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The fault tolerance threshold theorem

You can gquantum compute indefinitely and with
low overhead, so long as

1) your gate error rate Is less than € and
2) the correlations are sufficiently weak

Kitaev 97; Aharonov & Ben-Or 97; Knill, LaFlamme, & Zurek 98;
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% ¢ Is pretty small, ~0.1% or less.
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s what do “¢” and “weak” even mean”?
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The fault tolerance threshold theorem

You can quantum compute indefinitely and with
low overhead, so long as

1) your gate error rate is less than € and
2) the correlations are sufficiently weak

% ¢ Is pretty small, ~0.1% or less.
% the overhead is still quite demanding
s what do “¢” and “weak” even mean”?

Quantum computers cannot be build “off the shelf”

Kitaev 97; Aharonov & Ben-Or 97; Knill, LaFlamme, & Zurek 98;



The engineering cycle

We must iteratively improve
devices by estimating sources
of smaller and smaller errors

s prioritize errors

% measure them accurately
s« fIX them

s verify they’ve been fixed

prioritize

measure




The engineering cycle

prioritize

We must iteratively improve
devices by estimating sources
of smaller and smaller errors

% prioritize errors
% measure them accurately
% fix them
% verify they’ve been fixed
measure
To wind around this cycle, we must:

% Design diagnostics to help identity dominant noise sources
% Estimate errors accurately and with high precision

% Quantify the errors according to FTQC-relevant metrics

% Do all this with minimal resources



Outline (Part |)

% \What are our resources”
% complexity dictionary
% \What should we measure”?
s distance measures for FTQC
% reasons we use these measures
What are our tools”?
% State and process tomography
% standard assumptions and proof of correctness
% Randomized benchmarking
% standard assumptions and proof of correctness

o

A
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Complexity Dictionary

*Measurement Complexity

% The number of distinct measurement settings or state
preparations required

Ex: measure X five times, Y six times, and Z seven times;
this has measurement complexity 3

% Sample Complexity

= The number of independent copies of the system that you are
required to measure

EX: In the previous example, the sample complexity is 5+6+7 = 18



Complexity Dictionary

s Computational Complexity

= The amount of classical computation required, including the
pre- and post-processing of the data

In practice, both space and time complexity are issues,
especially the latter for adaptive methods

= The amount of quantum computation required to implement
quantum circuits during the protocol

The amount of guantum computing needed to certify a noisy,
non-universal device shouldn’t require a perfect guantum computer.



Most relevant scaling parameters

* n the number of qubits

% d the Hilbert space dimension (usually the whole system, not a single qudit)
% £ the precision of an estimated error (in some norm)

% 0 the probability of correctness of a randomized algorithm

%* m the length of a sequence of quantum gates (~circuit size)

In the majority of situations, the important scaling parameters are
d, e, m.

This is because n interconverts easily with d, and most methods
scale only logarithmically with &.



Most relevant scaling parameters

* n the number of qubits

% d the Hilbert space dimension (usually the whole system, not a single qudit)
% £ the precision of an estimated error (in some norm)

% 0 the probability of correctness of a randomized algorithm

%* m the length of a sequence of quantum gates (~circuit size)

Important caveat.
this is data-driven science and constant factors do matter here!

Theory results that ignore constants and log factors are
Important, but implementations and practical heuristics need to
be very competitive to get adopted.



Figures of Merit: States

# Fidelity
F(p,0) = lv/pVoli

*Bounded between [0,1], symmetric

#If one state is pure, F(p, 1) = (1|ply)

% Note: two conventions exist in the literature: “sqrt(F) vs. F?
* Trace distance

T(p,0) = 5lp— ol
*Bounded between [0,1], symmetric
% Related to the fidelity via 1 — VF <T<+V1-F

% many other figures of merit are sensible, but we’ll stick to these.

Jozsa 94; Fuchs & van de Graaf 99



Figures of Merit: Channels

#* “Average Error Rate”

HEU) =1 / QW (|UTEW)U )

% Bounded between [0,d/(d+1)]
(I know, right?)

#*|t’'s symmetric
% Satisfies 7(E,U) =r(EUT,T)

% The process fidelity is 1 d}_lr

= Not a norm (no triangle inequality)

#* Physical interpretation: average error over pure states.

It is often convenient to phrase complexity in terms of r, so we’ll add it to
our list of relevant scaling parameters.



Figures of Merit: Channels

*Diamond distance (completely bounded norm, cb norm)
D(E,F)=supi|[ERT - FRI)(p)|
P

*Bounded between [0,1], symmetric.

