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The fault tolerance threshold theorem

You can quantum compute indefinitely and with 
low overhead, so long as  

1) your gate error rate is less than ε and  
2) the correlations are sufficiently weak

Kitaev 97; Aharonov & Ben-Or 97; Knill, LaFlamme, & Zurek 98; 
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ε is pretty small, ~0.1% or less. 
the overhead is still quite demanding 
what do “ε” and “weak” even mean?

Quantum computers cannot be build “off the shelf”



The engineering cycle

We must iteratively improve 
devices by estimating sources 
of smaller and smaller errors

prioritize errors 
measure them accurately 
fix them 
verify they’ve been fixed
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The engineering cycle

Design diagnostics to help identify dominant noise sources 
Estimate errors accurately and with high precision 
Quantify the errors according to FTQC-relevant metrics 
Do all this with minimal resources

We must iteratively improve 
devices by estimating sources 
of smaller and smaller errors

prioritize errors 
measure them accurately 
fix them 
verify they’ve been fixed

To wind around this cycle, we must: 
measure

prioritize verify

fix
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Outline (Part I)

What are our resources? 
complexity dictionary 

What should we measure? 
distance measures for FTQC 
reasons we use these measures 

What are our tools? 
State and process tomography 

standard assumptions and proof of correctness  
Randomized benchmarking 

standard assumptions and proof of correctness



Complexity Dictionary

Measurement Complexity

The number of distinct measurement settings or state 
preparations required


 Sample Complexity

The number of independent copies of the system that you are 
required to measure


Ex: measure X five times, Y six times, and Z seven times;  
  this has measurement complexity 3

Ex: in the previous example, the sample complexity is 5+6+7 = 18



Complexity Dictionary

Computational Complexity

The amount of classical computation required, including the 
pre- and post-processing of the data  
 
 
 

The amount of quantum computation required to implement 
quantum circuits during the protocol


In practice, both space and time complexity are issues, 
especially the latter for adaptive methods

The amount of quantum computing needed to certify a noisy,  
non-universal device shouldn’t require a perfect quantum computer.



Most relevant scaling parameters

  n  the number of qubits

  d  the Hilbert space dimension (usually the whole system, not a single qudit)  

  ε  the precision of an estimated error (in some norm)

  δ  the probability of correctness of a randomized algorithm

  m the length of a sequence of quantum gates (~circuit size)

In the majority of situations, the important scaling parameters are


d, ε, m. 

This is because n interconverts easily with d, and most methods 
scale only logarithmically with δ.



Most relevant scaling parameters

  n  the number of qubits

  d  the Hilbert space dimension (usually the whole system, not a single qudit)  

  ε  the precision of an estimated error (in some norm)

  δ  the probability of correctness of a randomized algorithm

  m the length of a sequence of quantum gates (~circuit size)

Important caveat: 
this is data-driven science and constant factors do matter here! 
Theory results that ignore constants and log factors are 
important, but implementations and practical heuristics need to 
be very competitive to get adopted. 



Figures of Merit: States

 Fidelity 

Bounded between [0,1], symmetric

If one state is pure, 

Note: two conventions exist in the literature: “sqrt(F) vs. F2” 

 Trace distance 

Bounded between [0,1], symmetric

Related to the fidelity via 


 many other figures of merit are sensible, but we’ll stick to these. 

F (⇢,�) = kp⇢
p
�k21

F (⇢, ) = h |⇢| i

T (⇢,�) = 1
2k⇢� �k1

1�
p
F  T 

p
1� F

Jozsa 94;  Fuchs & van de Graaf 99



Figures of Merit: Channels

 “Average Error Rate” 

Bounded between [0,d/(d+1)] 
(I know, right?)

It’s symmetric 

Satisfies

The process fidelity is 

Not a norm (no triangle inequality)

Physical interpretation: average error over pure states.

r(E ,U) = 1�
Z

d h |U †E( )U | i

r(E ,U) = r(EU†, I)
1� d+1

d r

It is often convenient to phrase complexity in terms of r, so we’ll add it to 
our list of relevant scaling parameters.



Figures of Merit: Channels

Diamond distance (completely bounded norm, cb norm) 

Bounded between [0,1], symmetric.

Related to the average error rate via1 

It’s a true norm, and obeys the triangle inequality.

Operational interpretation as the maximum bias of a single-
shot measurement distinguishing the two channels

D(E ,F) = sup
⇢

1
2k[E ⌦ I � F ⌦ I](⇢)k1

d+1
d r  D  d

q
d+1
d r

1Wallman & F. 14



Figures of Merit: why these ones?

Why do people care about the quantity D? 

  Chaining: 
 
  Stability: D(I ⌦ E , I ⌦ F) = D(E ,F)

D(E2E1,F2F1)  D(E1,F1) +D(E2,F2)

Gilchrist, Langford, Nielsen 05

These properties are not satisfied by r, and they are used 
crucially in existing proofs of the FT threshold theorem. This 
makes D appealing to theorists.

Why do people care about the quantity r?
The average error rate r is easy to measure! Randomized 
benchmarking can estimate r accurately in a wide variety of 
circumstances. This makes r appealing to experimentalists.



Strategies for Characterizing Noise
Low complexity,

Less information
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Diagrammatic notation

Figures: Bridgeman & Chubb 16



What is state tomography? 
 
 

Prepare a given (unknown) state 

Measure a POVM with effects E.

These experiments define a probability distribution: 


Now sample repeatedly to get an estimate of p.

State Tomography

⇢Tr(E ·)

⇢

p(E|⇢) := Tr(E⇢)



What is state tomography? 
 
 

State Tomography

⇢Tr(E ·)

We can formalize this with the notion of a 
sampling operator.

The jth element is just the probability of the jth outcome.

Thus, the input and output are linearly related.

⇥
A(⇢)

⇤
j
= Tr(Ej⇢)A : Hd⇥d ! Rk



What is state tomography? 
 
 

State Tomography

⇢Tr(E ·)

Now suppose that, because of experimental noise, 
we must write the data of empirical estimates y as

y = A(⇢) + z z ⇠ N (0,�)

Suppose further that the sampling operator is full rank. 
Then the minimum variance unbiased estimator is the 
least squares estimate:

⇢̂ = (ATA)�1AT y



Noise means we only reconstruct (noise + state)

State Preparation And Measurement errors (SPAM) when doing 
tomography of quantum channels


Noise is assumed iid (exchangeable prior), so drift is not tolerated

It is extremely resource intensive! Complexity is a key bottleneck

The reconstructed state (channel) might not even be positive (CP)

Quantifying the uncertainty of the reconstruction is challenging

This estimator                               gives us a provably optimal 
estimate of the true state, so we’re done, right?

Assumptions of State Tomography

E ⇢Tr(E ·)Tr
⇥
EE(⇢)

⇤

⇢̂ = (ATA)�1AT y



Tomography in Practice

Despite the formidable complexity 
of doing tomography, experiments 
have succeeded is doing 
tomography in a variety of physical 
systems.


• The record for the largest 
implementation of “standard” 
tomography is  in an 8 qubit 
ion trap experiment done in 
Innsbruck by the Blatt group

©!!""#!Nature Publishing Group!

