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A universal quantum computer requires a full set of basic quantum gates. With Majorana bound
states one can form all necessary quantum gates in a topologically protected way, bar one. In this
manuscript we present a scheme that achieves the missing, so called, π/8 magic phase gate without
the need of fine tuning for distinct physical realizations. The scheme is based on the manipulation of
geometric phases described by a universal protocol and converges exponentially with the number of
steps in the geometric path. Furthermore, our magic gate proposal relies on the most basic hardware
previously suggested for topologically protected gates, and can be extended to an any-phase-gate,
where π/8 is substituted by any α.

I. INTRODUCTION AND MAIN RESULTS

In two landmark papers, Kitaev suggested that non-
abelian anyons could be used to store and process quan-
tum information in a topologically protected way [1, 2].
Furthermore, he outlined how one would try to realize the
simplest of these non-abelian states, Majorana zero en-
ergy bound states (Majoranas for short), in a solid state
system. Since, much activity has been dedicated to real-
izing Majoranas in quantum Hall states as well as quan-
tum wells in proximity to superconductors, both theoreti-
cally [3–9] and experimentally [10–17], with significant re-
cent success. Moreover, the experimental efforts recently
shifted from a mere detection of Majorana signatures to
concrete steps towards the realization of platforms that
reveal their non-Abelian statistics and allow for quantum
information processing via braiding [18, 19].

Nevertheless, a stubborn roadblock still prevents us
from proposing a topologically protected Majorana-based
platform that is capable of universal quantum compu-
tation. Kitaev and Bravyi demonstrated that all gates
could be realized in a platform that could carry out
the Clifford gates (Hadamard, π/4, and controlled-not
(CNOT) gates), and, crucially, possesses a magic state
e−iπ/8 |0〉 + eiπ/8 |1〉 [20, 21]. (Here |0〉 and |1〉 present
the two quantum states of the qubit.) A four-Majorana
network can realize a not-operation (σx) by braiding, and
a Hadamard and π/4 gate through exchange. CNOT can
also be implemented employing projective measurements
[22]. Despite much inspirational effort [20, 23–26], there
is still no protected or precise practical way to produce
Majorana magic states, or the equivalent π/8 gate.

The quest for a magic gate is hampered by a pervasive
challenge of quantum computing. Decoherence, and even
more so, the lack of precise control of quantum informa-
tion processing systems, necessitates the development of
elaborate error-correction strategies, and quantum state
distillation techniques. Topological quantum comput-
ing was developed as the ultimate fault-tolerant scheme,
where environment noise is unable to decohere the quan-
tum state of a qubit, since it is encoded nonlocally and
spread over the entire platform. Also, gates that can be

realized using topological manipulations such as braiding
or exchange, are completely insensitive to the imprecision
in the control of the system’s parameters. When it comes
to Majorana platforms, however, the absence of a topo-
logically protected scheme for a magic gate requires us
to revert to non-topological procedures [18, 27–33], and,
therefore to rely on conventional error-correction schemes
[20] which come at the cost of a significant overhead [34].

Indeed, procedures proposed so far for the realization
of the Majorana magic gate require precise control of the
coupling constants in the system. For instance, a relative
phase between the two states of a two-Majorana parity-
qubit could be produced by bringing the two Majoranas
close to each other; the tunneling between them produces
a relative phase winding, as in, e.g., Refs. 27, 28, and
30. The integrated dynamical phase winding is dictated
by the strength of tunneling, and the time of proxim-
ity, which need to be precisely controlled to achieve the
coveted π/4 difference. A particularly clever way to pro-
duce a Majorana phase gate is through interference. A
Majorana state bound to a quantum-mechanical vortex
could be made to split between a path that carries out
an exchange gate, and one that does not [26]. If the
splitting is exactly equal, a π/8 gate will result. While
experiments are progressing at a precipitous rate, such a
level of control is unlikely to be reached soon. Further-
more, any improvements in the fault-tolerance of Majo-
rana magic-gate realizations with respect to systematic
machine errors, will dramatically reduce the amount of
hardware necessary for state distillation.

In this work we present a robust scheme for obtaining a
Majorana π/8 gate, which is insensitive to such machine
control imprecision. The protection against such errors
arises from universal geometric properties of the Majo-
rana Hilbert space, alongside with the topological prop-
erties of the system. Our starting point is a 4-Majorana
system arranged in a Y-junction. The Y-junction is the
archetype model for a general Majorana exchange [35]
and has been the simplest proposed platform for carrying
out braiding. Moreover, as explained in Ref. [18, 36], it
could be realized with the most accessible Majorana sup-
porting building blocks so far, which are spin-orbit cou-
pled nanowires in proximity with superconductors. Our
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FIG. 1. The Y-junction system. Lines and label indicate the
model Hamiltonian of four coupled Majoranas γi, while the
background shows a possible realization using wires (gray)
proximity coupled to s-wave superconductors (green). We as-
sume that couplings at the arms are determined through ex-

ternal imprecise controls. The true couplings are ~∆ = ~δ+ ~f(~δ).
It is indeed beneficial to think of the coupling to the x, y and
z arms as geometric objects, namely, vectors in a three di-
mensional space. In addition to the couplings along the arms,
any physical system will also exhibit couplings between the
tips (dashed blue lines). These unavoidable couplings intro-
duce a parity-dependent dynamical phase, and, along with
the control uncertainty, are leading sources of error.

multi-step scheme guarantees, under very broad assump-
tions, that the gate converges to the desired π/8 gate
with an error δα such that ln δα = −O(N), where N is
the number of steps. The crucial assumption is that in
the translation from ideal to actual control of the system,
the spectral weight of the error function, i.e., uncertainty
in the actual parameters of the system, is small at fre-
quencies above the control clock rate.

The magic gate scheme we outline can be realized in
any system, where the coupling between Majorana states
can be controlled, even if imprecisely. Notwithstanding,
we require the ability to decouple the Majorana states
from each other with high precision, which is also re-
quired for topological protected Clifford gates, and there-
fore should be the case for any topological quantum infor-
mation processing platform. The main setup, shown in
Fig. 1, is described by three Majorana coupling parame-
ters, ∆x, ∆y, and ∆z. Exchange of Majoranas’ positions
is performed by changing the coupling between them in
a specific time sequence using gates or fluxes in a system
of finite size superconductors [36, 37]. Our scheme, does
not require any modification of this hardware; rather, it
shows that certain time sequences of the coupling con-
stants can result in exponentially high accuracy even for
calculations that do not enjoy topological protection.

The main hindrance to a precise π/8 gate is the uncer-
tainty in the values of ∆a, a = x, y, z. It is this obstacle
that our scheme completely eliminates. We assume the
following:

1. The system controls are temporally constant for the
duration of the gate.

2. The true physical parameters realized in the sys-
tem, ∆a, are given by unknown but determinis-

tic and smooth (C∞) functions of the controls, δa.
Furthermore, ∆a = δa + fa ({δx, δy, δz}), (see Fig.
1).