% Related to the average error rate via'

TS D<dySp

*|t’s a true norm, and obeys the triangle inequality.

= Qperational interpretation as the maximum bias of a single-
shot measurement distinguishing the two channels

Wallman & F. 14



Figures of Merit: why these ones?

Why do people care about the quantity D7

Chaining: D(&¢&, FaFy) < D(&1, F1) + D(E, F2)

Stability: D(Z ®&,7® F) = D(E, F)

These properties are not satisfied by r, and they are used

crucially in existing proofs of the FT threshold theorem. This
makes D appealing to theorists.

Why do people care about the quantity r?

The average error rate r is easy to measure! Randomized
benchmarking can estimate r accurately in a wide variety of
circumstances. This makes r appealing to experimentalists.

Gilchrist, Langford, Nielsen 05



Strategies for Characterizing Noise

High complexity,
More information

Low complexity,
Less information

A A A A A A A A T
Full
Randomized tomography,
benchmarking Matrix product state gate-set
tomograph tomography
Direct fidelity Jrapty | ‘
estimation .
Compressed sensing
Purity & interleaved (approx. low rank) Benchmarking
benchmarking tomography
. I. Permutation-invariant states, Stabilizer states,
Hamiltonian . . .
Compressed sensing (sparse in a known basis)

parameter estimation



Strategies for Characterizing Noise

Low complexity, High complexity,
Less information More information

A A A A A A A T T
Full
Randomized tomography,
benchmarking Matrix product state gate-set
tomograph tomography
Direct fidelity Jrapny | ‘
estimation .
Compressed sensing
Purity & interleaved (approx. low rank) Benchmarking
benchmarking

tomography
|

Hamiltonian Permutation-invariant states, Stabilizer states,
oarameter estimation Compressed sensing (sparse in a known basis)



Diagrammatic notation

e Tensor network notation

RPUW — @

e Contraction
)
O =% QO
1,]

e Grouping and splitting

Conventional | Einstein TNN
(Z, 9) Tal* x Y
M M"Bvﬂ M v
AB A% B”, A—B
Tr(X) X :X

00— - =0—=0— - =0—O0—

Figures: Bridgeman & Chubb 16



State Tomography

%What is state tomography?

Tr(E ) p

*Prepare a given (unknown) state p
*Measure a POVM with effects E.

* These experiments define a probability distribution:

p(Elp) := Tx(Ep)
*Now sample repeatedly to get an estimate of p.



State Tomography

%What is state tomography?

Tr(E -) p

We can formalize this with the notion of a
sampling operator.

A H*>* — R” A(p)] . = Tr(Ejp)

The /" element is just the probability of the /! outcome.

Thus, the input and output are linearly related.



State Tomography

%What is state tomography?

Tr(E -) p

Now suppose that, because of experimental noise,
we must write the data of empirical estimates y as

y = A(p) + 2 z ~ N(0,0)

Suppose further that the sampling operator is full rank.
Then the minimum variance unbiased estimator is the
least squares estimate:

p=(ATA) Ay



Assumptions of State Tomography

This estimator p = (AY A)~' A’y gives us a provably optimal
estimate of the true state, so we’re done, right”

Tr|EE(p)] Tr(E ) E P

#*Noise means we only reconstruct (noise + state)

s State Preparation And Measurement errors (SPAM) when doing
tomography of quantum channels

*Noise is assumed iid (exchangeable prior), so drift is not tolerated
%It is extremely resource intensive! Complexity is a key bottleneck
* The reconstructed state (channel) might not even be positive (CP)

% Quantifying the uncertainty of the reconstruction is challenging



Tomography in Practice

Despite the formidable complexity
of doing tomography, experiments
have succeeded is doing
tomography in a variety of physical
systems.

» The record for the largest
iImplementation of “standard”
tomography is in an 8 qubit
lon trap experiment done in oopDDDS WP DDDDoODS
Innsbruck by the Blatt group

+ This experiment used a maximum likelihood estimator (instead of linear
inversion), defined as p = arg max Pr(y|p, A)
P

* The post-processing alone took two weeks to get the estimate + error bars!
Haffner et al. 05



Tomography in Practice

Open-source software implementations of quantum state tomography,
reflecting different strategies for estimation:

- Tomographer (Faist & Renner 2016)
C++ / command-line « https://tomographer.github.io
Uses Metropolis—Hastings algorithm to compute Bayesian region
estimates, then expands to find confidence regions.