!

These data have been generated assuming ideal measurements on the
reconstructed density matrix and using the measurement settings of
the real experiment. For each of the artificial measurement sets a new
density matrix was reconstructed via the maximum-likelihood
method, and the spread of the expectation values of the observables
was extracted.
For an investigation of the entanglement properties, we associate

each particle k of a state r with a (possibly spatially separated) party
Ak. We shall be interested in different aspects of entanglement
between parties Ak, that is, the non-locality of the state r. A detailed
entanglement analysis is achieved by investigating (1) the presence of
genuinemultipartite entanglement, (2) the distillability ofmultipartite
entanglement and (3) entanglement in reduced states of two qubits.
First, we consider whether the production of a single copy of the

state requires non-local interactions of all parties. This leads to the
notion of multipartite entanglement and biseparability. A pure
multipartite state jwl is called biseparable if two groups G1 and G2

within the parties Ak can be found such that jwl is a product state
with respect to the partition

jwl¼ jxlG1
^jhlG2

ð2Þ
otherwise it is multipartite entangled. A mixed state r is called
biseparable if it can be produced by mixing pure biseparable
states jwbs

i l—which may be biseparable with respect to different
bipartitions—with some probabilities pi, that is, the state can be
written as r¼P

ipijwbs
i lkw

bs
i j: If this is not the case, r is multipartite

entangled. The generation of such a genuine multipartite entangled
state requires interaction between all parties. In particular, a mixture
of bipartite entangled states is not considered to be multipartite
entangled. In order to show the presence of multipartite entangle-
ment, we use the method of entanglement witnesses21–23.
An entanglement witness for multipartite entanglement is an obser-
vable with a positive expectation value on all biseparable states. Thus
a negative expectation value proves the presence of multipartite
entanglement. A typical witness for the states jWNl would be23:

WN ¼N2 1

N
l2 jWN l kWN j ð3Þ

This witness detects a state as entangled if the fidelity of the W state
exceeds (N 2 1)/N. However, more sophisticated witnesses can be
constructed, if there is more information available on the state under

investigation than only the fidelity. To do so, we add other operators
to the witness in equation (3) (see Methods) which take into account
that certain biseparable states can be excluded on the grounds of the
measured density matrix. Table 2 lists the expectation values for
these advanced witnesses. The negative expectation values prove
that in our experiment four-, five-, six-, seven- and eight-qubit
entanglement has been produced.
Second, we consider the question of whether one can use many

copies of the state r to distil one puremultipartite entangled state jwl
by local means; that is, whether entanglement contained in r is
qualitatively equivalent to multiparty pure state entanglement. For
this aim one determines whether there exists a number M such that
the transformation

M copies

r^r^· · ·^r|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
$$$$$$$$!LOCC jwl ð4Þ

is possible. Here, jwl is a multipartite entangled pure state (for

Table 1 | Creation of a jWNl-state (N 5 {6,7,8})

Initialization Entanglement

j0;SSS· · ·Sl (1)
RþN ð2arccosð1=

ffiffiffi
N

p
Þ$$$$$$$$$$$$!

(i1)
RCNðpÞRCN21ðpÞ· · ·RC1 ðpÞ$$$$$$$$$$$$$$! 1ffiffiffi

N
p j0;SDD· · ·Dlþ

ffiffiffiffiffiffiffi
N21

p
ffiffiffi
N

p j1;DDD· · ·Dl

j0;DDD· · ·Dl (2)
RþN21ð2arcsinð1=

ffiffiffiffiffiffiffi
N21

p
Þ$$$$$$$$$$$$$$$$!

Check state via fluorescence 1ffiffiffi
N

p j0;SDD· · ·Dlþ 1ffiffiffi
N

p j0;DSD· · ·Dlþ
ffiffiffiffiffiffiffi
N22

p
ffiffiffi
N

p j1;DDD· · ·Dl

(i2)
Rþ1 ðpÞ$$! ..

. ..
.

j0;DDD· · ·Dl 1ffiffiffi
N

p j0;SDD· · ·Dlþ 1ffiffiffi
N

p j0;DSD· · ·Dlþ · · ·þ 1ffiffiffi
N

p j1;DDD· · ·Dl

Check state via fluorescence (N)
Rþ1 ð2arcsinð1=

ffiffi
1

p
Þ$$$$$$$$$$$$!

(i3)
RCNðpÞ$$! 1ffiffiffi

N
p j0;SDD· · ·Dlþ 1ffiffiffi

N
p j0;DSD· · ·Dlþ · · ·þ 1ffiffiffi

N
p j0;DDD· · ·Sl

j0;SDD· · ·Dl

(i1)–(i3) are initialization steps; (1)–(N) are entanglement steps. First we initialize the ions via sideband cooling and optical pumping in the j0, SS· · ·Sl state, where we use the notation
jn;xNxN21 · · ·x1l: n describes the vibrational quantum number of the ion motion and x i their electronic state. We then prepare the j0;DDD· · ·Dl state with N p–pulses on the carrier transition
applied to ions 1 to N, denoted by RCn ðv¼ pÞ (the notation is detailed in ref. 29; we do not specify the phase of the pulses because their particular value is irrelevant in this context). Then this
state is checked for vanishing fluorescence with a photomultiplier tube. The same is done after trying to drive a p pulse on the blue sideband on ion 1 to ensure that the ion crystal is in the
motional ground state. After this initialization, we transform the state to j0;SDD· · ·Dl with a carrier p pulse and start the entanglement procedure in step (1). This is carried out by moving most
of the population to j1;DDD· · ·Dl with a blue sideband pulse of length vn ¼ arccosð1= ffiffiffi

n
p Þ leaving the desired part back in j0;SDD· · ·Dl: Finally, we use N 2 1 blue sideband pulses ðRþn ðvnÞÞ of

pulse length vn ¼ arcsinð1= ffiffiffi
n

p Þ such that at each step we split off a certain fraction of the wave packet. Note that for an ion string in the ground state, blue-sideband pulses acting on an ion in
the D state have no effect. For N ¼ {4,5} we do not check the fluorescence, combine steps (i1) and (i3) and omit step (i2).
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Figure 1 | Absolute values, jrj, of the reconstructed density matrix of a
jW8l state as obtained from quantum state tomography.
DDDDDDDD…SSSSSSSS label the entries of the density matrix r. Ideally,
the blue coloured entries all have the same height of 0.125; the yellow
coloured bars indicate noise. Numerical values of the density matrices for
4 # N # 8 can be found in Supplementary Information. In the upper right
corner a string of eight trapped ions is shown.

LETTERS NATURE|Vol 438|1 December 2005

644

Häffner et al. 05

• This experiment used a maximum likelihood estimator (instead of linear 
inversion), defined as 


• The post-processing alone took two weeks to get the estimate + error bars!

⇢̂ = argmax

⇢
Pr(y|⇢,A)



Tomography in Practice

Open-source software implementations of quantum state tomography, 
reflecting different strategies for estimation:


• Tomographer (Faist & Renner 2016) 
C++ / command-line • https://tomographer.github.io 
Uses Metropolis–Hastings algorithm to compute Bayesian region 
estimates, then expands to find confidence regions.