Both assumptions can be relaxed. Achieving the same
precision would, however, impose more stringent con-
straints on the rate with which the gate could be per-
formed.

Our realization of the π/8 gate requires methods that
are reminiscent of universal dynamical decoupling [38],
and NMR echoes. (Though, here we deal with geomet-
ric phases rather then dynamical ones.) To eliminate

the error due to the unknown device functions, fa(~δ), we

will describe a trajectory in the ~δ space with 2N turning
points. These will eliminate the first N − 1 coefficients
in a Chebyshev-Fourier expansion of the errors. Since
under rather broad assumptions (see App. B) Chebyshev
expansion coefficients decay exponentially, the error due
to the machine uncertainty can be made to vanish ex-
ponentially in the number of steps N . Note, however,
that the underlying topological protection of Majoranas
provides boundary conditions that are crucial to unlock
this exponential behavior (see Sec. III and App. D).

A second grave problem arises from unavoidable dy-
namical phases due to couplings not included in the
ideal, three-couplings, Y-junction setup. These dynami-
cal phases, however, can be eliminated by repeating the
gate protocol after applying a NOT gate to the Majo-
ranas. Just as in a π spin-echo in NMR [39], this would
cancel the error due to the extra coupling, as long as the
system control functions are constant in time. (Addi-
tional steps to eliminate error when this is not the case
can be applied.)

In what follows, we first describe the ideal Y-junction
system, and how to use it to get a non-protected π/8 gate
(Sec. II). Next, we describe the Chebyshev universal geo-
metric decoupling trajectory (Sec. III). We then present
the echo method to eliminate the dynamical phase error
(Sec. IV). Another possible source of error is the retarda-
tion effects in the system, which we discuss in Sec. V. Be-
fore concluding, we demonstrate our π/8 scheme through
numerical simulations for particular generic error func-
tions, and discuss the necessary scales of the coupling
and motion rates (Sec. VI). The simulations are done
by solving the full time dependent Schrödinger equation,
without any assumptions on the adiabaticity of the pro-
cess.

II. π/8 GATE IN AN IDEALIZED SYSTEM

The platform at the root of our scheme is the Y-
junction system (see Fig. 1). It contains four Majoranas.
Three of them, γx, γy and γz, are located at the tips of
the Y-junction and interact only with the fourth Majo-
rana, γ0, which is at the center of the junction. The
Hamiltonian for this system is:

H = 2iγ0(~∆ · ~γ) (1)

where we conveniently defined the Majorana vector ~γ =

(γx, γy, γz) and the coupling vector ~∆ = (∆x, ∆y, ∆z).
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The topological nature of the Majoranas enters
through the exponential dependency of the Y-junction
couplings on physical parameters. For example, it de-
pends exponentially on the distance between the Majo-
ranas, and in the flux controlled qubit it depends expo-
nentially on the flux applied to SQUIDs placed near the
Y’s arms [36]. Therefore, it is easy to essentially turn off
one of the couplings. The Majorana state at the tip of
this coupling is then an exact zero-mode of the Hamil-
tonian (i.e., it commutes with the Hamiltonian). This
robustness (i.e. ∆a = 0 if δa = 0) lies at the heart of the
protected Majorana braiding process and is also crucial
for the π/8 gate discussed in this paper.

A. Exchange process

The presence of this zero energy mode allows for
exponentially (topologically) protected exchange oper-

ations. For simplicity let us assume that
∣∣~∆∣∣ =√

∆2
x + ∆2

y + ∆2
z ≡ ∆ remains constant through out the

process. Consider the following trajectory: we start with
∆z ≈ ∆ � ∆x,∆y, then move to ∆y ≈ ∆ � ∆z,∆x

in a continuous fashion while keeping ∆x � ∆. This is
followed by similar moves to ∆x ≈ ∆ � ∆y,∆z (while
keeping ∆z � ∆) and finally returning the system to
its original state ∆z � ∆x,∆y (while keeping ∆y � ∆).
This sequence is easily visualized as the arm of a clock in-
dicating which coupling is strong; the sequence describes
the arm making a full clockwise rotation. By doing so
we carried out an exchange of the Majoranas γx and γy
(see the upper panel of Fig. 2). [40]

How do we mathematically see that the full turn of
the ’clock arm’ corresponds to performing an exchange?
We can elegantly show this by taking advantage of the

geometric analogy of ~∆ to a vector in a three dimensional

space described by spherical coordinates [41]. While ~∆ is
analogous to the radius-vector, we can additionally make
use of the polar angle (θ) and the azimuthal angle (φ) of
the spherical coordinates and their unit vectors. Noticing

that ~∆ = |~∆|(sin θ cosφ, sin θ sinφ, cos θ), and denoting
êθ and êφ as the unit vectors in the θ and φ directions,
we now define:

γθ = ~γ · êθ, γφ = ~γ · êφ. (2)

Clearly these are zero-modes:

[H, γθ] = 2iγ0
~∆ · êθ = 0

[H, γφ] = 2iγ0
~∆ · êφ = 0. (3)

The exchange process consists of the unit vector ~∆/|~∆|
marking an octant on the unit sphere. The octant is
bounded between the φ = 0, θ = π/2 and φ = π/2
planes. See the lower panel of Fig. 2.

These two zero-modes combine into a single Fermi an-
nihilation operator:

a =
1

2
(γθ + iγφ) , (4)

FIG. 2. A visualization of the exchange process as the turn-
ing arm of a clock. First ∆z � ∆x,∆y, to indicate that the
line presenting the coupling between γ0 and γz is bold. Then
∆y � ∆x,∆z, then ∆x � ∆y,∆z and finally ∆z � ∆x,∆y

again, so that the arm of the clock completes a full turn.
This process can also be visualized as a line covering an oc-
tant on a unit sphere. The Berry phase difference of the two
parity sectors accumulated in this process is equal to the cov-
ered solid angle, −π/2. We show in the text (see App. A)
that this gives rise to a −π/4 phase gate, meaning a phase
∓π/4 for each fusion channel. (The − sign appears due to the
clockwise orientation of the trajectory, and the convention we
chose.) Since we can make one of the coupling constants ex-
ponentially smaller than the other two the trajectory in the
parameter space is glued to the edges of the octant making
the accumulated Berry phase difference equal to −π/2 with
exponential accuracy.

and we are interested in the difference of the accumulated
Berry phase, 2α, between the process where the system
is in its ground state, |0〉, defined by a |0〉 = 0, and its
partner, which is a† |0〉 = |1〉. As we show in App. A,
the phase difference accumulated during the process of
exchange, or any process (described by a contour c) for
that matter is

2
dα

dt
= i

{
a,
da†

dt

}
= − cos θφ̇, (5)

2α = −
∮
c

cos θdφ =

∫∫
sin θdθdφ = Ωc. (6)

Just like the Berry phase of a spin system, the phase gate
angle α is equal to half of the solid angle Ωc enclosed by
a contour c. Indeed, for the exchange process of Fig. 2
we obtain:

αexchage = −π
4
. (7)

(The− sign appears because the contour is counter clock-
wise). This corresponds to the operator Uexchange =
e−

π
4 γφγθ - a π/4 gate.
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FIG. 3. The sequence for a π/8 gate in the ideal Y-junction
system. This trajectory is not protected as we have to keep
∆x = ∆y while modifying ∆z, small fluctuations will yield a
different phase. This trajectory corresponds to a split of one
of the Majoranas to two and an exchange of the position of
another Majorana with only a half of the split Majorana.