* QInfer (Granade et al. 2016)

Python - ginfer.org

Uses particle filtering to approximate posterior distribution and to report
credible regions.



https://tomographer.github.io
http://qinfer.org

Strategies for Characterizing Noise

Low complexity, High complexity,
Less information More information

A A A A A A A T T
Full
Randomized tomography,
benchmarking Matrix product state gate-set
tomograph tomography
Direct fidelity Jrapny | ‘
estimation .
Compressed sensing
Purity & interleaved (approx. low rank) Benchmarking
benchmarking

tomography
|

Hamiltonian Permutation-invariant states, Stabilizer states,
oarameter estimation Compressed sensing (sparse in a known basis)



Tomography versus RB

Tomography was limited by two main factors:

« SPAM errors, leading to low accuracy in the estimate

- High complexity, making practical implementation difficult

Randomized Benchmarking (RB) is a method that tries to solve both of these
problems, but at the cost that it provides much less information (though
hopefully it is relevant information)



Randomized Benchmarking

(El Cm...7 C3 Co C1 Co 10)
= C1

% Choose a random set s of m Clifford gates
# Prepare the initial state in the computational basis

% Apply the Clifford sequence, and add the inverse gate
at the end of the sequence

% Measure in the computational basis

Repeat to estimate Fms = Pr(Els,p)
Simple procedure tests performance of large quantum circuits

Emerson, Alicki, Zyczkowski 05; Knill et al. 08.



Randomized

Fidelity

Senchmarking

"y

AR T
i by :
S f 1 :

Number of computational gates

Knill et al. 2008.



Randomized Benchmarking

f the noise is time- and gate-independent, we get:

o |
; ; “Oth order model”

2 o it to the model

D

= Q | Fm = A+ Bfm

O ©

O)

g Note this iIs not a

Z a linearizable model!

dFavg(N) — 1

Number of computational gates J = d—1
gphysical — Anoise Z/{ideal -Favg(A) — /OWTTWA(@D)]

Knill et al. 2008.



Randomized Benchmarking

(El Cm.../ Cs Co C1 Co 10)

Factor each Clifford into ideal + noise

E'l9Cmt 1 A Cs A C A Co I Io)

insert C1C+

Repeat this insertion everywhere, and albsorb
extra gates into the endpoints as SPAM

Magesan et al. 11



(E]

Cm

Randomized

Cs

Senchmarking

Co

Cs

Co

0)

Look at the expected value of the probabllities over sequences

<48

El ]

g Cm+

Cs |

g C3+

Co |

g CQ+

Ci |

g C1+

— |0’)

By independence, this factorizes into a product of average channels
(Care must be taken on the boundaries)

(E”]

<48

7|

N

g CS+

~

<48

Cs'

N

g CS-I-

0”)

Magesan et al. 11



Randomized Benchmarking

(El Cm.../ Cs Co C1 Co 10)

Each term in the product is a group average

_ o )
A BN ‘—m;[chcj 1] - /dULlAZ[f — A

The last line follows because the Clifford group is a 2-design

Now using Schur’s lemma, we find A(p) =pp+ (1 — p)%

Magesan et al. 11



Randomized Benchmarking

(El Cm.../ Cs Co C1 Co 10)

The averaged data looks like a product of depolarizing channels

) ] 1
Fp=A+Bf" = (E|— A" — |0) Ap)=pp+(1—-p)-

Moreover, the constant p is related to the average gate infidelity:

d _
p=1 d—lT(A)

Thus, this fit gives us a straightforward way to estimate r.

This is the average error of the average Clifford gate.

Magesan et al. 11



Key Assumptions for Randomized Benchmarking

As with tomography, RB also depends on several key assumptions:

- Gate-Independence: The noise incurred by each gate cannot depend on
which Clifford gate we performed.

- Markovianity: The noise processes can be described by a CPTP map acting
on the system of interest.

- Time-independence: The noise processes should not drift during the course
of the experiment, or the reported answer will also be an average over this
dependence.

- 2-design: The group should be a 2-design, but not universal (no T-gates).

Relaxing and certifying these assumptions is an area of active work.



Randomized Benchmarking in Practice
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FIG. 2: (Color online) Results of the single-qubit benchmarking experiments. (a) Histogram of sequences of a given length with a given
fidelity. Fidelity is discretized to 0.01 precision because 100 experiments were performed for each sequence. (b) Mean fidelity for each

sequence length with error bars. The black trace is a least-squares fit to Eq. (1) yielding an EPG of 2.0(2) x 10~. (Inset) Summed histogram
of bright and dark calibration experiments with a red line indicating the detection threshold.