• QInfer (Granade et al. 2016) 
Python • qinfer.org 
Uses particle filtering to approximate posterior distribution and to report 
credible regions.

https://tomographer.github.io
http://qinfer.org


Strategies for Characterizing Noise
Low complexity,
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More information
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Permutation-invariant states, Stabilizer states, 

Compressed sensing (sparse in a known basis)


Full  
tomography,
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tomography

Compressed sensing 

(approx. low rank)
 Benchmarking 


tomography

Hamiltonian

parameter estimation



Tomography versus RB

Tomography was limited by two main factors:


• SPAM errors, leading to low accuracy in the estimate


• High complexity, making practical implementation difficult


Randomized Benchmarking (RB) is a method that tries to solve both of these 
problems, but at the cost that it provides much less information (though 
hopefully it is relevant information)



Randomized Benchmarking

Simple procedure tests performance of large quantum circuits
Emerson, Alicki, Zyczkowski 05;  Knill et al. 08.

Choose a random set s of m Clifford gates 
Prepare the initial state in the computational basis 
Apply the Clifford sequence, and add the inverse gate 
at the end of the sequence  
Measure in the computational basis

Cm C3 C0C2…(E| |ρ)C1

Repeat to estimate Fm,s = Pr(E|s,ρ)

= C-1



Randomized Benchmarking

Knill et al. 2008.
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FIG. 1: Fidelity as a function of the number of steps for each randomized sequence. The fidelity
(1 − prob. of error) is plotted on a logarithmic scale. The fidelity for the final state is measured for each
randomized sequence. There are 32 points for each number of steps, corresponding to 8 randomizations of
each of four different computational sequences. Different symbols are used for the data for each computa-
tional sequence. The standard error of each point is between 0.001 (near fidelities of 1) and 0.006 (for the
smaller fidelities). The scatter greatly exceeds the standard error, suggesting that coherent errors contribute
significantly to the loss of fidelity.

Subsystem preserving errors. The errors cause no leakage out of the subsystem defining
the qubits.

Although the AAEP need not be identical to the AEP, we conjecture that there are useful bounds
relating the two error probabilities. In particular, if the AAEP is zero then there is a fixed logical
frame in which the AEP is zero. Trivially, if the AEP is zero, then the AAEP is zero.
Randomized benchmarking involves both Pauli randomization and computational gate random-

ization. The expected effect of Pauli randomization is to ensure that, to first order, errors consist of
random (but not necessarily uniformly random) Pauli operators. Computational gate randomiza-
tion ensures that we average errors over the Clifford group. If, as in our experimental implemeta-
tion, the computational gates generate only the Clifford group, it takes a few steps for the effect to
be close to averaging over the Clifford group. This process is expected to have the effect of making
all errors equally visible to our measurement, even though the measurement is fixed in the logical
basis and the last step of the randomized computation is picked so that the answer is deterministic
in the absence of errors.

VI. BENCHMARKINGMUTLIPLE QUBITS

Scalable quantum computing requires not only having access to many qubits, but also the ability
to apply many low-error quantum gates to these qubits. The error behavior of gates should not
become worse as the computation proceeds. Randomized benchmarking can verify the ability to
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FIG. 2: Average fidelity as a function of the number of steps for each computational sequence. The points
show the average randomized fidelity for four different computational gate sequences (indicated by the
different symbols) as a function of the length. The average fidelity is plotted on a logarithmic scale. The
middle line shows the fitted exponential decay. The upper and lower line show the boundaries of the 68%

confidence interval for the fit. The standard deviation of each point due to measurement noise ranges from
0.0004 for values near 1 to 0.002 for the lower values, smaller than the size of the symbols. The empirical
standard deviation based on the scatter in the points shown in Fig. 1 ranges from 0.0011 to 0.014. The slope
implies an error probability of 0.00482(17) per randomized computational gate. The data is consistent with
the gate’s errors not depending on position in the sequence.

apply many multiqubit gates consistently.
Randomized benchmarking can be applied to two or more qubits by expanding the set of com-

putational gates to include multiqubit gates. The initial state is |0 . . . 0⟩. Pauli randomization is
performed as before and is expected to convert the error model to probabilistic Pauli errors to first
order. Because the size of the Clifford group for two or more qubits is large, one cannot expect
to effect a random Clifford group element at each step. Instead, one has to rely on rapid mixing
of random products of generators of the Clifford group to achieve (approximate) multiqubit de-
polarization. The number of computational steps that is required for approximate depolarization
depends on the computational gate set. An example of a useful gate set consists of controlled
NOTs (alternatively, controlled sign flips) combined with major-axis π/2 pulses on individual
qubits. By including sufficiently many one-qubit variants of each gate, one can ensure that each
step’s computational gates are randomized in the product of the one-qubit Clifford groups. This
already helps: It has the effect of equalizing the probability of Pauli product errors of the same
weight (see [24]).
The one-qubit randomized benchmark has a last step that ensures a deterministic answer for

the measurement. For n > 1 qubits, one cannot expect deterministic answers for each qubit’s
measurement, as this may require too complex a Clifford transformation. Instead, one can choose
a random Pauli product that stabilizes the last state and apply a random product of one-qubit π/2
pulses with the property that this Pauli product is turned into a product of σz operators. If there is

3

measure [18, 19]. To accomplish this, the following protocol is implemented.

• Choose a random sequence s = s
1

. . . sm 2 Nm
|G| of m integers chosen uniformly at random

from N|G| = {1, . . . , |G|}.

• Prepare a d-dimensional system in some state ⇢ (usually taken to be the pure state |0i).

• At each time step t = 0, . . . ,m, apply gt where gt = gst and g
0

:=
Qm

t=1

g�1

t . Alternatively,
to perform interleaved randomized benchmarking for the gate g

int

2 G, apply gt,int where
gt,int = g

int

gt for t 6= 0 and, as before, g
0,int =

Qm
t=1

g�1

t,int. (In general, each gate must be
compiled into a sequence of elementary gates as well.)

• Perform a POVM {E, � E} for some E (usually taken to be |0ih0|) and repeat with the
sequence s su�ciently many times to obtain an estimate of the probability Fm,s = p(E|s, ⇢)
to a suitable precision.

We can regard the probability Fm,s as a realization of a random variable Fm. We will denote
the variance of the distribution {Fm,s : s 2 N|G|} for a fixed m by �2m. Averaging Fm,s over a

number of random sequences will give an estimate F̂m of F̄m, the average of Fm,s over all sequences
s of fixed length m (that is, F̄m is the expectation of the random variable Fm). The accuracy of
this estimate will be a function of the number of random sequences and �2m.

Obtaining estimates F̂m for multiple m and fitting to the model

F̄m = A+Bfm (1)

will give an estimate of f provided that the noise does not depend too strongly on the target
gate [10], where [20]

f =
dF

avg

(E)� 1

d� 1
(2)

and

F
avg

(E) =
Z

d Tr
⇥

 E( )
⇤

(3)

is the average gate fidelity of a noise channel E with respect to the identity channel and d is
the uniform Haar measure over all pure states. The average gate fidelity of E gives the average
probability that preparing a state  , applying E and then measuring { , �  } will give the
outcome  , averaged over all pure states  .