B. A naive π/8 gate

When considering how to perform a π/8 gate, the cal-
culation of the exchange gate is very suggestive. The
exchange entails a π/4 gate; all we need is half the angle.
For half the angle, we simply need to cover half the area
of the octant.

Consider the following trajectory. Starting with θ =
φ = 0, we turn θ = 0 → π/2, then φ = 0 → π/4, and
return with θ = π/2 → 0, followed by φ = π/4 → 0 to
close the trajectory. This clearly yields a π/8 phase gate,
cf. Fig. 3.

While the geometric construction seems to be taking
advantage of simple area consideration, the result con-
tains deeper roots. Conceptually, we would obtain a
π/4 phase difference between the |0〉 and |1〉 states. In-
stead of carrying out an exchange between the two Ma-
joranas, we would have managed to do the following feat:
split one of the Majoranas into an equal superposition,
where one part carries out the exchange, and the other
doesn’t. Next, we reunite the two parts. The interfer-
ence between the two processes will yield to the relative
phase 1√

2
(1 + i) = eiπ/4. This process, which combines

the weirdness of quantum mechanics with that of Majo-
ranas is precisely what the Y-junction sequence presented
above is performing.

Unlike the exchange process, however, there is no pro-
tection for the φ = π/4 plane. Equivalently, we can
keep δx = δy within our control module, but clearly
∆x − ∆y = fx − fy 6= 0. The error in the device con-
trol may introduce an arbitrary error in our computa-
tion. An additional complication arises due to the need
to go through the center region of the octant. In the
π/8 trajectory, we can not avoid a region where all three
Majorana couplings have similar strengths. Invariably,
they give rise to a direct next nearest neighbour cou-
pling between the Majoranas at the Y-junction tip [42].
In this case the ground state degeneracy is split, and
the relative phase between the |0〉 and |1〉 states receives

FIG. 4. The vertical snake contour. A proper choice of the
turning point φNn yields a trajectory covering a solid angle
of π/4 with an exponentially small error. Here we plot the
contour for the Chebyshev polynomials with N = 5 and φNn =
π
2
xNn and xNn , n = 1, . . . , 2N are given in Eq. (15) .

a time-dependent dynamical phase on top of the path-
dependent Berry phase contribution. In the following
sections we demonstrate how these errors could be uni-
versally corrected.

III. SYSTEMATIC ERROR ELIMINATION
USING UNIVERSAL GEOMETRIC

DECOUPLING

In this section we will analyze an universal scheme
which allows to dramatically reduce errors of the ’magic’
π/8 phase gate as compared to the naive implementation.

Intuitively, it seems that smooth errors due to the im-
precise coupling constants tend to be canceled in contours
that have the snake like shape as in Fig. 4. The unwanted
geometric phase accumulated on the way from θ = 0 to
θ = π/2 is subtracted by a similar perturbation on the
way back from θ = π/2 to θ = 0. We will treat the snake-
like trajectory of Fig. 4 as a variation trajectory and opti-
mize the turning points φN1 , φ

N
2 , . . . , φ

N
n , n = 1, . . . , 2N

in order to minimize the error in the accumulated phase.
We have to choose the turning points φNn such that

α = π/8. It is useful to perform the transformation x =
2
πφ and y = 1 − cos θ then the topologically protected
boundaries are transformed to the boundary of a square
x ∈ [0, 1] and y ∈ [0, 1]. We find

αc′ =
π

4
ac, ac =

∮
c

ydx = −
∮
c

xdy. (8)

The last equation is correct for any closed contour c. The
contour c in the x− y plane is the image of the contour
c′ in the φ − θ surface. For example, the topologically
protected contour of Fig. 2 simply follows the boundaries
of a unit square in the x− y plane.

We now want to find a contour c in the x − y square
that gives ac = 1/2 with an exponential accuracy. For the
perfect snake contour of Fig. 4, this leads to a single con-
dition for the 2N turning points xn = 2

πφn. The idea of
our geometric decoupling scheme is to use the remaining
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2N − 1 degrees of freedom to systematically reduce the
effect of errors. The latter will change the contour from c
to C with a parametric representation (X(t), Y (t)) differ-
ent from the ideal desired contour (x(t), y(t)). When as-
suming that the ideal contour doesn’t stop in regions with
finite errors there is a one to one correspondence between
t and (x, y) which allows to parameterize the error func-
tions as δx(x, y) = X(x, y)−x and δy(x, y) = Y (x, y)−y.
Importantly, due to the topological protection, the func-
tions δx and δy must vanish on the square boundaries
(δx on x = 0, 1 and δy on y = 0, 1).

Using the undisturbed coordinates (x, y), the area
AC = −

∮
C
XdY encircled by the disturbed contour can

be written as a sum over the 2N vertical sweeps n where
y changes from 0 to 1 (for odd n and from 1 to 0 for even
n) while x is fixed at xn:

AC =

2N∑
n=1

(−1)n
[
xn + δxeff(xn)

]
, (9)

where [43]

δxeff(x) =

∫ 1

0

δx(x, y)∂yY (x, y) dy . (10)

The alternating sum over xn yields the desired enclosed
area of the perfect contour ac and is reproduced in Eq. (9)
due to the vanishing boundary conditions of δy . Equa-
tion (9) then further suggests that the remaining effect
of the errors δx and δy can be mapped to that of a snake
contour with straight vertical trajectories (∂yδx = 0)
where the turning points are shifted by δxeff(xn) relative
to the perfect implementation. Note that the vanishing
boundary conditions of δx at x = 0, 1 carry over to δxeff .
We now want to systematically cancel the alternating
sum over δxeff(xn). To this end we use the expansion

δxeff(x) =

∞∑
m=1

AmPm(x), (11)

where at the square boundaries the set of orthonor-
mal functions Pm(x),m = 1, . . . ,∞ vanishes, explicitly
Pm(0) = Pm(1) = 0.

Inserting this expansion into Eq. (10) yields

δac = Ac − ac =

∞∑
m=1

Am

2N∑
n=1

(−1)nPm(xNn ). (12)

By assumption, the error function f and its mapping
to δxeff all have physical origins, we can therefore as-
sume that they are smooth and analytic. In addition,
they are bounded due to the topologically protected glu-
ing to the square boundaries so we may conclude that
limm→∞Am = 0, for any orthonormal set of basis func-
tions Pm(x), m = 1, . . .∞. Choosing xNn = 2

πφ
N
n prop-

erly we can eliminate the first M = 2N−1 components of
the expansion which protects the phase gate by reducing
the error to δac = O(A2N ) [44].