Brown et al. PRA 2011



Randomized Benchmarking in Practice

How many random sequences and repetitions are necessary?

b 1.00p
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FIG. 2: (Color online) Results of the single-qubit benchmarking experiments. (a) Histogram of sequences of a given length with a given
fidelity. Fidelity is discretized to 0.01 precision because 100 experiments were performed for each sequence. (b) Mean fidelity for each

sequence length with error bars. The black trace is a least-squares fit to Eq. (1) yielding an EPG of 2.0(2) x 10~. (Inset) Summed histogram
of bright and dark calibration experiments with a red line indicating the detection threshold.

Brown et al. PRA 2011



Randomized Benchmarking in Practice
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Randomized Benchmarking in Practice

How many random sequences and repetitions are necessary?

0-007 [ | % [ |
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: T ! SPAM error
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number of computational gates Harty et al. PRL 2014



Randomized Benchmarking in Practice

Software solutions for randomized benchmarking estimation in practice:

- nlinfit (MATLAB) / curve_fit (SciPy)
Estimates least-squares fit for RB, but may report non-physical SPAM
parameters (e.g.; A=1.5and B =-0.5).

 QInfer (Granade, Ferrie, & Cory 15)
Python - ginfer.org
Provides region estimates, Cramér-Rao bounds for RB experiments. Uses
one shot per sequence to concentrate inference on relevant parameters.

« pyGSTi (Nielsen et al.)
Python - pygsti.info
Estimates RB as a special case of the more general but more expensive
gate set tomography (GST) procedure.



http://qinfer.org
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Randomized Benchmarking

We saw how RB allows us to estimate the average
error rate of our average Clifford noise, as long as
certain natural assumptions are met.

-7 % - How expensive is
benchmarking?

 Can it be used for estimating
FTQC thresholds?

* What happens when we break
the RB assumptions?

Average fidelity
0.8

0.7

« Can it be extended to learn

' t our noise?
Number of computational gates more about our noise



2B with confidence

*Random Clifford circuits have small variance;

- plug this into standard arguments to get guidance for how to
choose # of sequences

% General upper bound
2
o < O(mr)

#*For qubits, this can be improved to

02 < O(m?r?)

*\When the noise is diagonal in the Pauli basis, this improves even

further to
o2 < O(mr?)

Magesan et al. 11; Wallman & F., 15; Helsen et al. 17



Tight bounds for qubits
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Tight bounds for multiple qubits
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Accelerated RB

The variance at each sequence length in RB depends on
two terms:

- Within-sequence variance (E,|Var(p|s)| ):
Completely described by binomial sampling.

- Inter-sequence variance ( Var, [E(p|s)| ):
Described by RB complexity analysis.

If sequences are reused many times, then inter-sequence
variance dominates.

Granade, Ferrie and Cory NJP 2015



Accelerated RB

If each sequence is used once before drawing new one,
binomial sampling exactly describes RB performance.

This is optimal for learning p!

Inter-sequence variance is sensitive to coherence of noise and other
effects, rather than p itself.

Bonus: Cramér-Rao bound is easy to evaluate in
accelerated (single-shot) limit.

» Optimal sequence length (=1 /r).

» Formal test on achievable precision for single-shot RB
experiments.

Granade, Ferrie and Cory NJP 2015



Randomized

Senchmarking in Practice
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Comparison to the FTQC threshold

Fault-tolerant thresholds are proven in terms of D, but we
only estimate r in RB experiments.

Problem: these are only loosely related!

dtly <D< d\/d“

Which types of noise are most detrimental for fault-tolerance?

In particular, Pauli noise, where most thresholds are
estimated, saturates the lower bound, which could be orders
of magnitude off from D!

Wallman & F. 14; Sanders et al. 16



Coherent noise

Benchmarking measures the average error rate.

For the same fixed average error, this quantity does not care
f the noise Is coherent (unitary) or incoherent (e.q.
dephasing, amplitude damping, etc.)

These two noise types have radically different effects on the
worst-case error, that Is relevant for fault-tolerance thresholds



Coherent errors and gate dependent noise
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Coherent errors are the culprit

E(p) = po,e 7% pe’= g, + (1 — p)e” 7= pe'°-

This noise interpolates
between low-frequency
(unitary) and high-
frequency (stochastic)
NOISe.

L
a

nless unitary rotation
ngles are at least as

S

mall as stochastic error,

they dominate the noise
scaling.

=1F

2.16

0.18

Kueng et al., 16



Amplitude damping is more benign

Amplitude dampingis |
not the problem. T

-1.0}

Y

. |
05 06 07 08 09 10

-1.5

—2.0}|

Using SDP methods, we get exact and analytic bounds
The main idea is to use semidefinite programs to find dual feasible points

Kueng et al., 16



How errors accumulate: coherence matters!