For standard randomized benchmarking, E is the error channel per operation, averaged over
all operations in G. For interleaved benchmarking, E is the error channel on a composite channel,
namely, the interleaved channel composed with an element of G, averaged over all G. We note in
passing that separating the error in the interleaved channel from the error in the composite channel
is one of the key di�culties in obtaining meaningful results from interleaved benchmarking [21],
though we do not address this issue here.

III. STATEMENT OF RESULTS AND PAPER OUTLINE

The first principal contribution of this paper is to show that the number of random sequences
that need to be averaged is comparable to the number actually used in contemporary experiments
(compared to previous best estimates, which require 3 orders of magnitude more random sequences

“0th order model”  
Fit to the model

Note this is not a 
linearizable model!

f =
dFavg(⇤)� 1

d� 1

Favg(⇤) =

Z
d Tr[ ⇤( )]E

physical

= ⇤
noise

U
ideal

If the noise is time- and gate-independent, we get:

Knill et al. 2008.



Randomized Benchmarking

Magesan et al. 11

Cm C3 C0C2…(E| |ρ)C1

Cm C2 C1 C0Λ Λ Λ… |ρ)(E’|

Factor each Clifford into ideal + noise

insert C1-1C1

Repeat this insertion everywhere, and absorb 
extra gates into the endpoints as SPAM



Randomized Benchmarking

Magesan et al. 11

Cm C3 C0C2…(E| |ρ)C1

Look at the expected value of the probabilities over sequences

C1+ΛC1C2+ΛC2C3+ΛC3 |ρ’)(E’| Cm+ΛCm …Es

 �

By independence, this factorizes into a product of average channels 
(Care must be taken on the boundaries)

|ρ’’)(E’’| Cs+ΛCs

�
Es


Cs+ΛCs

�
Es


… Cs+ΛCs

�
Es





Randomized Benchmarking

Magesan et al. 11

Cm C3 C0C2…(E| |ρ)C1

Cs+ΛCs

�
Es


Each term in the product is a group average

The last line follows because the Clifford group is a 2-design

Now using Schur’s lemma, we find

=
1

|C|
X

j

h
Cj⇤C�1

j

i
=

Z
dU U⇤U† = ⇤̄

⇤̄(⇢) = p ⇢+ (1� p)
d



Randomized Benchmarking

Magesan et al. 11

Cm C3 C0C2…(E| |ρ)C1

⇤̄(⇢) = p ⇢+ (1� p)
d

The averaged data looks like a product of depolarizing channels

= (E| |ρ)⇤̄m

Moreover, the constant p is related to the average gate infidelity:

3

measure [18, 19]. To accomplish this, the following protocol is implemented.

• Choose a random sequence s = s
1

. . . sm 2 Nm
|G| of m integers chosen uniformly at random

from N|G| = {1, . . . , |G|}.

• Prepare a d-dimensional system in some state ⇢ (usually taken to be the pure state |0i).

• At each time step t = 0, . . . ,m, apply gt where gt = gst and g
0

:=
Qm

t=1

g�1

t . Alternatively,
to perform interleaved randomized benchmarking for the gate g

int

2 G, apply gt,int where
gt,int = g

int

gt for t 6= 0 and, as before, g
0,int =

Qm
t=1

g�1

t,int. (In general, each gate must be
compiled into a sequence of elementary gates as well.)

• Perform a POVM {E, � E} for some E (usually taken to be |0ih0|) and repeat with the
sequence s su�ciently many times to obtain an estimate of the probability Fm,s = p(E|s, ⇢)
to a suitable precision.

We can regard the probability Fm,s as a realization of a random variable Fm. We will denote
the variance of the distribution {Fm,s : s 2 N|G|} for a fixed m by �2m. Averaging Fm,s over a

number of random sequences will give an estimate F̂m of F̄m, the average of Fm,s over all sequences
s of fixed length m (that is, F̄m is the expectation of the random variable Fm). The accuracy of
this estimate will be a function of the number of random sequences and �2m.

Obtaining estimates F̂m for multiple m and fitting to the model

F̄m = A+Bfm (1)

will give an estimate of f provided that the noise does not depend too strongly on the target
gate [10], where [20]

f =
dF

avg

(E)� 1

d� 1
(2)

and

F
avg

(E) =
Z

d Tr
⇥

 E( )
⇤

(3)

is the average gate fidelity of a noise channel E with respect to the identity channel and d is
the uniform Haar measure over all pure states. The average gate fidelity of E gives the average
probability that preparing a state  , applying E and then measuring { , �  } will give the
outcome  , averaged over all pure states  .

For standard randomized benchmarking, E is the error channel per operation, averaged over
all operations in G. For interleaved benchmarking, E is the error channel on a composite channel,
namely, the interleaved channel composed with an element of G, averaged over all G. We note in
passing that separating the error in the interleaved channel from the error in the composite channel
is one of the key di�culties in obtaining meaningful results from interleaved benchmarking [21],
though we do not address this issue here.

III. STATEMENT OF RESULTS AND PAPER OUTLINE

The first principal contribution of this paper is to show that the number of random sequences
that need to be averaged is comparable to the number actually used in contemporary experiments
(compared to previous best estimates, which require 3 orders of magnitude more random sequences

Thus, this fit gives us a straightforward way to estimate r. 
This is the average error of the average Clifford gate.

p = 1� d

d� 1
r
�
⇤̄
�



Key Assumptions for Randomized Benchmarking
As with tomography, RB also depends on several key assumptions:


• Gate-Independence: The noise incurred by each gate cannot depend on 
which Clifford gate we performed. 

• Markovianity: The noise processes can be described by a CPTP map acting 
on the system of interest.


• Time-independence: The noise processes should not drift during the course 
of the experiment, or the reported answer will also be an average over this 
dependence.


• 2-design: The group should be a 2-design, but not universal (no T-gates).


Relaxing and certifying these assumptions is an area of active work.
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How many random sequences and repetitions are necessary?
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Randomized Benchmarking in Practice

Software solutions for randomized benchmarking estimation in practice:


• nlinfit (MATLAB) / curve_fit (SciPy) 
Estimates least-squares fit for RB, but may report non-physical SPAM 
parameters (e.g.; A = 1.5 and B = -0.5).


• QInfer (Granade, Ferrie, & Cory 15) 
Python • qinfer.org 
Provides region estimates, Cramér-Rao bounds for RB experiments. Uses 
one shot per sequence to concentrate inference on relevant parameters. 


