TIME-CORRELATED NOISE IN QUANTUM COMPUTATION

Motivation

Fault-tolerant computation

- computing requires isolation & control
- maybe no such qubits occur "naturally"
- fault-tolerance: generic approach
- noise has to be weak & <u>weakly correlated</u> in spacetime
- · here: arbitrary correlations in time

Fabrication faults

Fabrication faults

fabrication faults: <u>known</u> / unknown operations: <u>flexible</u> / fixed

Fabrication faults

fabrication faults: known / unknown

operations: flexible / fixed

Noise model

Stochastic noise

Local stochastic noise

Spatially local stochastic noise

Quantum memories based on single-shot error correction exhibit an error threshold under spatially local stochastic noise

Single-shot error correction

single-shot if quantum-local (analogous to LOCC)

Topological codes

Topological codes

local check operators

local indistinguishability

errors: strings

syndrome: endpoints

$$P() = \lambda$$

Spatially local (& Markovian), e.g.

$$P(x_i,t \wedge x_i,t) = \lambda^2$$

Single-shot codes

D = 3

errors: strings

syndrome: endpoints

Subsystem codes

Gauss law

3D gauge color codes

tetrahedron = qubit edge = gauge op vertex = check op X & Z type

Confinement

unconfined

gauge ops

confined!

Result

Quantum memory

Perfect encoding and decoding to test the quality of the quantum memory: alternated noise and noisy error correction

Noise

$$- \frac{2}{\lambda} - \frac{2}{\lambda} = \frac{2}{\lambda} + \frac{3}{\lambda} = \frac{3}{\lambda}$$

Noisy error correction

Quantum memory

For error rates below a threshold

where a & b decrease exponentially with the system size.

DISCUSSION

- Universal computation probably straightforward
- D < 3
- Known fabrication faults
- Fully local (CA) error correction
- The physics of gauge color codes. Gapless phases? Confinement?

Local operations

transversal loca

guardin-local $\Rightarrow 0$ fault tolerance!

Not universal

not universal?

· Universal + EC

but D+EC= UNIVERS

$$-(-(-1)^{t}-1)^{t}-1)-(-1)^{t}-1)$$

Th.

$$d = 2$$

localized measurement errors yield localized residual noise

 \mathbb{Z}_{2}^{6}