A Gk

Error in 3 qubit circuits with 50 gates

op
0.015}
0.010}

0.005}

unitary noise

e © © © o o © & © o * ® o

.
G Hex - -

— G & — Y

Given an ideal and a
noisy implementation of
the same circuit, what is
the difference in the
success probability”?

Puzzuoli et al. 13; Wallman 15



Wallman, Granade, Harper, F., NJP 2015

Estimating the Coherence of Noise

For simplicity, let me restrict trace-preserving and unital noise,
.e. noise for which the maximally mixed state is a fixed point.

1
_ T
u(€) = P Tr(E7E) — 1]
The unitarity iIs a measure of noise that is only sensitive to
iIncoherent noise. For any noise map & and unitary U,

u(E) =uUE) = u(EU)

Because this quantity is quadratic in the noise, this acts like
second moment information about the noise, and helps us
distinguish average- and worst-case behavior.

(The definition generalizes for arbitrary noise, but is marginally more complicated.)



Wallman, Granade, Harper, F., NJP 2015

Estimating the Coherence of Noise

Ex: For a natural noise model with dephasing noise plus
unitary rotation, the unitarity is sensitive to the shrinkage but
not the rotation.

average error is sensitive to all of this

unitarity Is only sensitive here




Purity Benchmarking

The unitarity can be estimated via purity benchmarking, an
RB-like experiment that estimates a decay rate.

Randomized benchmarking Purity benchmarking
1 1
0.8 0.8
0.6 0.6
(oz> ? V <P>
0.4 S A 0.4
Fiees
aT =1, no SEL A | |47 =1, no SEL
02 oT = Tmcasa no SEL } ? ?- ‘}‘ 02 oT = Tmeas, no SEL
0T = Trneas, SEL oT = Tmeas, SEL
0 | | | | | | ] 1 | 0 | L 1 1 L | 1 1
0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16
sequence length m sequence length m

Fengetal., 16



Wallman, Granade, Harper, F., NJP 2015

Purity Benchmarking

The unitarity can be estimated via purity benchmarking, an
RB-like experiment that estimates a decay rate.

s [T ] =Au(N™" + B

Unitarity bounds the diamond distance up to constant factors:

cd\/u' aGr 1§D§d2cd\/u' adr 1,

Wallman 16; Kueng et al. 16



Wallman, Granade, Harper, F., NJP 2015

Purity Benchmarking

The unitarity can be estimated via purity benchmarking, an
RB-like experiment that estimates a decay rate.

0.9-

It correlates with, but is distinct
from average error rate:

©
(o]
|

Average Gate Fidelity F(&)
o o
(@)] ~

Given a fixed average error rate r,
the unitarity u cannot be too small:

o
U

u(@) 2 [1- 74r(@)]

It also provides a bound on

the best possible average error rate 4

achievable via unitary control:

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Unitarity u(&)



Interleaved

~
Average Fidelity &
c o ©o o -~
(o)) ~ (0¢] (o) o

o
w

® Standard RB
A Interleaved X /2

¢ |Interleaved Y; /2
| | | l |

16 32 48 64 80 96
Length of random sequence

Do two experiments: a control
experiment with random Cliffords,
and a second “interleaved”
experiment with a specific fixed gate
after each random Clifford.

Under some assumptions,
comparing the two decay curves
allows us to back out an estimate of
the fidelity of the specific interleaved
gate.

Magesan et al. PRL 2012



Characterizing T gates

We also need to be able to characterize non-Clifford gates such as T.

A

- Dihedral RB (Dugas et al. 2015, Cross et al.
2016): Use dihedral or dihedral-CNOT groups
instead of Clifford group to do benchmarking.
The T gate is now directly an element of the

group.

- CTPT Benchmarking (Harper & F. 2016): Carefully arrange Clifford and Pauli
gates to take advantage of the fact that TPT is always a Clifford, giving
traditional interleaved benchmarking.



L eakage and Logical RB

Two other extensions allow us to characterize leakage rates and
logical error rates

- Leakage RB (Wallman et al. 2015): Change final measurement to identity,
don't do final inverse. Decay then reflects leakage out of subspace
represented by identity measurement.

 Logical RB (Lu et al. 2015 (exp); Combes et al. 2016 (th)): Perform
randomized benchmarking on logical channels, rather than physical.

< »




Direct Fidelity Estimation

We’ve seen that RB is a flexible and (in some cases) reliable
method of estimating noise in quantum systems.