• pyGSTi (Nielsen et al.) 
Python • pygsti.info 
Estimates RB as a special case of the more general but more expensive  
gate set tomography (GST) procedure.

http://qinfer.org


Steve Flammia


QIP Tutorial

Seattle

14 January 2017

Characterization of quantum devices (part II)

Figure: Hanneke et al., 
Nat. Phys. 6, 13-16 (2009)



Randomized Benchmarking
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FIG. 2: Average fidelity as a function of the number of steps for each computational sequence. The points
show the average randomized fidelity for four different computational gate sequences (indicated by the
different symbols) as a function of the length. The average fidelity is plotted on a logarithmic scale. The
middle line shows the fitted exponential decay. The upper and lower line show the boundaries of the 68%

confidence interval for the fit. The standard deviation of each point due to measurement noise ranges from
0.0004 for values near 1 to 0.002 for the lower values, smaller than the size of the symbols. The empirical
standard deviation based on the scatter in the points shown in Fig. 1 ranges from 0.0011 to 0.014. The slope
implies an error probability of 0.00482(17) per randomized computational gate. The data is consistent with
the gate’s errors not depending on position in the sequence.

apply many multiqubit gates consistently.
Randomized benchmarking can be applied to two or more qubits by expanding the set of com-

putational gates to include multiqubit gates. The initial state is |0 . . . 0⟩. Pauli randomization is
performed as before and is expected to convert the error model to probabilistic Pauli errors to first
order. Because the size of the Clifford group for two or more qubits is large, one cannot expect
to effect a random Clifford group element at each step. Instead, one has to rely on rapid mixing
of random products of generators of the Clifford group to achieve (approximate) multiqubit de-
polarization. The number of computational steps that is required for approximate depolarization
depends on the computational gate set. An example of a useful gate set consists of controlled
NOTs (alternatively, controlled sign flips) combined with major-axis π/2 pulses on individual
qubits. By including sufficiently many one-qubit variants of each gate, one can ensure that each
step’s computational gates are randomized in the product of the one-qubit Clifford groups. This
already helps: It has the effect of equalizing the probability of Pauli product errors of the same
weight (see [24]).
The one-qubit randomized benchmark has a last step that ensures a deterministic answer for

the measurement. For n > 1 qubits, one cannot expect deterministic answers for each qubit’s
measurement, as this may require too complex a Clifford transformation. Instead, one can choose
a random Pauli product that stabilizes the last state and apply a random product of one-qubit π/2
pulses with the property that this Pauli product is turned into a product of σz operators. If there is

We saw how RB allows us to estimate the average 
error rate of our average Clifford noise, as long as 
certain natural assumptions are met.

• How expensive is 
benchmarking? 

• Can it be used for estimating 
FTQC thresholds?


• What happens when we break 
the RB assumptions? 

• Can it be extended to learn 
more about our noise?



RB with confidence

Magesan et al. 11; Wallman & F., 15; Helsen et al. 17

Random Clifford circuits have small variance;  
    - plug this into standard arguments to get guidance for how to  
       choose # of sequences  

General upper bound


For qubits, this can be improved to


When the noise is diagonal in the Pauli basis, this improves even 
further to



Tight bounds for qubits
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Random channels sampled using Ruskai, Szarek, & Werner 2002

This result leads to 
estimates on the 
order of < 100 
sequences.



Tight bounds for multiple qubits

Helsen et al. 17



Accelerated RB

The variance at each sequence length in RB depends on 
two terms:

• Within-sequence variance (                   ): 

Completely described by binomial sampling. 

• Inter-sequence variance (                   ): 
Described by RB complexity analysis.


 
If sequences are reused many times, then inter-sequence 
variance dominates. 

Es

⇥
Var(p|s)

⇤

Vars
⇥
E(p|s)

⇤

Granade, Ferrie and Cory NJP 2015



Accelerated RB

If each sequence is used once before drawing new one, 
binomial sampling exactly describes RB performance.


This is optimal for learning p! 
inter-sequence variance is sensitive to coherence of noise and other 
effects, rather than p itself.


Bonus: Cramér-Rao bound is easy to evaluate in 
accelerated (single-shot) limit. 
• Optimal sequence length (≈ 1 / r ).

• Formal test on achievable precision for single-shot RB 

experiments.

Granade, Ferrie and Cory NJP 2015



Randomized Benchmarking in Practice

Single-shot limit is achievable!

Heeres et al. 1608.02430



Comparison to the FTQC threshold

Which types of noise are most detrimental for fault-tolerance? 
 
In particular, Pauli noise, where most thresholds are 
estimated, saturates the lower bound, which could be orders 
of magnitude off from D! 

d+1
d r  D  d

q
d+1
d r

Fault-tolerant thresholds are proven in terms of D, but we 
only estimate r in RB experiments. 

Problem: these are only loosely related!

Wallman & F. 14;  Sanders et al. 16 



Coherent noise

Benchmarking measures the average error rate.  

For the same fixed average error, this quantity does not care 
if the noise is coherent (unitary) or incoherent (e.g. 
dephasing, amplitude damping, etc.)

These two noise types have radically different effects on the 
worst-case error, that is relevant for fault-tolerance thresholds

2000 4000 6000 8000 10000

-50

50
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Coherent errors and gate dependent noise

Muhonen et al. 14; Epstein et al. 14; Fogarty et al. 15; Ball et al. 16

The average and 
worst-case error can 
be radically different!

12

FIG. 10. (color online) The diamond norm distance D

between Ē and the depolarizing channel of error rate r

decreases as a function of L. r = 10�4 (red squares), r = 10�3

(green triangles), and r = 10�2 (blue circles).

IRB was tested using a noise model in which each Clif-
ford gate received a random, gate-dependent unitary er-
ror of error rate r, and the interleaved gate received a
unitary error gate of error rate r

int

. The method was
tested for three values of r and a wide range of values for
r
int

(Fig. 11). While the IRB estimates were within a
factor of two of the true interleaved error rate for r

int

� r,
they were less accurate as r

int

became much less than r
(Fig. 11). We can see that when r

int

/r is about 0.1, the
estimate begins to diverge from the true value. Thus,
IRB can be a reliable tool in most regimes of interest,
unless the interleaved gate is significantly better than a
typical gate.
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FIG. 11. (color online) IRB in the presence of random
unitary noise for K = 10000. r̂int is the estimated inter-
leaved error rate, rint is the true rate, and µ = log10 (r̂int/rint).
The average Cli↵ord error is: r = 10�4 (red squares), r =
10�3 (green triangles), r = 10�2 (blue circles; blue triangles
indicate negative IRB estimates)

.

VIII. CONCLUSION

In this paper we reviewed randomized benchmarking
protocols and numerically investigated their application

on a single qubit under various physically realistic and
relevant error models. These models included system-
atic rotations, amplitude damping, leakage to higher lev-
els, and 1/f noise. While each randomized benchmarking
protocol has a domain of validity for which it provably
gives robust error estimates, we found that, in most cases
analyzed, benchmarking provides better than a factor-of-
two estimate of average error rate. This suggests that RB
protocols can be utilized in quite general situations and
thus are a valuable tool for verification and validation of
quantum operations.

We showed using both numerical and general theoreti-
cal results that the number of di↵erent random sequences
in a benchmarking experiment can be much less than
Hoe↵ding bound estimates [7]. Our theoretical method
consisted of finding the non-linear least squares solution,
linearizing the non-linear model around this solution, and
constructing exact confidence intervals for the linearized
multivariate model. We see that the size of the confidence
intervals scales linearly with the standard error.