A protected π/8-phase gate can therefore be imple-
mented when aiming for turning points that fulfill the

equations

2N∑
n=1

(−1)nxNn = ac,

2N∑
n=1

(−1)nPm(xNn ) = 0; m = 1, . . . , 2N − 1, (13)

with ac = 1/2. These are 2N non-linear equations for 2N
unknowns xNn , n = 1, 2, . . . 2N . Remarkably, if solutions
of Eqs. (13) exist, the errors can be canceled up to order
2N − 1 independent of the expansion coefficients Am.
The scheme is therefore universal and independent of the
details of the errors as long as they are smooth. In fact,
Eqs. (13) resemble similarities to the concept of universal
dynamical decoupling [38].

For a good choice of expanding functions Pm we rely
on the common knowledge in numerical analysis that ex-
pansions of analytic and bounded functions in terms of
Chebyshev polynomials [45] converge very quickly with
expansion coefficients decaying exponentially Am ∼ e−m.
(See also App. B, Legendre or Laguerre polynomials are
as good as the Chebyshev ones, however for the Fourier
expansion discussed in App. C we expect that the conver-
gence is slower.) Expanding in terms of Chebyshev poly-
nomials therefore leads to an exponential suppression of
the gate errors in the number of turns δac ∼ e−2N .

Interestingly, the topological protection is crucial for
enabling such an exponential decay of errors in the num-
ber of turns. Solutions of Eqs. (13) for non-vanishing ac
only exist if x is linearly independent from the set of func-
tions {Pm(x)}. Fortunately, the function x violates the
topological boundary conditions Pm(0) = Pm(1) = 0 and
is therefore orthogonal to the basis functions Pm. If the
topological protection is relaxed and the errors are ex-
panded in more general Pm, an exponential decay of the
expansion coefficients only allows for solutions when ac
is exponentially small in N (see Appendix D for details).

As a particular choice of Pm that uses the power of
Chebyshev polynomials and is compatible with the topo-
logical boundary conditions we use

Pm(x) = Tm+1(2x− 1) + (−1)m+1(x− 1)− x (14)

with Tm(x) being Chebyshev’s polynomials of the first
kind. Note that the order m = 0 that involves only linear
terms in x vanishes identically which again reflects the
orthogonality of the function x with respect to {Pm}.

The solutions of Eqs. (13) for ac = 1/2 (π/8 gate) can
be expressed analytically and are given by

xNn =
1

2

[
1− cos

(
πn

2N + 1

)]
. (15)

The general solution for other ac’s can be found numeri-
cally and will be discussed in Sec. VI below.

IV. THE DYNAMICAL-PHASE ERROR AND
ITS ELIMINATION WITH A PARITY ECHO

The Chebyshev protocol above efficiently eliminates
the systematic machine error, but at the same time intro-
duces an equally potent source of error: an uncontrollable
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dynamical phase. The geometric decoupling method of
Sec. III requires that at certain times all the couplings
∆i are comparable. In these time spans, it is unavoid-
able that substantial direct couplings emerge between the
tip-Majoranas, γx, γy, and γz. These couplings induce a
finite energy splitting between the two, otherwise degen-
erate, parity sectors of the system. This splitting inte-
grated over the gate’s duration, will distort the relative
phase we seek to control. This distortion can be com-
pletely eliminated by carrying out a parity-echo: can-
celing the dynamical phase accrued in the gate by the
opposite dynamical phase accrued from the same gate
when reversing the parity for the low-lying parity sector.
In order to add instead of subtract the wanted geometric
phase the second gate is applied with reversed trajectory.

Let us first consider the strength and origin of the par-
asitic couplings. Majoranas i and j will in general be cou-
pled by a term of order ∆i∆j/∆̃, where ∆̃ is the energy
scale of high energy modes that were integrated out to
obtain the four-Majorana low-energy Hamiltonian, typ-
ically of the order of the superconducting gap. In the
spherical polar coordinates, the parasitic couplings in-
duce the term:

δH = 2iε∆F (θ, φ)γθγφ , (16)

where γθ and γφ are defined in Eq. (2), and ε = ∆/∆̃.
The function F (θ, φ) < 1 captures the splitting’s angular
dependence, and it vanishes at the edge of the octant in
parameter space (where the zero-modes are protected).
For a concrete example see App. E.

Conventionally, the dynamical phase induced by the
splitting O(ε∆) can be minimized by imposing ε � 1.
For protocol durations τprot much smaller then [ε∆]−1,
the acquired dynamical phase will be small [O(ετprot∆)].
This strategy for mitigating the dynamical phase error,
however, results in strong constraints on the speed with
which the π/8 gate could be carried out.

A superior strategy employs spin-echo-like schemes
[39]. If we switch the sign of the Hamiltonian (here
δH) for half the duration of the protocol, the dynami-
cal phases from the two halves of the procedure exactly
cancel, regardless of how strong they are. Indeed, the
Majorana structure of the energy splitting, Eq. (16), al-
lows to switch the sign of δH without fine tuning of any
parameters by applying a parity flip (NOT gate of the
qubit): γθγφ → −γθγφ. One possible implementation of
this “parity echo” includes (1) carrying out a geometri-
cally robust π/16 gate (by solving Eqs. (13) for ac = 1/4
instead of ac = 1/2), (2) performing a parity flip, and (3)
carrying out the same π/16 gate with a reversed direction
of the contour. The contribution to the geometric phase
switches sign twice (parity flip and reverse of direction)
thus adding up to an overall phase of π/8. The dynam-
ical phase, however, is direction independent, and thus
cancels out after the echo is completed. Alternative par-
ity echoes, and echoes based on a sign change of F (θ, φ)
by manipulating θ and φ (“angular echo”) are discussed
in App. F.

Needless to say, these simple echo procedures rely on
the system not changing during the gate execution. More

complicated echoes (similar to the original idea of dy-
namical decoupling) could also allow us to suppress finite
frequency noise effects in the dynamical phase.

V. RETARDATION EFFECTS ELIMINATION
USING ECHO

In addition to the geometric variations of X(x, y) and
Y (x, y), inductive and capacitive effects might introduce
velocity dependent changes. For the vertical snake pro-
tocol (Fig. 4) this could, in particular, introduce terms
of the form X(x, y, ẏ) =

∑
nX

(n)(x)ẏn. All the terms
with an even power are cancelled by our protocol as they
simply lead to an overall (lateral) shift of X for the tra-
jectories of constant longitude. The odd terms are prob-
lematic as they tend to influence the northwards (at xN2n)
and southwards (at xN2n+1) trajectories in an opposite and
correlated manner so that the total area enclosed by the
trajectory will deterministically change.