There Is one other method that is well adapted to larger scale

circuits, but has the drawback that it can be susceptible to
SPAM errors

Main idea:

Monte Carlo estimation of fidelity by expressing the fidelity
function in a simple operator basis.

F. & Liu 11; da Silvaetal. 11



“Direct” Fidelity Estimation: a trivial algorithm

First recall the definition of fidelity.
The fidelity with respect to a pure state W is given by:

F(p,v) = Tr(pv) = (¥|p|)

If we allow arbitrary quantum operations, we can do the following:

*\WWe are given many copies of the state p
*Make the two-outcome measurement {¢ ; 1 — w}
#Repeat O(1/€?) times

% Average the measurements to get an estimate ' = F + ¢

This requires a guantum computer!
We want the guantum computational complexity to be O(1)!



Direct Fidelity Estimation

FIFSt p”’] _ TI'(/OAJ AJ | 5_3
the Pauli basis: EJ: vVd d ;XP(J)\/E

F. & Liu 11; da Silvaetal. 11
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Direct Fidelity Estimation

/\

First 0 in Tr( pJJ
| | p = X o
the Paull basis: Z Z i~

The with respect to a pure state W is given by:

F(p,v) = Tr(pp) = (lplvy) = pr )X (7

For a pure state W, Tr(W2)=1, so we

P A A2
have a natural r(j) = [xu(4),

Rewrite the fidelity:  F(p,v) = E,;[X] with X = ;@8))
(o

F. & Liu 11; da Silvaetal. 11




Direct Fidelity Estimation

Thus, the fidelity can be computed by the
random variable X and averaging over many trials!

Moreover, the variance 1s small;
Var(X) = E[X?] — E[X]* = Tr(p?) — F* < 1

By Chebyshev’s inequality, to achieve Pr[|F' — F| > ¢] <6

we only need O(1/£2§) independent samples, which is

Thus, the measurement complexity depends only on the
precision and the confidence and not on the system size.

F. & Liu 11; da Silvaetal. 11



Direct Fidelity

—stimation: the caveats

Caveat 1:

The (classical) computational complexity depends on d.

Sampling from the relevance distribution is in general a

and will take exponential time on a

classical computer for a generic random state.

F. & Liu 11; da Silvaetal. 11
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Direct Fidelity Estimation: the caveats

Caveat 1:
The (classical) computational complexity depends on d.

The silver lining:
#*Sampling is all done as preprocessing
*No need for complicated data analysis

% Sampling can be done in parallel

F. & Liu 11; da Silvaetal. 11



Caveat 2:
The sample complexity depends on d.

We can only learn X up to some finite precision by repeatedly
measuring Pauli operators... in general we will need to
to resolve the bias if the intended state
was chosen completely at random.

F. & Liu 11; da Silvaetal. 11



Direct Fidelity

—stimation: complexity

Low 09; F &Liu11; daSilvaetal. 11
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Direct Fidelity Estimation: complexity

= If the noise is dephasing (or depolarizing) then we get a very
favorable scaling: i d 1\ |

o %
By truncating negligibly small probabilities from the relevance

distribution, we can improve the worst-case scaling at the cost of
adding a tiny (also negligible) bias to our estimate.

*\Works with more general operator bases, like coherent states.

*|f the nonzero Pauli expectations are only inverse polynomially
small, then the number of copies is polynomial

% Lots of interesting states satisfy this: e.g. stabilizer states, W states, Dicke states (fixed k), and Van den
Nest’s “computationally tractable” states.

*For Clifford circuits, the entire estimate is achievable in poly(n) time

Low 09; F. &Liu11; daSilvaetal. 11



Hamiltonian and Phase Estimation

Learns generators instead of gates, allowing for RB-like amplification to aid
estimation.

- Robust Phase Est.: (Kimmel et al. 2015). Proves that Heisenberg-limited
accuracy is achievable with non-adaptive measurements, using modification
to Higgins et al. 2009 binary search algorithm. Robust to additive errors.

- Filtering: Particle (Granade et al. 2012), rejection (Wiebe and Granade 2016),
guaranteed-cost (Roy et al. 2016). All provide time-dep estimation, with
varying tradeoffs in implementation, generality and robustness.

Phase est. as resource for characterization / control design: Kimmel et al. 2015
also applies to calibration problem: represent over-rotation as phase
accumulation, estimate.



Learning States and Gates

Several of these examples highlight the special role of stabilizer
states and Clifford gates.

