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Why quantum thermodynamics?

I Why is thermodynamics so effective?

I Emergent theory?

I Axiomatic formulation?



Why quantum thermodynamics?

I Do quantum systems obey the laws of
thermodynamics?

I Correction terms: small or quantum?

I Can we explore new effects?



Why quantum thermodynamics?

I Heat dissipation in (quantum) computers

I Microscopic heat engines

I “Thermodynamics” of relevant
parameters at the nano scale?



This lecture

Information and thermodynamics

I Work cost of classical information processing

I Quantum work extraction and erasure

Axiomatic quantum thermodynamics

I Resource theory of thermal operations

I Insights and results

I Directions



Maxwell’s demon



Thermodynamics of information processing

I How much work must we supply to compute a function?

I Must (quantum) computers always dissipate heat?



Szilard boxes

1 bit + heat bath (T ) ⇒ work kT ln 2
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Szilard boxes

1 bit + heat bath (T ) ⇔ work kT ln 2

Landauer’s principle [1973]

Information + heat ⇔ work

I rate: kT ln 2 per bit



Maxwell’s demon



Cost of computations [Bennett 1992]

Must computers dissipate heat?

I Irreversible computation: reversible + erasure

I E(ρS) = TrA′(U ρS ⊗ σA U)

I Reversible computations: free in principle

I Work cost: cost of erasure
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Work cost of erasure

kT ln 2 per bit

Erasure

I Formatting a hard drive:

0?10101??1→ 000000000

I Resetting a quantum system: ρS → |0〉S

In numbers

I k = 1.38.10−23 J/K

I Erasure of 16TB hard drive at room temperature: 0.4µJ

I Lifting a tomato by 1m on Earth: 1J.
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Erasure
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Information compression

Compression length: n = H(ρ) bits

W (S) = H(S) kT ln 2



(Subjective) side information

W (S |M) = H(S |M) kT ln 2



What about quantum information?

I Szilard box for quantum systems?

I How do we even measure work?

I How to use quantum memories?

I Reading =⇒ disturbing contents

I Entropy H(S |M) can be negative!

I but does that mean anything?
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Quantum Szilard box

Semi-classical model [Alicki et al.]

I Manipulating H: moving energy level by δE costs δE if state
is occupied

I Thermalizing: system relaxes to G (T ) = 1
Z e

H
kT



Quantum Szilard box

Heat bath

...

Battery

Quantum model [Skrzypczyk et al.]

I Free unitaries if [U,H] = 0

I Explicit heat bath and battery



Quantum Szilard box

Heat bath

...

Quantum model [Skrzypczyk et al.]

I Free unitaries if [U,H] = 0

I Explicit heat bath and battery



Erasure with quantum side information

Memory preservation

Erase the first qubit, preserving the others:

|Ψ〉〈Ψ|S1 ⊗ ρ2,3 → |0〉〈0|S ⊗
11

2
⊗ ρ2,3︸ ︷︷ ︸
ρM



Erasure with quantum side information

Memory preservation

Generally: Erase S , preserving M (and correlations)



Erasure with quantum side information

We can still use the memory optimally:

W (S |M) = H(S |M) kT ln 2

where H(S |M) = H(SM)− H(M). 1

Example

1[LdR et al. 2011]
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Erasure with quantum side information

We can still use the memory optimally:

W (S |M) = H(S |M) kT ln 2

where H(S |M) = H(SM)− H(M). 1

Example

|Ψ〉〈Ψ|S1 → 1S
2 ⊗

11
2 + work 2kT ln 2
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Erasure with quantum side information

We can still use the memory optimally:

W (S |M) = H(S |M) kT ln 2

where H(S |M) = H(SM)− H(M). 1

Example

1S
2 → |0〉〈0|S − work kT ln 2

1[LdR et al. 2011]



Erasure with quantum side information

We can still use the memory optimally:

W (S |M) = H(S |M) kT ln 2

where H(S |M) = H(SM)− H(M). 1

Example

Total: W (S |M) = −kT ln 2 = H(S |M) kT ln 2

1[LdR et al. 2011]



Work cost of computations

Cost of implementing a map E
I E : X → X ′

I unitary dilation X → X ′ ⊗ E

I W = H(E |X ′)E(ρ) kT ln 2 2

In numbers

I and gate: 1.6 kT ln 2

I Running a 20 Petaflops computation: 1W

2[Faist et al. 2015]
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von Neumann entropy [1932]

Goal: erasure (
∑

k pk |φk〉〈φk |)
⊗N → |φ1〉⊗N

Vk = pk V =⇒ Wk = Nk ln(Vk/V ) = N pk ln pk
W
N =

∑
k pk ln pk =⇒ S(ρ) = −Tr(ρ ln ρ)
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Why is thermodynamics so effective?

I microscopic details

I Identifies:

I easy and hard operations

I freely available resources

I Efficient exploitation:

I steam engines, fridges

I cost of state transformations

I Operational approach: resource theory (just like locc)
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I freely available resources

I Efficient exploitation:

I steam engines, fridges

I cost of state transformations

I Operational approach: resource theory (just like locc)



Resource theories

Operational questions

I Can one achieve X → Y ?

