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1. Build quantum memories with reliable Clifford gates

2. Distill T-magic states
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Generalised state injection 
 Gottesman and Chuang, Nature 402, 390-393 (1999)

For diagonal gates in 3rd level of Clifford hierarchy 

UPU† = C P :=C := Clifford group Pauli group

where  is an exotic magic state |Ui = U |+i⌦k

...
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1. Build quantum memories with reliable Clifford gates

2. Distill exotic magic states

3. Inject to large chunks of circuits

4. Compose into larger circuits (less synthesis required)

??????

...

...

|U

|ψ

U |ψ

m1

mn

Clifford
Correction

|Ui = U |+i⌦k
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1

2

Review background ideas

Preparation of            magic states 

3 Resource comparison (factor ~3 better) 

4 Bonus results on gate synthesis

|Ui
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Background
Gate synthesis
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Clifford group: “easy” to implement in many quantum codes Cost: 1$
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HZH† = X
HXH† = Z
HY H† = �Y

The Hadamard

Hadamard 

S-gate 
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Clifford group: “easy” to implement in many quantum codes

T gate: “harder” to implement, via expensive magic state distillation

T =

✓
1 0
0 ei⇡/4

◆
T

nonClifford 
phase gatecost: 230$-500$

Cost: 1$
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must supply
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our paradigm
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Several papers on this class of subcircuits 
Selinger Phys. Rev. A 87, 042302 (2013) 
Amy, Maslov, Mosca, Roetteler IEEE 32 818 (2013) 
Amy, Maslov, Mosca IEEE 33 1476 (2014) 
Amy and Mosca  arXiv:1601.07363 (2016) 
 …. and more I am less familiar with!
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Q1 = F1U1

Q2 = F2U2

Q3 = F3U3

Q2 =

Diagonal gate in 
3rd level of 
Clifford hierarchy 
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our paradigm

T
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Q1 = F1U1

Q2 = F2U2

Q3 = F3U3

must supply

|U1i|U2i|U3i
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! = ei⇡/4with

T
U |x1, x2i = !

x1�x2 |x1, x2i
Example 2

T

T

T †
U |x1, x2i = !

x1+x2�x1�x2 |x1, x2i

Example 3

x1 x2 x1 � x2

0 0 0
1 0 1
0 1 1
1 1 0

Example 0

U |x1, x2i = |x1, x1 � x2i

mod 2 math

Example 1

TSm
U |x1i = !

(2m+1)x1 |x1i
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E

T⊗n

E†
... ...

E

†
T

⌦n

E|~xi = !

|JT
~x||~xi

linearly independent and binary

E|~xi = |JT
~xi

J

Example

number variables = number qubits =number of terms = number of T-gates
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|JT
~x| = x1 + x2 + (x1 � x2 � x3)
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E

T⊗n

E†
... ... linearly independent and binary

Example

A

row(A)=number variables = number qubits 
col(A)=number of terms = number of T-gates

E

†
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E|~xi|~0i = !
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For all third level diagonal gates

U |~xi = !

f(~x)|~xi |~xi = |x1, x2, . . . , xniwith

f(~x) ⇠c g(~x)Uf = C1UgC2

Clifford equivalence

there exists some A

f(~x) ⇠c |AT
~x|

where 

col(A) = ⌧(U) = optimal unitary synthesis cost 
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Background
Magic state distillation
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|T i / |0i+ ei⇡/4|1iThe magic T state

Bravyi, Kitaev, Phys. Rev. A 71 022316 (2005) 
Meier, Eastin, Knill,  QIC 13 0195 (2013) 
Bravyi, Haah, Phys. Rev. A 86 052329 (2012) 
Jones,  Phys. Rev. A 87, 042305 (2013)

3k+8 inputs
     error rate✏

k outputs
⇠ (1 + 3k)✏2 +O(✏3)

Triorthogonal matrices key technical feature of Bravyi-Haah.

G =

✓
K
S

◆
n : input magic states 

k : input magic states 

s : “checks” for noise

Triorthogonality in our language 

|KT
~x� S

T
~y| ⇠c x1 + x2 + . . .+ xk

Bravyi-Haah

Protocols for  
distillation
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|+⟩⊗k /

EG T⊗n E†
G

C
|ψU ⟩

|+⟩⊗s /

|0⟩⊗n−k−s /

X

1. Initialise

2. Encoder
circuit 

3. Inject noisy
T states

4. Decoder
circuit 

5. Clifford
correction

6. Pauli-X measure,
postselect on “+1” 

where encoder acts as

U |+i⌦k = |Ui

EG|~xi|~yi|~0i = |KT
~x� S

T
~yi G =

✓
K
S

◆

Bravyi-Haah protocol 
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Synthillation (verb).  
To perform synthesis and 
distillation in a single step. 
Origin: a portmanteau of 
these two processes.
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|+⟩⊗k /