A more general question is can we efficiently learn states that
have concise descriptions? There are many candidates for
which we know how to do this

* Low rank states and gates (Gross et al. 09)

- Clifford gates (Low 09)

« Permutationally invariant states (Toth et al. 10)

- Matrix product states, or MPS (Cramer et al. 10)
« Sparse process matrices (Shabani et al. 11)
 MERA tensor networks (Landon-Cardinal et al. 12)
- Stabilizer states (Montanaro et al. 13)
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Compressed tomography

Gross et al. 09; Gross 10; Liu11; F etal. 12

Suppose a state is well approximated by a rank r density matrix.
Can we improve the complexity of tomography?

Compressed tomography is a nearly ideal solution!

*Reduces the measurement complexity for states which
are approximately rank r to ~O(rd) (instead of d?)

% Reduces sample complexity to ~O(r2d?) (instead of d*)
*¢Requires only simple Pauli measurements

% (Convex cost function (local optima are global optima)

#* Runtime is about O(d'*¢) (impossible for dense methods)
*Comes with a certificate, so you know if it worked

s Comes with rigorous confidence intervals

*For process tomography, replace d with d?



Main results

Gross, Liu, F., Becker, & Eisert, PRL 2009; Gross IEEE TIT 20009.

For an arbitrary matrix p of d

Imension dxd, rank r,

sample a set {2 of m = O(rd log?d) iid random Paulis P.

Let R(x) =Tr(Px) VP € bethe sampling operator.

Estimate b(P) ~ Tr(Pp) -

A

Compute:  p = argmin ||

S Vm

Tl s.t. [|[R(x) —blla <€

Theorem: with high probability over {2 and the data
16— plle < O(ev/rd)

*uses O(d*) samples!



“local” results

Gross, Liu, F., Becker, & Eisert, PRL 2009; Gross IEEE TIT 2009.

Argument is based on local properties (dual certificate).

low-rank points are “exposed”

AN

R(w) =

~random, incoherent choice not
~. likely to align with the faces
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Any perturbation around the true state either
increases ||z||t, or changes the value of R(x)
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Main results

Gross et al. 09; Gross 10; Liu11; F etal. 12

Sample a set {2 of m = O(rd log®d) iid random Paulis P.
For every matrix p of dimension dxd, rankr,

10g2.5 d

Vrd

Compute:  p = argmin ||z]|¢ s.t. |R*(R(z) —b)|| <e

—stimate: b(P) > Tr(Pp) T €

Theorem: with high probability over €2 and the data:

p— pller < O(e)
r2d? log(d)

€2

This uses ¢t = o( )Copies. .. far few than previously!

*For process tomography, replace d with d?



Restricted Isometry Property

Liu 11

Key result to achieve this is “Rl

P for

Paulis”

A sampling operator obeys the (r,0) RIP if

for all x wit
I1R(2) |2 — ||

N rank T,
o] <6

|2

“Projection onto a subspace approximately preserves length”




And If the state Is full rank?

F., Gross, Liu, & Eisert 12

r2d? log(d) )

As before, suppose we measure t copies, with ¢t = O< 5
€

Now decompose p into the best rank r
approximation plus the residual tail: p = pr + Pt

Theorem: same method as before gives a reconstruction error

10— pller < €+ Cllpt]er

Thus, we get the modulo
the constant in front of the truncation error!



Sample complexity

F., Gross, Liu, & Eisert 12

How good is this result”? Can the sample complexity be
improved? Let’'s define the minimax risk:

M(a) = inf sup Pr|||p— p|l1 > o]

We now get another Theorem, a lower bound on the sample
complexity for some fixed risk tolerance.

4 7,,2d2 )
kIf M = O(1) then t = Q(logd))
Our sample complexity is optimal up to log factors!

A The implicit “constant” on €!



Simulated performance

Fidelity and Trace Distance T=80000, c=20

095 L1 reg TleaTst sq I L
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—Xperimental performance

Baldwin et al. 14; Riofrio et al.

16

/-qubit ion-trap experiment (Innsbruck) using
~130 random Pauli measurements (Riofrio et al. 16).

20 40 60 80 100 120 20 40 60 80 100 120
: 0.04 '
20 |IO o W><¢\| - 0.035 20 : .
. .
20 | 0.03 20 :
| 0.025 }
60 : 60 i
f 0.02 :
80 80 5
| 0.015 ol

100 | oo 0.01 100 [ T e Sl L
: 0.005 :
120 g 120 g
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0.035

0.03

0.025

0.02

0.015

0.01

0.005

0

The compressed sensing method vyields a massive
reduction in spurious signal compared to traditional

estimators and accurately estimates the coherent noise.



What does compressed sensing “mean’?