In the case of 1/f noise, we find that randomized
benchmarking protocols produce a fidelity decay that can
be modeled by a composition of correlated depolarizing
channels. The degree of correlation can a↵ect the extent
to which a simple exponential decay is valid. For leak-
age errors, we devised a new protocol that allows for the
estimation of gate errors under a sum of exponentials de-
cay model. The asymptotic behavior of fidelity decays
can be used as a measure of the extent to which leakage
errors are present in an experiment. Finally we showed
that, in practice, the interleaved randomized benchmark-
ing protocol provides bounds that are tighter than those
theoretically predicted [8]. Provided the error on the in-
terleaved gate is not much smaller (by a factor of 10) than
the average error, the estimated error rate is a reliable
quantity.
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Coherent errors are the culprit

This noise interpolates 
between low-frequency 
(unitary) and high-
frequency (stochastic) 
noise. 

Unless unitary rotation 
angles are at least as 
small as stochastic error, 
they dominate the noise 
scaling.

Kueng et al., 16



Amplitude damping is more benign

Amplitude damping is  
not the problem.

p
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Using SDP methods, we get exact and analytic bounds 
 
The main idea is to use semidefinite programs to find dual feasible points

Kueng et al., 16



How errors accumulate: coherence matters!

Puzzuoli et al. 13;  Wallman 15

Given an ideal and a 
noisy implementation of 
the same circuit, what is 
the difference in the 
success probability?



Estimating the Coherence of Noise

For simplicity, let me restrict trace-preserving and unital noise,  
i.e. noise for which the maximally mixed state is a fixed point.

The unitarity is a measure of noise that is only sensitive to 
incoherent noise.  For any noise map     and unitary    ,

u(E) = u(UE) = u(EU)

E U

u(E) = 1

d2 � 1

⇥
Tr(E†E)� 1

⇤

Because this quantity is quadratic in the noise, this acts like 
second moment information about the noise, and helps us 
distinguish average- and worst-case behavior.

(The definition generalizes for arbitrary noise, but is marginally more complicated.)

Wallman, Granade, Harper, F., NJP 2015



Estimating the Coherence of Noise
Ex: For a natural noise model with dephasing noise plus 
unitary rotation, the unitarity is sensitive to the shrinkage but 
not the rotation.

average error is sensitive to all of this 

unitarity is only sensitive here 

Wallman, Granade, Harper, F., NJP 2015



Purity Benchmarking

The unitarity can be estimated via purity benchmarking, an 
RB-like experiment that estimates a decay rate.

Feng et al., 16



Purity Benchmarking

The unitarity can be estimated via purity benchmarking, an 
RB-like experiment that estimates a decay rate.

Wallman, Granade, Harper, F., NJP 2015

Unitarity bounds the diamond distance up to constant factors:

Wallman 16;  Kueng et al. 16

𝔼s [ Tr[ρ²] ] = A u(Λ)m-1 + B




Purity Benchmarking

The unitarity can be estimated via purity benchmarking, an 
RB-like experiment that estimates a decay rate.

It correlates with, but is distinct 
from average error rate:

Given a fixed average error rate r,  
the unitarity u cannot be too small: 

u(E) �
h
1� d

d�1r(E)
i2

It also provides a bound on 
the best possible average error rate 
achievable via unitary control: 

d�1
d

h
1�

p
u(E)

i
 min

U
r(UE)

Wallman, Granade, Harper, F., NJP 2015



Interleaved RB
Do two experiments: a control 
experiment with random Cliffords, 
and a second “interleaved” 
experiment with a specific fixed gate 
after each random Clifford.


Under some assumptions, 
comparing the two decay curves 
allows us to back out an estimate of 
the fidelity of the specific interleaved 
gate.

Magesan et al. PRL 2012



Characterizing T gates

• CTPT Benchmarking (Harper & F. 2016): Carefully arrange Clifford and Pauli 
gates to take advantage of the fact that TPT is always a Clifford, giving 
traditional interleaved benchmarking.

• Dihedral RB (Dugas et al. 2015, Cross et al. 
2016): Use dihedral or dihedral-CNOT groups 
instead of Clifford group to do benchmarking. 
The T gate is now directly an element of the 
group.

We also need to be able to characterize non-Clifford gates such as T.



Leakage and Logical RB

• Leakage RB (Wallman et al. 2015): Change final measurement to identity, 
don't do final inverse. Decay then reflects leakage out of subspace 
represented by identity measurement.

Two other extensions allow us to characterize leakage rates and 

logical error rates

• Logical RB (Lu et al. 2015 (exp); Combes et al. 2016 (th)): Perform 
randomized benchmarking on logical channels, rather than physical.



Direct Fidelity Estimation

We’ve seen that RB is a flexible and (in some cases) reliable 
method of estimating noise in quantum systems.


There is one other method that is well adapted to larger scale 
circuits, but has the drawback that it can be susceptible to 
SPAM errors


Main idea: 

Monte Carlo estimation of fidelity by expressing the fidelity 
function in a simple operator basis.

F. & Liu 11;   da Silva et al. 11



“Direct” Fidelity Estimation: a trivial algorithm

First recall the definition of fidelity.

If we allow arbitrary quantum operations, we can do the following:

The fidelity with respect to a pure state Ψ is given by:
F (⇢, ) = Tr(⇢ ) = h |⇢| i

We are given many copies of the state 

Make the two-outcome measurement 

Repeat                  times

Average the measurements to get an estimate 

⇢

O(1/✏2)

F̂ = F ± ✏

{ , 1�  }

This requires a quantum computer!  
We want the quantum computational complexity to be O(1)!



Direct Fidelity Estimation

First expand ρ in 
the Pauli basis: 

� =
X

j

Tr(�⇥̂j)p
d

⇥̂jp
d
=

X

j

⇤�(j)
⇥̂jp
d

F. & Liu 11;   da Silva et al. 11
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Direct Fidelity Estimation

First expand ρ in 
the Pauli basis: 

� =
X

j

Tr(�⇥̂j)p
d

⇥̂jp
d
=

X

j

⇤�(j)
⇥̂jp
d

The fidelity with respect to a pure state Ψ is given by:

F (�,⇤) = Tr(�⇤) = �⇤|�|⇤⇥ =
X

j

⇥�(j)⇥⇥(j)

For a pure state Ψ, Tr(Ψ2)=1, so we 
have a natural probability distribution:

Pr(j) =
⇥
� (j)

⇤2

F. & Liu 11;   da Silva et al. 11



Direct Fidelity Estimation

First expand ρ in 
the Pauli basis: 

� =
X

j

Tr(�⇥̂j)p
d

⇥̂jp
d
=

X

j

⇤�(j)
⇥̂jp
d

The fidelity with respect to a pure state Ψ is given by:

F (�,⇤) = Tr(�⇤) = �⇤|�|⇤⇥ =
X

j

⇥�(j)⇥⇥(j)

For a pure state Ψ, Tr(Ψ2)=1, so we 
have a natural probability distribution:

Pr(j) =
⇥
� (j)

⇤2

Rewrite the fidelity: X =
�⇢(j)

� (j)
F (�,⇥) = Ej

⇥
X
⇤

with
F. & Liu 11;   da Silva et al. 11



Direct Fidelity Estimation

Thus, the fidelity can be computed by sampling the 
random variable X and averaging over many trials!

we only need 
By Chebyshev’s inequality, to achieve

independent samples, which is constant.O(1/⇥2�)

Pr
⇥
|F̂ � F | � ✏

⇤
 �

Thus, the measurement complexity depends only on the 
precision and the confidence and not on the system size.

