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o Need error-correcting code to protect our quantum computation
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Encoding/correction are Clifford. Typically Uy, gates too.

Problem: Can't get transversal & universal (dense) set of gates Uy, (e.g. Toric)
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o Stabilizer codes ~~ gates from finite Clifford group C
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C= < g i Al >= <CNOT, H.S=vVZ >

Encoding/correction are Clifford. Typically Uy, gates too.
Problem: Can't get transversal & universal (dense) set of gates Uy, (e.g. Toric)

Solution: Supplement transversal gates with supply of “Magic States”
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Q: What's a magic state?

A: A state that enables a non-Clifford gate e.g., |T) = -1 (|0) + e!™/4[1))
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O It is not a Pauli eigenstate (stabilizer state)

|0)
IT)
1)
|T)-type magic state |T) states (+Cliffords) enable T' gates

Adding the ability to do U ¢ C promotes Cliffords to Universal QC

Symmetry /1N _ Symmetry /N
< g? group of % >§£UQC _< g’ group of y”
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Magic state distillation circuit MSD schematic

@ Overhead associated with MSD is polynomial in the number of T gates used

o Logical Cliffords (2% — 10% overhead)
o Logical Non-Clifford e.g. T gate (90% — 98% overhead including MSD)
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@ Overhead associated with MSD is polynomial in the number of T' gates used

o Logical Cliffords (2% — 10% overhead)
o Logical Non-Clifford e.g. T gate (90% — 98% overhead including MSD)
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Let's try to convert BiIIions—>M|II|ons (i.e, reduce overhead)
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Magic state distillation circuit MSD schematic

@ Overhead associated with MSD is polynomial in the number of T' gates used

o Logical Cliffords (2% — 10% overhead)
o Logical Non-Clifford e.g. T gate (90% — 98% overhead including MSD)

Build quality Connect Implement
individual Billions Quantum
qubits of them Algorithm

Let's try to convert BiIIions—>M|II|ons (i.e, reduce overhead)

o Clifford Z and S = Z= rotations “easy” but T = Zx gates hard since Encoded
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Natural partition into easy/hard operations = Resource Theory.
Expense quantifier must obey certain reasonable properties to be useful!

® NON-STABILIZER R(p) = N Iflln {2p + 1|p = (p + 1)p+ — pp_}
pT,p~ €EPrrex

Robustness quantifies expensive stuff.

Defn: How much free stuff must be mixed in to

make your expensive stuff become free.

R(p)= min {2p+1llp=(p+1)p" —pp }

Multi-qubit QC PToPT EPsman
Resource Desiderata ... or take log R
° R(p) 21, (R(p € Psmas) =1) o logR(p) >0,
° R(p1 ® p2) < R(p1)R(p2) o logR(p1 ® p2) <logR(p1) + log R(p2)
o R (gSTAB(p)) <R (p) o IOgR (SSTAB (P)) < IOgR (P)

. = Well-behaved quantifier
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To solve the geometrical problem for R(p) rewrite as Linear Program:
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To solve the geometrical problem for R(p) rewrite as Linear Program:
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To solve the geometrical problem for R(p) rewrite as Linear Program:

© NoN—STABILIz;ﬁ

STABILIZER

R(p) =min||z||; subject to Az =b

where columns of A are vertices of Psrap

(I) 11 1 1 1 1 ]i
Xy o o 1 -1 0 0 V2
Prob: Agpp = » b=
STAB v) 0O 0 0 0 1 -1 %
(Z) 1 -10 0 0 O 0
Soln: R(|T>):||Z‘H1:\/§: r = <0,07%707%71—2ﬂ>

Dual:  min lx[|; = —oTy  gives Witness
poa

max
[[ATylo<1
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To solve the geometrical problem for R(p) rewrite as Linear Program:

. R(p) =min||z||; subject to Az =b

© NoN—STAB[L]z;ﬁ

where columns of A are vertices of Psrap

STABILIZER

(I) 11 1 11 }
I Prob: Agpp = (X0 0 01 71 00 , b= ?
wylo o o0 0 1 -1 X
zy \1 =10 0 0 0 0
IT) Soln:  R(|TY) = [zl = V2 : 0,0, L oL 1-v2
’ ’f 2T 2
1 Dual: min ||z]; = max —bTy gives Witness
Aw=b ATy <1

Use CVX with MATLAB... Guaranteed to converge

Syntax: variable x(n);minimize(norm(x,1));subject to A*x == b
Only downside is n (vertices) grows rapidly {6, 60,1080, 36720, 2423520, . ..}
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Three immediate applications of Robustness of Magic

@ Simulation of quantum circuits

Clifford gates and T' gates = Universal QC (shouldn't be efficiently simulable)
Result: Robustness gives an exponential simulation protocol with small exponent.
(Not just T gates ... any third level hierarchy gate U works)
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Three immediate applications of Robustness of Magic

@ Simulation of quantum circuits

Clifford gates and T' gates = Universal QC (shouldn't be efficiently simulable)
Result: Robustness gives an exponential simulation protocol with small exponent.
(Not just T gates ... any third level hierarchy gate U works)

@ Lower bounds on number of T' gates and proving optimality

Result: At least 7 T gates are required to implement interesting non-Clifford U.