We now see that compressed sensing
Involves two separate ideas:

(1) using an incomplete set of observables

(2) using reqularized estimators to get low-rank solutions

We normally do both at the same time.
Our results show that (2) can be used irrespective of (1)...

...however, at the same time, there IS
for choosing to do (1).

And there is a big practical incentive to do (1), since
sparse data can be processed faster.
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Matrix Product States (MPS)

Cramer et al. 10
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Cramer et al. 10
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MPS form a variational ansatz for ground states of
1-dimensional quantum systems that systematically
goes beyond the mean-field approximation.



Matrix Product States (MPS)

Cramer et al. 10
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MPS form a variational ansatz for ground states of
1-dimensional quantum systems that systematically
goes beyond the mean-field approximation.

d
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State tomography for non-degenerate MPS

Cramer et al. 10

- -

______

Measure local reduced density operators and use tools from
many-body physics (DMRG) to solve the local consistency
oroblem

This is QMA hard in general, but if the “true” state is indeed
described by an injective MPS, then the method will work in
time polynomial in n, the length of the chain.




—xperimental MPS tomography

Lanyon et al. 16
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MPS tomography



Strategies for Characterizing Noise

High complexity,
More information

Low complexity,
Less information

A A A A A A A A T
Full
Randomized tomography,
benchmarking Matrix product state Gate-set
tomograph tomography
Direct fidelity Jrapty | ‘
estimation .
Compressed sensing
Purity & interleaved (approx. low rank) Benchmarking
benchmarking tomography

I Permutation-invariant states, Stabilizer states,

Hamiltonian . . .
L Compressed sensing (sparse in a known basis)
parameter estimation



Randomized Benchmarking Tomography

Kimmel et al. 14

Combine the SPAM-free advantages of RB with the debugging power of
quantum tomography.

- Interleave target gate with RB, estimate C - A for each of several different

Clifford gates C. Need 10 Clifford gates to span qubit unital subspace.
Note that this can yield negative decay probabilities. EX:

1.

0.75¢

State fidelity
o
(&)
o
|
|
2

0.251

1' 2 3 4
Sequence length
- Reconstruct A from the estimated overlaps.



Gate Set Tomography

Merkel et al. 13; Blume-Kohout et al. 13; Blume-Kohout et al. 16

|dea: “calibration-free” tomography that simultaneously estimates all gates in
an ensemble, as well as SPAM errors.

* Merkel et al. 13; Expands to higher dimensions to include gate-dependent
and correlated errors. Reconstructs entire gate set at once to ensure self-
consistency, linearizing near target. Better <> predictions than QPT!

—t
)
o

<||Aactual — Aest ” ()>

o
=
W

102 1072 107! 10°
<HAactual — Aideal||<>>
* Blume-Kohout et al. 13, 16. Treat linear est as starting point for MLE
reconstruction. Application to trapped ions, ESR qubits. Software
implementation (pyGSTi * pygsti.info).




Drift, time dependence, and adaptivity

Tracking drift in a | |
tomography experiment . —
using sequential Monte

Carlo and particle filters.

Time-dependence
Included as diffusion,

| | | A / ;s:-»ﬂ-@
similar to previous = 0
' ' ' . o o S0
applications in classical ~ of
computer vision.
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Granade, Combes, Cory 16



Drift, time dependence, and adaptivity

1 e ——————
f-__-d- -“‘\
\\
/ \ (o.p)
/
l|/ .\‘
f \
| \
/ 22
e\
e
» I"(

|

™
o
.

-1 - Posterior .* True
0

() Posterior Mean

f \
'\_(T' l,)lu‘

Granade, Combes, Cory 16



Drift, time dependence, and adaptivity
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Conclusion

- There are a variety of powerful protocols for characterizing errors in quantum
devices, depending on question of interest.

- Tomography / RB at opposite extremes of model complexity

« Many compelling intermediate models:
compressed sensing, RB tomography, learning ansatze, etc.

- Readily available estimation tools to support QCVV in practice.
- Characterization isn't a solved problem.

- Gaps between theoretical assumptions and experimental reality,
motivating relaxed / generalized approaches.

- Need new theoretical and statistical tools for better comparisons with
quantities of interest (e.g. <>-norm).

 Close the engineering cycle by applying QCVV diagnostics to new
experiments.



Fixed points and symmetry

A B C

AN\ AN\ A7\
A A
% Start with three (TN NN

approximate planes

TN T

% Rub A against B and C 8

% Compare B to C:

% Permute and repeat

until A matches both

relative defects are 7N
NOowW exposed — )
o\
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