Moreover, the variance is small:
Var(X) = E[X2]� E[X]2 = Tr(⇢2)� F 2  1

F. & Liu 11;   da Silva et al. 11



Sampling from the relevance distribution is in general a 
hard computation task and will take exponential time on a 

classical computer for a generic random state. 

Caveat 1: 
The (classical) computational complexity depends on d.

Direct Fidelity Estimation: the caveats

F. & Liu 11;   da Silva et al. 11
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The silver lining: 

Caveat 1: 
The (classical) computational complexity depends on d.

Direct Fidelity Estimation: the caveats

Sampling is all done as preprocessing

No need for complicated data analysis

Sampling can be done in parallel

F. & Liu 11;   da Silva et al. 11



Caveat 2: 
The sample complexity depends on d.

We can only learn X up to some finite precision by repeatedly 
measuring Pauli operators… in general we will need to 

measure many times to resolve the bias if the intended state 
was chosen completely at random.

F. & Liu 11;   da Silva et al. 11



Direct Fidelity Estimation: complexity

Low 09;   F. & Liu 11;   da Silva et al. 11



 If the noise is dephasing (or depolarizing) then we get a very 
favorable scaling:

Direct Fidelity Estimation: complexity

O

✓
d

✏2
log

1

�

◆
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 If the noise is dephasing (or depolarizing) then we get a very 
favorable scaling:

By truncating negligibly small probabilities from the relevance 
distribution, we can improve the worst-case scaling at the cost of 
adding a tiny (also negligible) bias to our estimate.
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 If the noise is dephasing (or depolarizing) then we get a very 
favorable scaling:

By truncating negligibly small probabilities from the relevance 
distribution, we can improve the worst-case scaling at the cost of 
adding a tiny (also negligible) bias to our estimate.

Works with more general operator bases, like coherent states.

Direct Fidelity Estimation: complexity

O

✓
d

✏2
log

1

�

◆

Low 09;   F. & Liu 11;   da Silva et al. 11



 If the noise is dephasing (or depolarizing) then we get a very 
favorable scaling:

By truncating negligibly small probabilities from the relevance 
distribution, we can improve the worst-case scaling at the cost of 
adding a tiny (also negligible) bias to our estimate.

Works with more general operator bases, like coherent states.

If the nonzero Pauli expectations are only inverse polynomially 
small, then the number of copies is polynomial
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 If the noise is dephasing (or depolarizing) then we get a very 
favorable scaling:

By truncating negligibly small probabilities from the relevance 
distribution, we can improve the worst-case scaling at the cost of 
adding a tiny (also negligible) bias to our estimate.

Works with more general operator bases, like coherent states.

If the nonzero Pauli expectations are only inverse polynomially 
small, then the number of copies is polynomial

Lots of interesting states satisfy this: e.g. stabilizer states, W states, Dicke states (fixed k), and Van den 
Nest’s “computationally tractable” states.
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 If the noise is dephasing (or depolarizing) then we get a very 
favorable scaling:

By truncating negligibly small probabilities from the relevance 
distribution, we can improve the worst-case scaling at the cost of 
adding a tiny (also negligible) bias to our estimate.

Works with more general operator bases, like coherent states.

If the nonzero Pauli expectations are only inverse polynomially 
small, then the number of copies is polynomial

Lots of interesting states satisfy this: e.g. stabilizer states, W states, Dicke states (fixed k), and Van den 
Nest’s “computationally tractable” states.

For Clifford circuits, the entire estimate is achievable in poly(n) time 
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Hamiltonian and Phase Estimation

Learns generators instead of gates, allowing for RB-like amplification to aid 
estimation.


• Robust Phase Est.: (Kimmel et al. 2015). Proves that Heisenberg-limited 
accuracy is achievable with non-adaptive measurements, using modification 
to Higgins et al. 2009 binary search algorithm. Robust to additive errors.


• Filtering: Particle (Granade et al. 2012), rejection (Wiebe and Granade 2016), 
guaranteed-cost (Roy et al. 2016). All provide time-dep estimation, with 
varying tradeoffs in implementation, generality and robustness.


Phase est. as resource for characterization / control design: Kimmel et al. 2015 
also applies to calibration problem: represent over-rotation as phase 
accumulation, estimate.



Learning States and Gates

Several of these examples highlight the special role of stabilizer 
states and Clifford gates.


A more general question is can we efficiently learn states that 
have concise descriptions? There are many candidates for 
which we know how to do this


• Low rank states and gates (Gross et al. 09)

• Clifford gates (Low 09) 

• Permutationally invariant states (Toth et al. 10)

• Matrix product states, or MPS (Cramer et al. 10)

• Sparse process matrices (Shabani et al. 11)

• MERA tensor networks (Landon-Cardinal et al. 12) 

• Stabilizer states (Montanaro et al. 13) 

• …
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Compressed tomography

Compressed tomography is a nearly ideal solution!

Suppose a state is well approximated by a rank r density matrix. 
Can we improve the complexity of tomography?

*For process tomography, replace d with d2

Gross et al. 09;  Gross 10;  Liu 11;  F. et al. 12
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Main results

For an arbitrary matrix     of dimension dxd, rank r,  
sample a set     of m = O(rd log2d) iid random Paulis P.

Theorem:   with high probability over      and the data

Gross, Liu, F., Becker, & Eisert, PRL 2009; Gross IEEE TIT 2009.

⇢
⌦

Let                                            be the sampling operator.R(x) = Tr(Px) 8P 2 ⌦

⌦

Estimate

⇢̂ = argmin kxktr s.t. kR(x)� bk2  ✏Compute:

k⇢̂� ⇢ktr  O(✏
p
rd)

k⇢̂� ⇢ktr  O(✏
p
rd)

b(P ) ⇡ Tr(P⇢)± ✏p
m

*uses O(d4) samples!



“local” results

Argument is based on local properties (dual certificate).
Gross, Liu, F., Becker, & Eisert, PRL 2009; Gross IEEE TIT 2009.

k⇢̂� ⇢ktr  O(✏
p
rd)

high-dimensional 
convex space
kxktr  1

low-rank points are “exposed” R(x) = b

random, incoherent choice not 
likely to align with the faces

unique solution

Any perturbation around the true state either  
increases          or changes the value of R(x)kxktr



Main results

Sample a set     of m = O(rd log6d) iid random Paulis P. 
For every matrix     of dimension dxd, rank r, 

Theorem:   with high probability over      and the data:

Gross et al. 09;  Gross 10;  Liu 11;  F. et al. 12

⌦

⌦

Estimate:

Compute:

⇢

⇢̂ = argmin kxktr s.t.
��R⇤�R(x)� b

���  ✏

b(P ) ⇡ Tr(P⇢)± ✏
log

2.5 dp
rd

k⇢̂� ⇢ktr  O(✏)

*For process tomography, replace d with d2

t = O

✓
r2d2 log(d)

✏2

◆
This uses                        copies… far few than previously!