I Monotones: characterizing pre-order

I Useful and useless resources?



Resource theories

Example: LOCC

I Allowed operations: local operations and classical
communication

I Monotones: formation and distillation entanglement,
squashed entanglement. . .

I Free resources: separable states. Currency: Bell states



Thermodynamics as a resource theory

I Limitations:

I lack of knowledge: (N,V ,T ), (N,V ,E ), . . .

I conservation laws: energy, momentum, . . .

I limited control of operations

I Resources: macroscopic descriptions of systems (hot gas, cold
bodies)

I Operations: adiabatic, isothermal, . . .

I Insights: laws of thermodynamics, free energy as a monotone,
Carnot efficiency, . . . 3

3[Carathéodory 1909] [Giles 1964] [Lieb and Yngvason 1998, 1999, 2003]
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Thermal operations

I Resources: quantum descriptions of systems (ρS ,HS)

I Account for entropy: UρSU
†

I Account for energy: UρSU
†, [U,HS ] = 0

I Free environment: U(ρS ⊗ Gibbs(T ))U†, [U,HSB ] = 0

I Free forgetting: TrA[U(ρS ⊗ Gibbs(T ))U†], [U,HSB ] = 0

I Toy model 4

4[Janzing 200] [Brandao et al 2011]
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1

Z
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H
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Why thermal states?

G (T ) =
1

Z
e−

H
kT

Reduced description

I Large system composed of independent parts: H = HS + HE

I Energy shell ΩE of fixed energy

I Global state of maximal entropy: 1ΩE
/dΩE

I ρS = GS(T (E ))



Why thermal states?

G (T ) =
1

Z
e−

H
kT

Typicality of thermalization5

I dS � dΩ

I Static thermalization: for most global states and most
subsystems,

ρS ≈ TrE (1Ω/dΩ) = GS(T )

I Decoupling (also with side quantum information).

I Also if S corresponds to observable.

5Review: [Gogolin & Eisert 2016]
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Why thermal states?

G (T ) =
1

Z
e−

H
kT

Typicality of thermalization5

I Evolution towards thermal state: if H is rich, ρS(t) ≈ GS(T )
for most times t and initial states.

I Time scales: under study

5Review: [Gogolin & Eisert 2016]



Why thermal states?

G (T ) =
1

Z
e−

H
kT

Complete passivity

Intuition: only free state that does not trivialize the resource theory

I Allowed operations: unitaries

I Allowed many copies of a state

I Cannot extract energy =⇒ G (T )⊗n

Still a spherical cow. . .
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Insights: noisy operations

Case H = 0

I Pre-order: majorization6 ρ→ σ ⇐⇒ ρ ≺ σ,

ρ ≺ σ ⇐⇒
k∑

i=1

λi (ρ) ≥
k∑

i=1

λi (σ)

I Monotones: Schur-convex functions, e.g.

Dα(ρS ||1S/dS),

entropies H(ρ),Hα(ρ), . . .

I Classically: Dα(ρ||σ) = sgn α
α−1 log

∑
i p

α
i q

1−α
i

6Review: [Gour et al (2013)]
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Lorenz curves

1. Sort eigenvalues of ρ: p1 ≥ p2 ≥ · · · ≥ pd

2. Build step function: fρ(x) = pi (ρ) for i − 1 ≤ x < i



Lorenz curves

1. Integrate to get Lorenz curve:

gρ(x) =

∫ d x

0
fρ(x ′) dx ′

2. Pre-order: ρ→ σ ⇐⇒ gρ(x) ≥ gσ(x), ∀ x ∈ [0, 1[



Insights: thermal operations

General Hamiltonian

I Pre-order: thermo-majorization (for block-diagonal states!)

I Monotones: e.g. relative entropy to thermal state

Dα(ρ||G (T )),

free energies. . .

I Rescaled Lorenz curves7

7[Renes] [Horodecki & Oppenheim]



Insights: thermal operations

Rescaled Lorenz curves
For block-diagonal states,

1. Rescale eigenvalues: ri = pi e
βEi and sort them.

2. Build step function:

fρ(x) = ri for
∑
k<i

e−βEk ≤ x <
∑
k≤i

e−βEk

3. Integrate to get Lorenz curve:

gρ(x) =

∫ Z x

0
fρ(x ′) dx ′

4. Pre-order: ρ→ σ ⇐⇒ gρ(x) ≥ gσ(x), ∀ x ∈ [0, 1)



Recovering the second law

Free energies as monotones

I ρ→ σ =⇒ Fα(ρ,T ) ≥ Fα(σ,T ), ∀α, where8

Fα(ρ,T ) = kT [Dα(ρ||G (T ))− logZ ]

I ⇐ for classical states

I In particular

F 1(ρ,T ) = Tr(H ρ)− kTS(ρ).

