly

$$F: \mathcal{X} \otimes \mathcal{Y} \to \{0,1\}$$
$$F_1, F_2 \dots F_c \equiv F$$

$$F_c$$
 X_c
 Y_c

$$[(\Pi U_b)_{v,y} \approx \Pi_{v,y} \otimes U_b]$$
 averaged over b, v, y

$$F: \mathcal{X} \otimes \mathcal{Y} \to \{0, 1\}$$
$$F_1, F_2 \dots F_c \equiv F$$

$$u_1 - v_1$$

$$[(\Pi U_b)_{v,y} \approx \Pi_{v,y} \otimes U_b]$$
$$[(\Pi U)_{b,v,y} \approx (\Pi U)_{v,y}]$$
averaged over b, v, y

$$F: \mathcal{X} \otimes \mathcal{Y} \to \{0,1\}$$
$$F_1, F_2 \dots F_c \equiv F$$

$$[(\Pi U_b)_{v,y} \approx \Pi_{v,y} \otimes U_b]$$

 $[(\Pi U_b)_{b,v,y} \approx (\Pi U_b)_{v,y}]$
averaged over b, v, y

$$F: \mathcal{X} \otimes \mathcal{Y} \to \{0,1\}$$

 $F_1, F_2 \dots F_c \equiv F$

- ullet We choose ${\cal G}$ in similar way as in cheat sheet function.
- We choose appropriate F, lifting SIMON o TRIBES (a la Aaronson, Ben-David, Kothari [2016]). Lifting done using Inner Product gadget ([Goos et. al., 2015]).

Theorem

There exists a total function F such that $R(F) = \tilde{\Omega}(Q(F)^{2.5})$.

Theorem

There exists a total function F such that $R(F) = \tilde{\Omega}(Q(F)^{2.5})$.

	Q		QE		UN	
R	2.5 [ABK16]	2.5	1.5 [ABK16]	1.15 [Amb12]	2 [AKK16]	1.5 [GJPW]
	dt	com	dt	com	dt	com

 Similarly for exact quantum separation, lifting the super linear separation of Aaronson, Ben-David, Kothari [2016].

Theorem

There exists a total function F such that $R(F) = \tilde{\Omega}(Q_E(F)^{1.5})$.

	Q		Q_{E}		UN	
R	2.5 [ABK16]	2.5	1.5 [ABK16]	1.5	2 [AKK16]	1.5 [GJPW]
	dt	com	dt	com	dt	com

- Following Ambianis, Kokainis and Kothari (2016), we separate R(F) and UN(F).
- We use the lower bound on information complexity (IC) of look-up function, since it has nice properties required for *F*.

Theorem (ABBG+16)

There exists a function F with the following relation between R(F) and unambiguous non-deterministic communication complexity UN(F): $R(F) > UN(F)^{2-o(1)}$.

Theorem (ABBG+16)

There exists a function F such that $R(F) > UN(F)^{2-o(1)}$.

	Q		Q_{E}		UN	
R	2.5 [ABK16]	2.5	1.5 [ABK16]	1.5	2 [AKK16]	2
	dt	com	dt	com	dt	com

Open questions

- Is there a general lifting theorem from randomized query complexity to randomized communication complexity?
- Are randomized communication complexity and quantum communication complexity of total functions polynomially related?
- Can we reduce the number of blocks in cheat sheet?