Fortunately, these terms with an odd power are elimi-
nated by the same parity echo protocols of Sec. IV that
eliminate possible dynamical phases. The idea of the par-
ity echo is to cover half of the solid angle for the geometric
phase on the forward run and the other half on the back-
ward run. If odd order terms lead to a velocity dependent
deformation of the contour that changes the Berry phase
of the first run, there will be an opposite deformation on
the way back where velocities are reversed. In the total
geometric phase of the echo, the velocity dependent ef-
fects, therefore, cancel out. There might be higher order
errors from an imperfect cancellation of the dynamical
phase since the forward and backward contour are now
slightly different. Note, however, that when implement-
ing the same velocity profile ẏ(t) (up to the switching
sign) for each trajectory of constant longitude, the error
for the imperfect cancellation due to the odd order ve-
locity dependent terms will be again an alternating sum
of the 2N trajectories which cancels in the limit of large
N [46].

VI. NUMERICAL SIMULATION OF THE π/8
GATE

A. Verification of the Chebyshev protocol

First, let us demonstrate the robustness of the above
protocols in the absence of a dynamical phase. For this
purpose, we conducted a simulation of the full time evo-
lution of the system where the change of the Hamilto-
nian H(t) [cf. Eq. (1)] in parameter space is described
by the vertical snake contour of Fig. 4. We extract the
gate angle α from the time evolution operator obtained
by numerically solving the time dependent Schrödinger
equation corresponding to H(t).

Adiabaticity is certainly a concern in our protocol [47–
49]. In order to reach the adiabatic regime more easily
we slow down the speed of parameter change close to the
sharp turning points of the protocol. This allows us to
stay well inside the adiabatic regime for moderate time
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FIG. 5. Numerical demonstration of the robustness of the π/8
gate. (a) Systematic deviation of the angle Φ from its per-
fect implementation φ (dashed black line). The corresponding
modified contour for N = 4 (solid blue line) is depicted in (b)
and shows clear variations from the perfect implementation
(dashed black line). (c) The relative error in the phase-gate
angle δα which decays exponentially with the number of turns
N . (The dashed red line shows the exponential fit.) (d) and
(e) Effect of a finite outer coupling (ε = 0.001, cf. Eq. (17))
without and with an accompanying parity echo (see Sec. IV).
(f) An imperfect echo implementation where ε changes by
δε = 0.01ε between the echo sequences.

spans τ between the turns. Throughout this paper we
use τ = 25/∆ which yields non-adiabatic phase errors
< 10−10.

As expected, we find that a perfect implementation
of the protocol with turning points φNn = (π/2)xNn ,
as in Eq. (15) gives a π/8 gate up to (the simulat-
ing) machine accuracy. Systematic errors in the con-
trol of the Majorana system would give rise to devia-
tions of the implemented ΦNn (φNn ) from the perfect turn-
ing points of Eq. (15). Fig. 5(a) shows an error model
that leads to substantial deviations, corresponding to an
analytic control function Φ(φ) [50]. Despite this control
error, and the strong deviations of the turning points
(of up to 20%), the relative phase error of the gate
δα = (α − π/8)/(π/8), vanishes exponentially fast with
increasingN [see Fig. 5(c)]. More complicated error func-
tions Φ(φ, θ) that include cross correlations between θ
and Φ yield (as expected by the general argument in
Sec. III) a similar exponential decay and are discussed
in App. G. Notice that we chose here an error function
that is analytic on the real axis with complex poles. As
explained in App. B this leads to a simple exponential de-

cay rather than an exp[−N log(N)] decay when the poles
are absent.

As noted above, our procedure is not limited to phase-
gates with α = π/8. Although simple analytic solutions
of φn will in general not exist for α 6= π/8, Eqs. (13) can
be solved numerically for any α = acπ/4 . We checked
that these numerical solutions indeed possess the same
stability and protection as the π/8 case, reproducing es-
sentially the same behavior as in Fig. 5.

B. Simulations of the parity-echo procedure

Let us next include in our simulations the errors due
to the dynamical-phase discussed in Sec. IV. Finite next-
neighbour Majorana couplings give rise to dynamically-
induced phase errors that have to be addressed indepen-
dently of the control-function errors. To study their effect
we added a term

δH = 2iε∆
∑
i<j

∆i∆j

∆2
γiγj (17)

to the Hamiltonian. In the absence of steps to mitigate
the dynamical phase error, as expected, the performance
of the Chebyshev protocol is limited, and we find that
δα cannot be reduced beyond 2Nrε∆τ [see Fig. 5(d)],
where r ≈ 0.06 is a numerical constant given by averaging
the energy splitting over time (it is much smaller than
1 because our protocols slow down close to the turning
points where the energy splitting is small).

The echo sequences discussed in Sec. IV, however, can
cancel the dynamical phase effects. In Fig. 5(e), we carry
out the parity-echo protocol: first, applying a π/16 gate,
then performing a parity switch (NOT gate), and finally
applying the π/16 gate in reverse. This, as the numerical
results of Fig. 5(e) show, fully restores the ε = 0 behavior.

Interestingly, finite next neighbour couplings as in
Eq. (17) also alter the geometric aspects of the problem,
since they also modify the Berry phase acquired by the
system. This is due to the change of the fermionic low
energy mode a (zero-mode at ε = 0) which leads to ex-
tra contributions to the Berry phase and thus geometric
errors. Since these errors, however, vanish at the edges
of the octant in parameter space where the zero-mode is
recovered, they are automatically taken into account and
corrected by our snake contours [51]. When applying the
parity echo, we therefore observe an expected e−N log(N)

decay of δα even for ’perfect’ implementations Φ = φ.

C. Consequences of time dependence in the system

Finally, we note that there are some remaining errors
from the temporal change of the system between the
parity-echo protocol steps. We model this numerically
by changing ε to ε + δε on the second part of the echo.
We find that the performance of the gate is then limited
by 2Nrδε∆τ [see Fig. 5(f)]. Note that it is in principle
possible to reduce ε and the corresponding δε by choosing
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a coupling strength ∆ much smaller than the supercon-
ducting gap. Also note that δε itself can be very small.
A likely source of a time-dependent change of ε is charge
noise, which leads to typical δε ∼ 10−3ε [52] and even
can be reduced to δε ∼ 10−6ε when tuning the system to
the charge insensitive sweet spot.

VII. SUMMARY AND DISCUSSION

In this manuscript we have suggested a geometric
multi-step protocol realizing a π/8 phase gate with an
exponential accuracy in the number of steps N , and
generalized it to any α phase gate, which may be use-
ful as practical shortcut protocols for producing desired
phase gates. We have demonstrated the protocol on a
setup [36], where 4 Majoranas are situated at the 3 tips
and the center of a Y-shaped junction. This makes the
scheme particularly appealing, as one may use any hard-
ware realizing Majoranas that does not support univer-
sal quantum computation and make it universal with the
multi-step protocol we suggest.

Manipulating the system through a sequence of cou-
pling constants between the 4 Majoranas induces various
phase gates. We mapped the coupling sequences to con-
tours on the Bloch sphere, and, in particular, we showed
that the topologically-protected exchange process (the
π/4 phase gate) corresponds to a contour encircling an
octant of the Bloch sphere. A contour covering a solid an-
gle Ω produces an α = Ω/2 phase gate. Due to the topo-
logical nature of the exchange process deviations from
that contour are exponentially small in the laboratory
physical parameters.

