Zero-knowledge proof systems for QMA

Fang Song

Portland State University

Joint work with

Anne Broadbent

Zhengfeng Ji

John Watrous

U of Ottawa

U of Technology Sydney

U of Waterloo

How does cryptography **change** in a quantum world?

Quantum attacks

Hard problems broken

- Factoring & DL [Shor'94],
- Some lattice problems [EHKS'14,BS'16,CDPR'16]

Security analyses fail

- Unique quantum attacks arise
- Difficult to reason about quantum adversaries!

Quantum protocols

Outperform classical protocols

• Ex. Quantum key distribution

Crypto tools for quantum tasks

• Ex. Encrypt quantum data

Today's Topic

Zero-Knowledge proof systems

[GoldwasserMicaliRacoff STOC'84]

What problems can be proven in Zero-Knowledge?

Today in history: ZK for NP

What problems can be proven in Zero-Knowledge?

[GoldreichMicaliWidgerson FOCS'86]

Every problem in NP has a zero-knowledge proof system*

* Under suitable hardness assumptions

Invaluable in modern cryptography

Today: ZK in a quantum world

What problems can be proven in Zero-Knowledge quantumly?

1. Do **classical** protocols remain Zero-Knowledge against quantum malicious verifiers?

2. Can **honest users** empower quantum capability and prove problems concerning quantum computation?

ZK in a quantum world: status

- 1. Classical ZK against quantum attacks: big challenge
 - **Rewinding**: difficult against quantum attackers [Graaf'97]

Critical for showing ZK classically

- GMW protocol can be made quantum-secure
- many other cases not applicable

2. ZK proofs for quantum problems: little known

- Quantum statistical zero-knowledge well understood
- We, as in GMW, consider computational zero-knowledge

GMW analogue in Quantum?

Our main result

Every problem in QMA has a zero-knowledge proof system*

QMA: quantum analogue of NP (MA) |w>

 Problems verifiable by efficient quantum alg.

NP

• Power: $\exists L$ in QMA, NOT believed in NP (ex. group non-membership)

- Nice features of our ZK protocol for QMA:
 - Simple structure 3-"move": commit-challenge-respond
 - All communication classical except first message
 - *(Almost) minimal assumption: same as GMW with quantum resistance
 - Efficient prover: useful to build larger crypto constructions

Our additional contributions

New tools for quantum crypto and quantum complexity theory

• Identifying a new complete problem for QMA

Corollary: QMA = QMA with very limited verifier

Further implications?

- Simpler proof than some recent work [MorimaeNF'15'16]
- A quantum encoding mechanism, supporting
 - "Somewhat homomorphic"
 - Perfect secrecy
 - Authentication

Other applications?

ZK for QMA Our construction:

Inspiration: ZK by homomorphic encryption

Reductionist's wishful thinking: reduce (ZK for QMA) to (ZK for NP)

■ I seem to know how to: reduce (ZK for NP) to (ZK for NP) using HOMOMORPHIC ENCRYPTION

Inspiration: ZK by homomorphic encryption

■ Construct (ZK for NP) on (ZK for NP) using homomorphic Enc

- Verifier homomorphically evaluates Verification ckt on encrypted witness
- Prover proves in ZK: the result encodes "accept"

- Challenges of adapting to QMA:
 - Right tools in the quantum setting: encoding, etc?
 - Need authentication: how to prevent dishonest verifier?

Evaluate another circuit compute 1^{st} bit of w!

! We give an elegant quantum solution

Build quantum tool I: a new encoding scheme

* Based on quantum error correcting & (trap) quantum auth. scheme [BGS12]

Augmented trap scheme*, simultaneously supporting

* Need no computational assumptions

- iii. Authentication
- Dishonest behavior can be detected
- But: verification of existing QMA-complete problems require more than C(simple, non-universal)

Build quantum tool II: a new QMA-complete problem

■ Local Clifford-Hamiltonian (LCH) Problem

Input: Hamiltonian H_1 , ... H_m , each H_j on 5 qubits & of form $C_j|0\rangle\langle 0|C_j^*$

- **YES**: $\exists n$ -qubit state $\rho, \langle \rho, \Sigma H_i \rangle \leq 2^{-n}$ (no violation, low eigenvalue)
- NO: \forall n-qubit state ρ , $\langle \rho, \Sigma H_j \rangle \geq 1/n$ (lots violation, large eigenvalue)

Theorem: LCH is QMA-Complete

Verification circuit

- Pick small random part of witness
- Apply Clifford $C \in C$ & measure:
 - non-zero string → accept

