

sequential measurements, disturbance, and property testing

Aram Harrow (MIT)
Cedric Lin (Maryland)
Ashley Montanaro (Bristol)

arXiv:1607.03236

QIP 2017

noncommutative probability

union bound: [Gao '14] measure P_1 , ... P_N sequentially. $Pr[any accept] \le 4 \Sigma_i tr[P_i \rho]$

also:

Markov's inequality entropy / compression relative entropy / hypothesis testing channel capacities Lovasz Local Lemma

but what about OR?

quantum OR?

given:

measurement operators: $0 \le A_1, ..., A_N \le I$

goal:

 A_V "=" A_1 V ... V A_N s.t. A_V accepts iff any A_i accepts

main result

"yes"
$$\max_{i} tr[A_{i} \rho] \ge 1 - \varepsilon \longrightarrow tr[A_{\vee} \rho] \ge (1 - \varepsilon)^{2} / 4$$

"no"
$$\Sigma_i \operatorname{tr}[A_i \rho] \leq \delta \longrightarrow \operatorname{tr}[A_{\vee} \rho] \leq 2\delta$$

Constructive, but computational cost is O(N).

Is this tight?

"yes"
$$\max_{i} \operatorname{tr}[A_{i} \rho] \ge 1 - \varepsilon \longrightarrow \operatorname{tr}[A_{i} \rho] \ge (1 - \varepsilon)^{2} / 4$$

"no" $\max_{i} \operatorname{tr}[A_{i} \rho] \le \delta \longrightarrow \operatorname{tr}[A_{i} \rho] \le 2N\delta$

Is the N optimal?

```
Take A_i = |i\rangle\langle i|
"yes": \rho = |i\rangle\langle i| for unknown i
"no": \rho = I/N
```


ideas that don't work

1. consecutive measurement

problem: quantum Zeno effect

$$|\psi_{1}\rangle$$

$$|\psi_{2}\rangle$$

$$A_{k} = I - |\psi_{k}\rangle\langle\psi_{k}|$$

$$A_{1} = I - |\psi_{1}\rangle\langle\psi_{1}|$$

All measurements reject but state changes.

ideas that don't work

2. semidefinite programming

```
min tr A_{\vee}

A_{\vee} \geq A_{i} for all i.

problem: too rigid

A_{1} = A_{2} = |\psi\rangle\langle\psi| with

|0\rangle\langle0|\uparrow\uparrow|\psi\rangle = \cos(\varepsilon)|0\rangle + \sin(\varepsilon)|1\rangle
```


A_V=I accepts too much

ideas that do work

1. disturbance test

"yes" case
detects
either
A_i or
disturbance

"no" case nothing happens

ideas that do work

2. modified Marriott-Watrous gap amplification

Strategy: project onto
$$P_{\geq} = [\geq 1 / 2N \text{ eigenspace of } \bar{A} = \frac{\sum_{i=1}^{N} A_i}{N}]$$

"no" case: assume $\text{tr}[\bar{A}\rho] \leq \delta/N$

- P_x ≤ 2NĀ
- $Pr[accept] = tr[P, \rho] \le 2N tr[\bar{A}\rho] \le 2\delta$

Markov ineq

2. modified Marriott-Watrous gap amplification

Strategy: project onto $P_{\geq} = [\geq 1 / 2N \text{ eigenspace of } \bar{A}]$

$$\bar{A} = \frac{\sum_{i=1}^{N} A_i}{N}$$

"yes" case: $tr \rho A_i \ge 1-\varepsilon$

$$\begin{split} \sqrt{\operatorname{tr} \rho P_{\geq}} & \geq \left\| \rho - \frac{P_{<} \rho P_{<}}{\operatorname{tr} P_{<} \rho} \right\|_{1} \qquad \text{gentle measurement} \\ & \geq \operatorname{tr} \rho A_{i} - \operatorname{tr} \frac{P_{<} \rho P_{<}}{\operatorname{tr} P_{<} \rho} A_{i} \\ & \geq 1 - \epsilon - \frac{1}{2} \end{split}$$

idea that might work

Perform measurements in a random order [Aaronson '06]

- No proof known
- No counter-example known

Application: property testing

Isomorphism testing [Babai, Chakraborty '10]

```
f,g: X \rightarrow Y. G \subseteq Perm(X)
```

- "yes" case: $\exists \pi \text{ s.t. } f(\pi x) = g(x) \forall x$
- "no" case: ε -far from any such function
 (≥ε |X| disagreements for any π)

Thm: Can test for G-isomorphism with $O((\log |G|)/\varepsilon)$ quantum queries.

Alt proof due to Belov with adversary method.

G-isomorphism testing

suppose $\varepsilon = \Omega(1)$

queries

Problem	G	X	Classical	Quantum
boolean function iso	S _n	{0,1} ⁿ	$\Omega(2^{n/2})$	O(n log n)
boolean fn linear iso	$GL_{n}\!(\mathbb{F}_{2})$	${0,1}^n$	$\Omega(2^{n/2})$	$O(n^2)$
graph iso	S_n	[n]x[n]	$\tilde{O}(n^{5/4})$	O(n log n)
hidden subgroup	G	G	$\Omega(G ^{1/2})$	O(log G)

[Alon et al, '13] or and Matsliah '08]

[Fischer and Matsliah, '08]

[Friedl et al '09]

- not time efficient
- $\tilde{O}(n^{7/6})$ previously known for g. iso
- HSP result previously known for normal subgroups

property testing with OR

$$|\psi\rangle = \frac{1}{|X|} \sum_{x_1 \in X} |x_1\rangle |f(x_1)\rangle \sum_{x_2 \in X} |x_2\rangle |g(x_2)\rangle$$

Pr[M_π accepts
$$|\psi\rangle$$
] =
$$\begin{cases} 1 & \text{if } f=g \circ \pi \\ \leq 1-\varepsilon/2 & \text{if } f\neq g \circ \pi \end{cases}$$

- AND over $O(\log|G|/\epsilon)$ copies amplifies to 1 vs 1/poly(|G|).
- Use OR test over |G| different choices of π .

quantum property testing

Given finite set $S \subseteq \mathbb{C}^d$ Determine whether $|\psi\rangle \in S$ or is ε -far using $O(\log |S|/\varepsilon)$ copies.

Genuine n-partite entanglement

Can test with $O(n/\epsilon^2)$ copies (vs 2 for product test)

de-Merlinizing

Fixes proof of [Aaronson '06]

thm: replace Merlin with O(Q w log(w)) qubits

proof: amplify then OR over all Merlin messages

open questions / thanks

- Time-efficient property testers.
- Quantum OR is not so different from Classical OR in the end. Which primitives carry over and which don't?
- Simultaneous typicality.

Random ordering or other constructions.

arXiv:1607.03236