Contours that cover parts of the octant can be inter-
preted as a split of one Majorana where another is ex-
changed with only one of the split parts, leading (in case
when the two parts have an equal weights) to a π/8 phase
gate. The exact splitting portions depend on details and
are not protected by any symmetry or topology. The
algorithm we suggest in the form of a contour with N
switchbacks does not enjoy the full topological protec-
tion such as the π/4 phase gate. However, because parts
of the trajectory are at the boundary of the octant we
were able to show that the geometric phase accumulated
in the process is π/8 with an exponential accuracy. We
demonstrated that realizations of different phase gates
are also possible. Although the topological protection at
the boundary is crucial in our scheme, it might still be

interesting to study whether extensions exist that also
improve the performance of geometric quantum compu-
tation schemes in non-topological systems [53–55].

Because parts of the contour are in the vicinity of the
octant’s middle, next nearest neighbour coupling effects
may not be negligible. We have analyzed parity and an-
gular echo protocols eliminating these dynamical effects,
as well as parasitic retardation effects.

Assuming that the induced superconductor gap energy
is ∆SC = 3K ≈ (60GHz), the couplings between the Ma-
joranas is at max ∆ = (5mK) ≈ 100MHz (leading to next
neighbour couplings ε∆ ≈ 0.2MHz), a π/8 gate (with
2N = 10 turns) can be operational at turn frequencies
1/τ ≈ 10MHz. The latter fulfills the adiabatic condi-
tion τ∆� 1 and leads to a small dynamical phase error
which we estimate to be δα = 0.01. Applying a parity
echo with temporal fluctuations δε < 0.01ε would then
allow to reach relative errors < 10−4 (Note that this is a
conservative estimate. When the temporal fluctuations
are only caused by charge noise the overall errors would
be 10−5 and even 10−8 at the charge insensitive sweet
spot, see Sec. VI C).

The scheme we suggest relies on a variational protocol
and can still be improved upon. In particular, we did
not try to optimize the contours used in the calculation,
and the snake-like contours may not be the most opti-
mal. Also, we employed only a one step protocol for the
cancellation of the dynamical effects. We are currently
considering possible improvements along these lines.

Finally, we would like to emphasize that the scheme
proposed here is universal. It should be operational for
all realizations of Majoranas and all models of environ-
mental noise.
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Appendix A: Braiding using a Y-junction

1. The operation of α - phase gate

To define the α phase gate we assume that there are
two Majoranas γθ and γφ forming an annihilation fermion
operator a = (γθ + iγφ)/2.

Defining the operator Uθφ,α = eαγθγφ = cosα +

sinαγθγφ, we notice that U†θφ,α = cosα + sinαγφγθ =

cosα − sinαγθγφ. So that U†θφ,αγθUθφ,α = cos 2αγθ +

sin 2αγφ while U†θφ,αγφUθφ,α = cos 2αγφ − sin 2αγθ.

In particular for α = π/4 the Majoranas γθ → γφ
and γφ → −γθ, i.e., under π/4 phase gate the particles
are interchanged and one of the operators acquires an
additional sign.

2. α - phase gate and geometrical phases

To calculate the phase one accumulates in physical
models with a particular trajectory of the model’s pa-
rameters, we note that iγθγφ = 2a†a− 1, so that to find
α associated with a trajectory we need to calculate the
difference in the geometrical phases for empty a-state∣∣∣0(~∆(t)

)〉
, defined by c

∣∣∣0( ~∆(t)
)〉

= 0 and an occupied

state
∣∣∣1(~∆(t)

)〉
= c†

∣∣∣0(~∆(t)
)〉

.

Using the notation |1〉 = |1(t)〉 =
∣∣∣1(~∆(t)

)〉
, |0〉 =

|0(t)〉 =
∣∣∣0(~∆(t)

)〉
for these instantaneous states the

geometric phase accumulated in a contour c is given by,

2αc = i

∮
c

(〈1| ∂t |1〉 − 〈0| ∂t |0〉) dt

= i

∮
c

(
〈0| a∂t

(
a† |0〉

)
− 〈0| ∂t |0〉

)
dt

= i

∮
c

(
〈0| a∂ta† |0〉+ 〈0| aa†∂t |0〉 − 〈0| ∂t |0〉

)
dt

= i

∮
c

(
〈0| a∂ta† |0〉+ 〈0|

(
1− a†a

)
∂t |0〉 − 〈0| ∂t |0〉

)
dt

= i

∮
c

(
〈0| a∂ta† |0〉 − 〈0| a†a∂t |0〉

)
dt

= i

∮
c

(
〈0| a∂ta† |0〉

)
dt

= i

∮
c

(
〈0| a∂ta† +

(
∂ta
†) a |0〉) dt⇒

αc =
1

2
i

∮
c

{
a, ∂ta

†} dt. (A1)

The last term in the equation vanishes since 〈0| a† =

(a |0〉)† = 0.
To find the geometric phase in terms of the trajectory

in the θ, φ plane we use again the definition a = (γθ +

http://dx.doi.org/10.1103/PhysRevB.84.104529
http://dx.doi.org/10.1103/PhysRevB.84.104529
http://dx.doi.org/10.1103/PhysRevB.91.201404
http://dx.doi.org/10.1103/PhysRevB.91.201404
http://dx.doi.org/10.1103/PhysRevB.91.201102
http://dx.doi.org/10.1103/PhysRevB.91.201102
http://dx.doi.org/10.1088/1367-2630/13/9/095004
http://dx.doi.org/10.1088/1367-2630/13/9/095004
http://dx.doi.org/ 10.1103/PhysRevA.61.010305
http://dx.doi.org/ 10.1103/PhysRevA.61.010305
http://dx.doi.org/10.1016/S0375-9601(99)00803-8
http://dx.doi.org/10.1088/1367-2630/14/10/103035
http://stacks.iop.org/1751-8121/42/i=36/a=365303
http://stacks.iop.org/1751-8121/42/i=36/a=365303
http://stacks.iop.org/1751-8121/42/i=36/a=365303
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iγφ)/2 so that we have

∂ta
† = ∂θa

†θ̇ + ∂φa
†φ̇

= 1/2 (∂θγθ − i∂θγφ) θ̇ + 1/2 (∂φγθ − i∂φγφ) φ̇,

using now the mathematical identities ∂θγθ =
−γr, ∂θγφ = 0, and ∂φγθ = cos θγφ, ∂φγφ = − cosφγx −
sinφγy = − cos θγθ− sin θγr and using the expression for
the Berry phase in terms of the operator in Eq. (A1) we
find that the variation with respect to the polar angle θ
vanishes

{
a, ∂θa

†} = −1/4 {(γθ + iγφ) , γr} = 0

and the variation with respect to the azimuthal angle
φ gives:

{
a, ∂φa

†} = {γθ + iγφ, cos θγφ + i (cos θγθ + sin θγr)}/4
= cos θ {γθ + iγφ, γφ + iγθ} /4
= i cos θ {γθ + iγφ, γθ − iγφ} /4
= i cos θ

{
a, a†

}
= i cos θ.