I Free energies: rescaling of Dα(ρ||G (T )) such that

F 1( |E 〉〈E | ,T ) = E

8[Brandao et al 2014]
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Recovering thermodynamics

Third law
Cannot cool to ground state with finite resources.9

Landauer’s principle

I Work cost of erasing S in the presence of M costs 10

W ≈ kT H(S |M)ρ

I Single-shot: Hε, finite-size effects11 limit efficiency

9[Masanes & Openheim 2014] [Janzing] [Wilming (in prep.)]
10[LdR et al 2011]
11[Reeb & Wolf 2013] [Woods et al 2015]
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Recovering thermodynamics

Fluctuation theorems

I Crooks’ and Jarzinsky’s relations: prob. violation exponentially
surpressed

I Beyond two-measurement setting for coherent processes,12

e.g. |+〉 → |0〉

12[Elouard et al 2015] [Åberg 2016] [Perarnau-Llobet, et al (2016)]



Multiple conserved quantities

I Multiple13 conserved quantities A1,A2, . . .

I Allowed operations: U : [U,Ai ] = 0, ∀i

I Generalized Gibbs state

G (β1, β2, . . . ) = eβ1A1+β2A2+...

I Typical thermalization and passivity results hold

I Monotones: Dα(ρ||G (β1, β2, . . . ))

I First protocols for conversion between A1,A2, . . .

13 [Vaccaro and Barnett 2011] [Lostaglio et al 2015] [Guryanova et al 2015]
[Yunger Halpern et al 2015] [Perarnau-Llobet et al 2015]
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Coherence: quantum-quantum thermodynamics?

Needed to implement unitaries (laser).

Catalytic coherence?

I Relevant properties of coherence reservoir ρ: (∆ρ,Mρ)
I ∆ρ = Tr( 1

2 (∆ + ∆†)ρ) coherence: ∆ =
∑

n |n + 1〉〈n|
I M : lowest occupied energy level

I Unbounded coherence reservoir:14

I back-action of implementing operations: stretching of ρ
I no degradation of ∆
I can always pump up M with energy

I More realistic reservoirs:15

I protocol for work extraction from coherent states
I operationally restoring reservoir: (∆ρ,Mρ) = (∆ρ′ ,Mρ′)

14[Åberg 2014]
15[Korzekwa et al 2016]
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Clocks and control

[U,H0] = 0, U = e−i t HU

I HU(t) =⇒ control

I Effort of building and keeping control systems

I Clocks and controls are out of equilibrium systems

I Fairer book-keeping: give agents little control, explicit clocks

First steps

I Ideal clock (particle in a line) =⇒ catalytic, perfect U 16

I Thermal contact17

I Dimension bounds and clock degradation18

16[Brandao et al (2011)] [Malabarba et al 2014]
17[Wilming et al 2014 ]
18[Woods et al 2016 ]
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Autonomous thermal engines

Carnot efficiency19 (fine-tuned gaps)

19[Skrzypczyk et al (various)]



Open questions

Clocks and control

I Designs for efficient clocks (theory and experiment)

I Combine with insights from reference frames

I Further restrictions (no fine-tuning of baths, Hamiltonians)

I Clean framework (how much control to give the agent?)

I Relation to coherence (again!)

I Relation to time in foundations



Open questions

Realistic resource theories

I Operational notions of temperature: baths beyond Gibbs 20

I Finite-size effects 21

I Beyond weak coupling

I Realistic resource descriptions for experimentalists 22

I Towards operational resource theories23

20[Farshi et al (in prep)]
21[Reeb et al (2013)], [Woods et al (2015)]
22[LdR et al (2015)], [Krämer & LdR (2016)]
23[Yunger Halpern (2015)]



Open questions

Generalized probability theories

I GPTs: apply von Neumann’s operational approach to entropy
24

I Relate thermodynamics on different physical theories

AdS/CFT

I Notions of thermalization

I Black hole entropy & information paradox

24[Barnum et al 2015]



Thank you for your attention!

Reviews

I Goold, Huber, Riera, LdR & Skrzypczyk,
The role of quantum information in thermodynamics — a
topical review, J. Phys. A, 49, 14 (2016).

I Gour, Müller, Narasimhachar, Spekkens, Yunger Halpern,
The resource theory of informational nonequilibrium in
thermodynamics , Phys. Rev. Lett. 111, 250404 (2013).

I Gogolin, Eisert,
Equilibration, thermalisation, and the emergence of statistical
mechanics in closed quantum systems, Rep. Prog. Phys. 79,
056001 (2016).



Thermo QIP 2017

Talks

I Monday 3pm Carlo Sparaciari

I Wednesday 9am Jonathan Oppenheim

I Friday 2pm Michael Kastoryano, then Kohtaro Kato

Posters
Monday

I 35 A sufficient set of gates for thermodynamics

I 36 Fundamental energy cost for quantum measurement

I 38 Thermal Operations under Partial Information - An
operational derivation of Jaynes Principle

I 39 Thermalization and Return to Equilibrium on Finite
Quantum Lattice Systems

Tuesday

I 52 Autonomous quantum machines and finite sized clocks
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