EG T⊗n E†
G

C
|ψU ⟩

|+⟩⊗s /

|0⟩⊗n−k−s /

X

1. Initialise

2. Encoder
circuit 

3. Inject noisy
T states

4. Decoder
circuit 

5. Clifford
correction

6. Pauli-X measure,
postselect on “+1” 

where encoder acts as

and G is built from gate synthesis matrix A

width is T-countwidth is distillation cost

U |+i⌦k = |Ui

EG|~xi|~yi|~0i = |KT
~x� S

T
~yi G =

✓
K
S

◆

Our synthillation protocol 
synthillation =  synthesis + distillation
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Distills |Ui provided 

where                    is the function   f(~x)
U |~xi = !

f(~x)|~xi

Main result:

But still  how does one find good K and S 

|KT
~x� S

T
~y| ⇠c f(~x)

distance  d depends on✏ ! O(✏d) psuc = 1�O(✏)S

Special cases:    
Bravyi-Haah

|Ui = |T i⌦kDistills

provided

Blog post on color codes

|KT
~x� S

T
~y| ⇠c x1 + x2 + . . .+ xk
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Special case circuits of CCZ gates

Z

Z

Z HH

=

Equivalence to Toffoli

Z

Examples

Z

Z

Z

Z

4x1x2x3 = x1 + x2 + x3 + (x1 � x2 � x3) + 7(x1 � x2) + 7(x2 � x3) + 7(x1 � x3)

only get phase if all           variables equal to 1
xj
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Synthillation cost  =

Protective layer of checks 
Give quadratic error 
suppression.

G =

✓
K
S

◆
=

✓
A 0
1 1

◆

assume odd width

⌧ [U ] + 1

|AT
~x| ⇠c f(~x) =) |KT

~x� S

T
~y| ⇠c f(~x)

Special case circuits of CCZ gates
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The gate synthesis matrix

T-count ⌧ [U ] = col[A]

Matrix of bounded width  �  11

e.g. if A and B are even then � = 8

AAT
= BBT

(mod 2)

µ[U ] = col[B]

Narrowest matrix with 

define

Alwaysµ[U ]  ⌧ [U ]
For large “typical” circuits (PROOF) µ[U ] ⌧ ⌧ [U ]

Use Lempel (1975) solver to find efficiently

µ[U ] = 0 For CCZ circuits. 

|AT
~x| ⇠c f(~x)
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Synthillation cost  = ⌧ [U ] + 2µ[U ] + 8

⌧ [U ] µ[U ] µ[U ] 8

Typically have µ[U ] ⌧ ⌧ [U ]

Synthillation cost

then

⇠ ⌧ [U ] = Synthesis cost* 

*without ancilla 
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⌧ [U ] µ[U ] µ[U ] 8

G =

✓
K
S

◆
=

0

BB@

A B B ~c ~c ~c ~c 0 0 0 0
1 1 0 1 0 0 1 1 0 0 1
0 1 1 0 1 0 1 0 1 0 1
0 0 0 1 1 1 1 1 1 1 1

1
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Resource 
Comparison
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standard 
paradigm

our mindset

τ [U ] T-states
noise O(ϵ2)with 

noise O(ϵ2)with 
gate

synthesize

distill

noise O(ϵ2)with 
gate

synthillate

τ [U ] + 2µ[U ] + ∆3τ [U ] + 8
T-states with ϵ  noise T-states with ϵ  noise 

distill distill

may need 
additional
distillation

UU

Synthillation

Gate synthesis

Bravyi-Haah
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Tof#

Z

Z

Optimised (noisy) circuit cost  
T-count = 11 

Naive (noisy) circuit cost 
T-count = 14 

Synthillation cost 
T-count = 12 
(quadratic error suppression) 

Circuit cost using distilled T states 
T-count ~ 33 + 
(quadratic error suppression)

12 << 33+

Without error suppression With error suppression

synthillation wins!
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synthillation  
vs. standard paradigm
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Spin off ideas
new algorithms for 

 gate synthesis  

NOT distillation      
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Gate-synthesis optimisation   
find best phase polynomial   <->  smallest A matrix

Shown by Amy and Mosca  arXiv:1601.07363 (2016) 

|AT
1 ~x| ⇠c f(~x)

|AT
2 ~x| ⇠c f(~x)

|AT
3 ~x| ⇠c f(~x)
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T-count

 n2

2
+O(n)

Optimal solver 
(reed-Muller decoder)

Difficultly

Believed very hard. 
Practically limited to n=6 
Related to tensor contraction. 

Gate-synthesis optimisation  find best phase polynomial

Simple solver Super fast O(n3)

optimal

usually suboptimal

Our solver* 
for U=control-C

 2n+ 1 Super fast
optimal

Our solver* 
for general problem  n2

2
+O(n)

no optimality promise

Super fast

Reduce problem to 
factorisation 

and use Lempel (1975) 
Q = BBT

(mod 2)}
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Preliminary numerical data watch this space 

Luke Heyfron 
PhD student

O(n2)

O(n3)



THANK YOU!