We therefore have:

αc = −1

2

∮
c

cos θdφ =
1

2
Ωc. (A2)

With Ωc being the solid angle enclosed by the contour c.

3. Evolution of operators

The operators γθ and γφ defined in Eq. (2) evolve
explicitly due to the instantaneous change of the cou-
pling constant and due to the Berry phase. To find
their evolution it is convenient to use the evolution op-
erator [49, 56], U(t) =

∑
n=0,1 e

iβn(t) |n(t)〉 〈n(0)| , with

|n(t)〉 the instantaneous eigenstates and βn(t) = Ent +∫ t
0
〈n(t)| ∂t |n(t)〉 dt the acquired phase. The dynamical

phase Ent may be omitted here since the eigen-energy of
both the occupied and the empty states are zero, En =
0, n = 0, 1. Evolving the operator a† = (γθ − iγφ)/2
we find

ā†(t) = U† (t) a†(0)U(t)

=
∑
n,n′

e2i(αn(t)−αn′ (t))

× |n′(t)〉 〈n′(0)| |1(0)〉 〈0(0)| |n(0)〉 〈n(t)|
= eiΩc(t) |1(t)〉 〈0(t)|
= eiΩc(t)a†(t)

with Ωc(t) = i
∫ t

0
(〈1(t)| ∂t |1(t)〉 − 〈0(t)| ∂t |0(t)〉) dt =

−
∫ t

0
cos θ dφdt dt and the bar above ā indicates that it is

a physical operator with the additional evolution due to
Berry’s phase. Using the relation of Eq. (4), we establish
the following relation between the instantaneous Majo-
ranas, γ̄, and the physical Majoranas γ that evolve with
the Berry phase:

(
γ̄θ
γ̄φ

)
=

(
cos Ωc(t) sin Ωc(t)
− sin Ωc(t) cos Ωc(t)

)(
γθ
γφ

)
.

We find that the relation between the instantaneous
and the physical operators is given by an additional ro-
tation with an angle equal to the Berry phase. Notice
that for a closed contour with Berry phase Ωc = π/2 the
instantaneous γ’s return to their original positions while
the physical γ̄’s exchange their positions and γθ acquires
an additional sign. For Ωc = π/4 the physical operators
are a superposition of the instantaneous ones.

Appendix B: Properties of Chebyshev polynomials

The Chebyshev polynomials of the first kind are de-
fined as:

Tm(x) = cos(m arccosx), x ∈ [−1, 1]. (B1)

A direct substitute of this definition in Eq. (14) proves
that:

Pm(0) = Tm(−1)− (−1)m = cosmπ − (−1)m = 0

Pm(1) − Tm(1)− 1 = cos 0− 1 = 0. (B2)

To show that xNn in Eq. (15) solve the set of 2N non
linear equations [Eq. (13)] we use the fact that Tm satisfy
the discrete orthogonality condition:

N−1∑
k=0

Ti(xk)Tj(xk) =

 0 i 6= j
N i = j = 0
N/2 i = j 6= 0

, (B3)

where xk = cosπ 2k+1
2N are the N Chebyshev nodes.

For completeness we quote here the following theorems
on the Chebyshev expansion, their proof can be found in
many text books, for example, you may consult Ref. [45]
page 37.

Consider the following expansion of the function f(x)
with the partial sum of the form f(x) ≈ Sn(x) =
1
2c0 +

∑n
k=1 ckTk(x), with ck = 2

π

∫ 1

−1
f(z)Tk(z)√

1−z2 . Define

the error function εn = supx∈[−1,1] |f(x)− Sn(x)| :

1. Functions with continuous derivative. When a
function f has m + 1 continuous derivatives on
[−1, 1], where m is a finite number, εn = O(n−m)
as n→∞.

2. Analytic functions inside an ellipse. When a func-
tion f on x ∈ [1, 1] can be extended to a function
that is analytic inside an ellipse with semi-axis of
length (r ± 1/r)/2 on the real and imaginary axis,
εn = O(r−n) as n→∞.

3. Entire functions. For entire functions f (functions
that have no poles) the error εn = O(1/n!) (mean-
ing that log εn = −O(n log n)) as n→∞.
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FIG. 6. The horizontal snake contour. A proper choice of
the turning point θNn yields a solid angle of π/4 with an ex-
ponentially small error. Here we show the contour based on
Chebyshev polynomials with N = 4 and cos θNn = xNn and
xNn , n = 1, . . . , 2N are given in Eq. (15).

Appendix C: Other protocols

Here we discuss other possible protocols that reduce
the systematic control errors. A straight forward varia-
tion of the vertical snake contour of Fig. 4 is to perform
horizontal sweeps with turning points θNn (see Fig. 6).
Since

∮
XdY = −

∮
Y dX on any closed path, exchang-

ing the role of X and Y has no effect on the arguments in
Sec. III. Then we will have a set of yNn instead of xNn . One
should, however, note that due to the nontrivial relation
y = cos(θ), Y (y) = cos(Θ(arccos(y))) is not necessarily
analytic when Θ(θ) is analytic. It might then be useful to
instead implement modified turning points yNn → ξ(yNn )
(with some function ξ(0) = 0 and ξ(1) = 1) such that
Y (ξ(y)) is analytic.

It is also possible to choose different basis functions for
the expansion of the errors (while keeping in the vertical
snake contour). In particular, a choice that agrees with
the boundary conditions Pm(0) = 1 and Pm(1) = 1 is
Pm(x) = sin(mπx). Using the symmetry properties of
the sine function we conclude that with

xNn =
2n− 1

4N
(C1)

we satisfy Eqs. (13) with ac = 1/2. Interestingly, in this
case, we can also find analytic solutions xNn = (n−1/2 +
(−1)n(ac − 1/2)/(2N) for arbitrary ac.

Unfortunately, the above Fourier expansion does not
enjoy the same exponential convergence as the Cheby-
shev polynomials and errors in the gate would decay poly-
nomially in the number of turns N .