.
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⌦

⌦

Estimate:

Compute:

⇢

⇢̂ = argmin kxktr s.t.
��R⇤�R(x)� b

���  ✏

b(P ) ⇡ Tr(P⇢)± ✏
log

2.5 dp
rd

k⇢̂� ⇢ktr  O(✏)

“Universal” set     that holds for all ⌦ ⇢

*For process tomography, replace d with d2

t = O

✓
r2d2 log(d)

✏2

◆
This uses                        copies… far few than previously!

.



Restricted Isometry Property

Key result to achieve this is “RIP for Paulis”
Liu 11

��kR(x)k2 � kxk2
��  �kxk2

“Projection onto a subspace approximately preserves length”

A sampling operator obeys the        RIP if 
for all x with rank r, 

(r, �)



And if the state is full rank?

As before, suppose we measure t copies, with

Thus, we get the optimal error bound modulo 
the constant in front of the truncation error!

t = O

✓
r2d2 log(d)

✏2

◆

Now decompose    into the best rank r  
approximation plus the residual tail:

⇢
⇢ = ⇢r + ⇢t

Theorem: same method as before gives a reconstruction error

k⇢̂� ⇢ktr  ✏+ Ck⇢tktr

F., Gross, Liu, & Eisert 12



Sample complexity

How good is this result? Can the sample complexity be 
improved? Let’s define the minimax risk:

We now get another Theorem, a lower bound on the sample 
complexity for some fixed risk tolerance.

Our sample complexity is optimal up to log factors!

M(↵) = inf
h⇢̂,Pii

sup
⇢

Pr
⇥
k⇢̂� ⇢k1 > ↵

⇤

If M = O(1) then t = ⌦

✓
r2d2

log d

◆

     The implicit “constant” depends on    !✏

F., Gross, Liu, & Eisert 12



Simulated performance
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Experimental performance

The compressed sensing method yields a massive 
reduction in spurious signal compared to traditional 
estimators and accurately estimates the coherent noise.

7-qubit ion-trap experiment (Innsbruck) using 
~130 random Pauli measurements (Riofrio et al. 16).

��⇢� | ih |
��

Baldwin et al. 14; Riofrio et al. 16



What does compressed sensing “mean”?

We now see that compressed sensing 
involves two separate ideas:

(1) using an incomplete set of observables
(2) using regularized estimators to get low-rank solutions

We normally do both at the same time. 
Our results show that (2) can be used irrespective of (1)… 

…however, at the same time, there is  
no penalty for choosing to do (1).

And there is a big practical incentive to do (1), since 
sparse data can be processed faster.



Matrix Product States (MPS)
Cramer et al. 10



Matrix Product States (MPS)

|�� =
D�

�=1

|��|��

Cramer et al. 10



Matrix Product States (MPS)

A : CD � CD ⇥ Cd

A =
d�

i=1

D�

�,⇥=1

Ai
�⇥ |i⇤⇥�|⇥⇥|

|�� =
D�

�=1

|��|��

Cramer et al. 10



Matrix Product States (MPS)

A : CD � CD ⇥ Cd

A =
d�

i=1

D�

�,⇥=1

Ai
�⇥ |i⇤⇥�|⇥⇥|

|�� =
D�

�=1

|��|��

MPS form a variational ansatz for ground states of 
1-dimensional quantum systems that systematically 
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Matrix Product States (MPS)

|�⇥ =
d⇤

j1,...,jn=1

Tr
�
Aj1Aj2 · · · Ajn

⇥
|j1, j2, . . . , jn⇥

A : CD � CD ⇥ Cd

A =
d�

i=1

D�

�,⇥=1

Ai
�⇥ |i⇤⇥�|⇥⇥|

|�� =
D�

�=1

|��|��

MPS form a variational ansatz for ground states of 
1-dimensional quantum systems that systematically 
goes beyond the mean-field approximation.

O(n d D2) parameters!

Cramer et al. 10



State tomography for non-degenerate MPS

Measure local reduced density operators and use tools from 
many-body physics (DMRG) to solve the local consistency 
problem

⇢j

This is QMA hard in general, but if the “true” state is indeed 
described by an injective MPS, then the method will work in 
time polynomial in n, the length of the chain.

Cramer et al. 10



Experimental MPS tomography
Lanyon et al. 16

Measure properties of a quantum quench using 
MPS tomography



Strategies for Characterizing Noise
Low complexity,

Less information

High complexity,

More information

Randomized

benchmarking

Purity & interleaved

benchmarking

Matrix product state

tomography

Direct fidelity

estimation

Permutation-invariant states, Stabilizer states, 

Compressed sensing (sparse in a known basis)


Full 

tomography,

Gate-set  
tomography

Compressed sensing 

(approx. low rank)
 Benchmarking 


tomography

Hamiltonian

parameter estimation



Randomized Benchmarking Tomography

Combine the SPAM-free advantages of RB with the debugging power of 
quantum tomography.

• Interleave target gate with RB, estimate C ∘ Λ for each of several different 

Clifford gates C. Need 10 Clifford gates to span qubit unital subspace. 
Note that this can yield negative decay probabilities. Ex:


• Reconstruct Λ from the estimated overlaps.

Kimmel et al. 14



Gate Set Tomography

Idea: “calibration-free” tomography that simultaneously estimates all gates in 
an ensemble, as well as SPAM errors.

• Merkel et al. 13; Expands to higher dimensions to include gate-dependent 

and correlated errors. Reconstructs entire gate set at once to ensure self-
consistency, linearizing near target. Better ♢ predictions than QPT!

Merkel et al. 13;  Blume-Kohout et al. 13;  Blume-Kohout et al. 16

• Blume-Kohout et al. 13, 16. Treat linear est as starting point for MLE 
reconstruction. Application to trapped ions, ESR qubits. Software 
implementation (pyGSTi • pygsti.info).



Drift, time dependence, and adaptivity

Granade, Combes, Cory 16

Tracking drift in a 
tomography experiment 
using sequential Monte 
Carlo and particle filters. 
Time-dependence 
included as diffusion, 
similar to previous 
applications in classical 
computer vision.
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Conclusion
•  There are a variety of powerful protocols for characterizing errors in quantum 

devices, depending on question of interest.

• Tomography / RB at opposite extremes of model complexity

• Many compelling intermediate models: 

compressed sensing, RB tomography, learning ansätze, etc.

• Readily available estimation tools to support QCVV in practice.


• Characterization isn't a solved problem.

• Gaps between theoretical assumptions and experimental reality, 

motivating relaxed / generalized approaches.

• Need new theoretical and statistical tools for better comparisons with 

quantities of interest (e.g. ♢-norm).


• Close the engineering cycle by applying QCVV diagnostics to new 
experiments.



Fixed points and symmetry

Start with three 
approximate planes 
Rub A against B and C 
until A matches both 
Compare B to C: 
relative defects are 
now exposed 
Permute and repeat