© ldentify new circuit identities

Result: Surprising Clifford-equivalence of Magic states
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@ Adapt the efficient classical simulation schemes for Clifford circuits
to allow magic state inputs e.g., input= |0)®"~7|T)®7

probability: ¢; = |z;|/ >, |zl
Robustness gives a quasiprobability distribution over stabilizer states:

R(p) =min {Z |zil; p = sz (Stabilizer State) } sz =1

Simulation takes longer to converge to desired accuracy (Chernoff-Hoeffding)
Require % ()", |i|)?In (2) samples to get d-close to real dist. with prob 1 — ¢
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= Robustness has operational meaning as the classical simulation overhead
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Two most important steps toward simulation scheme:
@ Realize that

a quantum circuit with 7 T" gates is equivalent to
a purely Clifford circuit acting on 7 magic states |T")

N

@ Adapt the efficient classical simulation schemes for Clifford circuits
to allow magic state inputs e.g., input= |0)®"~7|TY®7 R(|T)¥7) = 1.6857

[BSS‘16] x(|T)®7) ~~ 1.9197
Robustness gives a quasiprobability distribution over stabilizer states:

R(p) =min {Z |zil; p = sz (Stabilizer State) } sz =1

7

Simulation takes longer to converge to desired accuracy (Chernoff-Hoeffding)
Require % ()", |i|)?In (2) samples to get d-close to real dist. with prob 1 — ¢

= Robustness has operational meaning as the classical simulation overhead
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Circuit using n copies of resource state p has simulation cost R(p)*"
Cost of simulating a circuit with |T)®7 ancilla?
Submultiplicativity gives savings here:

R(IT))*" ~ 27

R(T,T))= ~ 1.7487
R(T,T,T)) % ~1.7017
)
)

[N N‘?

N

-

)
)
R(T,T,T,T)) T ~1.6927
R(|T,T,T,T,T))% ~ 16857

lim R(|T®">)27T ~ €[14577,1.6857]

n—oo

Thm: Regularized robustness of p = (r,7,,7,) lower-bounded by 1+”+++”
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A quantum algorithm will require a sequence of unitaries and measurements.
These unitaries will not be Clifford+T in general so we must compile.
We must not waste hard-earned T' gates
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A quantum algorithm will require a sequence of unitaries and measurements.
These unitaries will not be Clifford+T in general so we must compile.
We must not waste hard-earned T' gates

_._
05) = 51— [T

Idea: Compare robustness of target gate |U) := U|+) with R(|T)®7)

Calculate and find: R(|T)®?) < R(|CS)) < R(|T)®?)
1.747 < 2.2 <2219
meaning no possible scheme could implement C'S using fewer than 3 T" gates.
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Unitary synthesis is understood OK but ancilla-assisted is HARD
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Unitary synthesis is understood OK but ancilla-assisted is HARD
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How do we know there is no way of doing Toffoli with 3 T gates (or 2 or 1) ?
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Unitary synthesis is understood OK but ancilla-assisted is HARD

Jan T a
1 1 1 -|TT P TP Tt THHPH—
2 2 = 2-|Tf 2
3 3 3 -| H H THHH} 3
c1 o—{r—eo
c2 o—{1'+o
0-{H} (7] -
Lo L=l = Toffolil
‘[)> L L7 Izl L7

t

How do we know there is no way of doing Toffoli with 3 T gates (or 2 or 1) ?
Once again, our resource theory allows us to say

R(T)®3) < R(|Toffoli)) < R(|T)**).

and so 4 T gates is the minimum possible.
We have shown (non-)optimality of several important circuits
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T cost =4 4 T cost =4
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|+>T |+>£T**

|+)j N [+) s

+) Clifford 1) @

|+) [+) —{sh-

|+>I [+) ——s]
T cost = A 8 T cost =8

R(|CCZ193,145)) = 4.077 = R(|CS12,13,14,15))
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T cost =45 T cost =5

'R( |T172730512,13,23>) = 3.121 :R( ‘T2,30512,13,23>)
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R(|CCZ)Y) =2555= R(|CE))
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In Summary
Protecting qubits from errors incurs an overhead:

While Clifford gates (CNOT,H etc) are easily implementable, T gates are costly
... This suggests a resource theory picture

@ We used Robustness of Magic as the resource quantifier.

@ Simulate quantum circuits with modestly exponential (in T gates) samples
@ Identify (non-)optimality of circuit synthesis (compilation). . .prevent T' wastage
© Find Clifford-equivalent magic states

Bonus: This norm-minimization approach (Axz = b) encompasses all similar
known results (£y norm, kets, Wigner polytope)...different quantifiers
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In Summary
Protecting qubits from errors incurs an overhead:

While Clifford gates (CNOT,H etc) are easily implementable, T gates are costly
... This suggests a resource theory picture

@ We used Robustness of Magic as the resource quantifier.

@ Simulate quantum circuits with modestly exponential (in T gates) samples
@ Identify (non-)optimality of circuit synthesis (compilation). . .prevent T' wastage
© Find Clifford-equivalent magic states

Bonus: This norm-minimization approach (Axz = b) encompasses all similar
known results (£y norm, kets, Wigner polytope)...different quantifiers

Open Questions

Q: Is there a scalable way of calculating a Magic Resource?

Q: Is a measure that combines different quantifiers possible/preferable?
Q: Can we establish interconvertability results a la Entanglement?
Q

: Algorithms to calculate the T cost for ancilla states |U)?