Can run **Verification** on encoded witness (by AugTrap) transversally

$$C_{j} \in \mathcal{C}$$
Clifford
$$H_{j} = C_{j}|0\rangle\langle 0|C_{j}^{*}$$

Reductionist's wishful thinking: reduce (ZK for QMA) to (ZK for NP)

ZK proof system for LCH

- Nice featuresSimple structure 3-"move"
 - All but first message classical
- Efficient prover
- Only assuming: commitment (to classical msg) that is quantum-secure

Our ZK protocol for LCH works

- Completeness:
- Soundness: ✓
 - Full proof non-trivial, relying on error correcting code & binding of commit
- Zero-knowledge: for any malicious verifier

- Verifier's measurement produces classical encrypted msg
- "Leakage" resilient: acc/rej in step 3 may leak info. about k_j
 - k_j doesn't compromise secrecy on remaining qubits

Corollary: any problem in QMA has a ZK proof system

Timeline in retrospect: alternate approaches?

Comparison

	GMW analogue ¹	ZK for IP ¹ w. Q -Security	Q2PC ¹	Our protocol
All QMA	×	✓	✓	✓
Prover efficiency	✓	X	✓	✓
Mild assumption ²	✓	✓	×	✓
Round #	✓	×	X 3	✓
Availability	✓	V V 4	×	✓

I. plausible, but needs double-check; 2. commitment vs. dense PKE

^{3.} depends on V's ckt; 4. purely classical

Concluding Remarks

Every QMA problem has a "nice" zero-knowledge proof system

New tools for quantum crypto & quantum complexity theory

- QMA complete: local Clifford Hamiltonian Problem
- Augmented Trap encoding scheme

Future directions

1. ZK for QMA

- purely classical protocol (w. efficient prover)?
- constant-round (CR) w. negl. soundness error:
 - CRZK for NP (Q-Security unknown) → CRZK for QMA

2. Proof of quantum knowledge?

3. QPIP

 verifying a quantum computer by a classical computer?

Thank you!

Supplement materials

Augmented Trap Scheme

Input: $|\psi\rangle$ $t_i \in_R \left\{ |0\rangle, |+\rangle, \frac{|0\rangle - i|1\rangle}{\sqrt{2}} \right\}$ 1. Error correcting code 2. Trap qubits 3. Random permutation π $X^{a_i}Z^{b_i}$: $a_i, b_i \in_R \{0,1\}$ 4. Quantum one-time pad Output: $E_k(|\psi\rangle)$ Classical Key: $k = (t_i, \pi, a_i, b_i)$

20

LCH: Proof sketch and implications

It's (almost) there in Kitaev's proof:

for an arb. QMA problem
$$= H_{in} + H_{out} + H_{clock} + H_{prop}$$

$$H_{prop,t} = \cdots = |10\rangle\langle 10|_{t-1,t+1} \otimes \frac{1}{2}[I_t \otimes I - |1\rangle\langle 0|_t \otimes U_t - |0\rangle\langle 1|_t \otimes U_t^*]$$

A universal gate set $\{\Lambda(P), H\}$: \mathfrak{S}

Instead, assume
$$U_t \in \{\Lambda(P), H \otimes H\}$$
 Ex. $\frac{1}{2}[I_t \otimes I - |1\rangle\langle 0|_t \otimes \Lambda(P) - |0\rangle\langle 1|_t \otimes \Lambda(P)^*]$
= $(ZH \otimes I \otimes I)|000\rangle + (ZH \otimes I \otimes X)|000\rangle$
+ $(ZH \otimes X \otimes I)|000\rangle + (P^*H \otimes X \otimes X)|000\rangle$

QMA = QMA with Clifford verifier

QMA = QMA with single qubit measurement

Simper proof than [MNS'16]

Alternate approaches?

- Mimicking GMW 3-Coloring protocol?
 - A candidate: local-consistency problem [Liu05]

Known QMA-complete problems **NOT** as fit ...

QMA

IP

But, does NOT give ZK for all QMA problem

Plausible w. comparable assumption

- Local-consistency was proven QMA-complete only under Cook reductions
- Making ZK for IP [BGG+88] quantum secure?
 - Prover not poly-time

Purely classical protocol

- Round complexity large
- Invoking secure quantum 2-party computation [DNS12]?
 - Only sound against poly-time prover (i.e. argument system)
 - Comm. inherently quantum, round # depends on Ver circuit
 - Much stronger assumptions: quantum secure dense PKE