Appendix D: Topological protection and exponential
convergence

In this section we detail the connection between the ex-
ponential convergence of our scheme with the turn num-
ber N and the underlying topological protection of the
Majoranas. The topological boundary conditions enter
at two crucial points in the derivation of Sec. III. First,
an over or undershooting δy(xn, 1) 6= 0 would add an
extra error to Eq. (9),

AC =

2N∑
n=1

(−1)n
[
xn[1− δy(xn, 1)] + δxeff(xn)

]
(D1)

that goes beyond an effective shift of turning points. In
the absence of the topological boundary conditions the
expansion δy(xn, 1) =

∑∞
m=0BmTm(2xn−1) will in gen-

eral have a constant contribution B0 6= 0. Canceling this

error then would require
∑2N
n=1(−1)nxn = 0, which only

allows trivial ac = 0.
Even when assuming that δy fulfills the topological

boundary conditions, we arrive at similar limitations,
when considering the effect of unrestricted δx. Expand-
ing the latter requires a general Chebyshev expansion
δx =

∑∞
m=0AmTm(2x−1) (as opposed to the constrained

version in the main text). The problem is that we can
also expand x =

∑∞
m=0 CmTm(2x−1). We then find that

the first Eq. in (13) takes the form

ac =

∞∑
m=2N−1

Cm

2N∑
n=1

(−1)nTm(2xn − 1) (D2)

where the orders m = 0 . . . 2N − 2, drop out because of
the error canceling Eqs. in (13). With Tm being Cheby-
shev polynomials of first kind, the only non-vanishing
expansion coefficient is Cm=1 = 1 such that we again
find ac = 0. In principle we could use different basis
functions for the expansion but if their coefficients decay
(as required) exponentially with the order of the expan-
sion, Eq. (D2) constraints ac to be at most exponentially
small in 2N − 1.

Appendix E: Detailed model for next nearest
neighbour couplings

A concrete model for the emerging next neighbour cou-
plings can be obtained when explicitly deriving Hamilto-
nian (1) from three coupled Majorana wires (see Fig. 7).

In this case the central Majorana γ0 emerges from a
strong coupling of three inner Majoranas γ̃i (i = x, y, z),

H1 = 2i
∑
i<j

∆̃ij γ̃iγ̃j . (E1)

Diagonalizing H1 yields the zero-mode γ0 along with a
pair of Majoranas corresponding to a finite energy state

at ∆̃ =
√∑

i<j ∆̃2
ij . Taking into account virtual transi-

tions to energy ∆̃ up to second order yields a low energy
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FIG. 7. Underlying substructure of the setup in Fig. 1. The
central Majorana mode γ0 emerges from the low energy sub-
space of three strongly couples Majoranas γ̃i.

Hamiltonian,

H = 2i

(∑
i

∆′iγiγ0 +
∑
i<j

∆ijγiγj

)
, (E2)

with ∆′i = εijk∆i∆̃jk/∆̃ (εijk being the Levi-Civita sym-

bol, and j < k) and ∆ij = −∆i∆j∆̃ij/∆̃
2.

In the spherical polar coordinates introduced in the
main text (note that they parametrize ∆′i not ∆i), the
leading order [up to corrections of O(ε2∆)] of the induced
energy splitting takes the form

δH = 2iελ
∆

4
sin(θ) sin(2θ) sin(2φ)γθγφ , (E3)

with λ = ∆̃3/(∆̃xy∆̃yz∆̃xz) and as in the main text ε =

∆/∆̃. From the angular dependence of Eq. (E3) we find
the expected behavior that the correction vanishes along
the edges of the octant in parameter space where θ, φ are
0 or π/2. Along the contours considered for the geometric
decoupling protocols, however, δH will not vanish. Also
a fine tuning of the inner couplings ∆̃ij does not allow
to eliminate this energy splitting since the minimal value
of |λ| = 33/2. Note that the apparent divergence of λ

when one of the couplings ∆̃ij = 0 is an artifact of the
corresponding vanishing coupling ∆′k (k 6= i, j). Since
the spherical parametrization assumes that all ∆′k can be
tuned to ∆, the bare coupling ∆i would need to diverge,
which leads to a breakdown of our perturbation theory.
When using Eq. (E3) it should therefore be understood

that all inner couplings remain large, i.e., ∆̃ij � ∆.

Appendix F: Other possible echo protocols

It might be easier to ensure the equivalence of the can-
celing contributions in the echo when implementing an
echo with multiple parity flips. A possible protocol as
a modification of the vertical snake contour is applying
the sequence, ... (0, 0) → (π/2, φNn ) → P → (0, 0) →
(π/2, φNn+1)→ P ... in (θ, φ)-space with P denoting a par-
ity flip. In this case the dynamical phases of each path

FIG. 8. Effect of cross correlations between Φ and θ on the ge-
ometric decoupling scheme. (a) The modified protocol (solid
blue) described by the error model (G2) in comparison to
the perfect implementation (dashed black). (b) Decay of the
phase error in terms of the number of turns N . The red
dashed line shows an exponential fit starting at N = 5.

from the north pole to (0, φNn ) are immediately cancelled
out. The protocol can also be thought of as instead of do-
ing a parity flip, going from the north pole over (π/2, φn)
to the south pole. Since this doubles the geometric phase
the correct φNn are that of a π/16 gate.

As indicated above instead of applying parity flips the
sign flip of δH can also be caused by flipping the sign of
the angular dependence, denoted by F (θ, φ) in the main
text [see Eq. (16))]. From Eq. (E3), we observe that
shifting θ → π − θ (or equivalently φ → π − φ) leads
to a sign switch in δH. An angular echo protocol can
therefore be implemented by repeating a π/16 gate in
two adjacent octants in parameter space.

Appendix G: Cross correlations Φ(φ, θ)

In Sec. III we map a general error function Φ(φ, θ) to
Φeff(φ) which shows that the error model Φ(φ) considered
in the main text is already of the most general form. As
an additional check we now implement cross correlations
Φ(φ, θ) explicitly. One possible source of cross correla-
tions is that in experiments systematic errors manifest at

the level of couplings ~∆, which translate non-trivially to
the coordinates Φ and Θ. Moreover, note that although
there is no explicit cross correlation between Φ and θ in
the main text, the presence of the next neighbour cou-
plings already introduce implicit cross correlations in the
Berry phase. In general, a finite ε will lead to corrections
fε and gε in the Berry phase

2α =

∮
(fε(θ, φ)− cos θ)dφ+

∮
gε(θ, φ)dθ . (G1)

Instead of changing the formula for the Berry phase one
could redefine Φ and Θ to include fε and gε which then
would obtain cross correlations. The fact that our scheme
is stable for finite ε (when applying an appropriate echo
to cancel the dynamical phase) already shows that cross
correlations are also effectively corrected.

To include explicit cross correlations we used the error
model

Φ(φ)→ Φ(φ) + cθ(θ)cφ(φ) , (G2)
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where the functions cθ/φ vanish when θ/φ are 0 or π/2
due to the topological protection at the edge of the oc-
tant in parameter space. In particular we choose two
polynomials for cθ/φ obtained from interpolating 5 ran-
dom numbers in between the vanishing boundary condi-
tions. Figure 8(a) shows the resulting contour for varia-
tions |cθcφ| . 0.01. As expected, we still find an expo-

nential decay of the phase error with increasing number
of turns (for the same reason as in the main text the
strength of the errors is not crucial for the exponential
behavior). Fig. 8(b) shows the corresponding behavior
for ε = 0 with an decay that is only slightly weaker as in
the absence of the cross terms. Finite values of ε can be
corrected by echo protocols similar to the main text.


