
Short Paper: Formal Verification of Smart Contracts

Karthikeyan Bhargavan2 Antoine Delignat-Lavaud1 Cédric Fournet1

Anitha Gollamudi3 Georges Gonthier1 Nadim Kobeissi2 Aseem Rastogi1

Thomas Sibut-Pinote2 Nikhil Swamy1 Santiago Zanella-Béguelin1

1Microsoft Research 2Inria 3Harvard University
{antdl,fournet,gonthier,aseemr,nswamy,santiago}@microsoft.com

{karthikeyan.bhargavan,nadim.kobeissi,thomas.sibut-pinote}@inria.fr agollamudi@g.harvard.edu

Abstract
Ethereum is a cryptocurrency framework that uses blockchain
technology to provide an open distributed computing plat-
form, called the Ethereum Virtual Machine (EVM). EVM
programs are written in bytecode which operates on a sim-
ple stack machine. Programmers do not usually write EVM
code; instead, they can program in a JavaScript-like lan-
guage called Solidity that compiles to bytecode. Since the
main application of EVM programs is as smart contracts that
manage and transfer digital assets, security is of paramount
importance. However, writing trustworthy smart contracts
can be extremely difficult due to the intricate semantics of
EVM and its openness: both programs and pseudonymous
users can call into the public methods of other programs.
This problem is best illustrated by the recent attack on
TheDAO contract, which allowed roughly $50M USD worth
of Ether to be transferred into the control of an attacker. Re-
covering the funds required a hard fork of the blockchain,
contrary to the code is law premise of the system. In this
paper, we outline a framework to analyze and verify both
the runtime safety and the functional correctness of Solidity
contracts in F?, a functional programming language aimed
at program verification.

Categories and Subject Descriptors F.3 [F.3.1 Specifying
and Verifying and Reasoning about Programs]

Keywords Ethereum, Solidity, EVM, smart contracts

1. Introduction
The blockchain technology, pioneered by Bitcoin [7] pro-
vides a globally-consistent append-only ledger that does not
rely on a central trusted authority. In Bitcoin, this ledger
records transactions of a virtual currency, which is created
by a process called mining. In the proof-of-work mining
scheme, each node of the network can earn the right to ap-
pend the next block of transactions to the ledger by finding
a formatted value (which includes all transactions to appear
in the block) whose SHA256 digest is below some difficulty
threshold. The system is designed to ensure that blocks are
mined at a constant rate: when too many blocks are submit-

ted too quickly, the difficulty increases, thus raising the com-
putational cost of mining.

Ethereum is similarly built on a blockchain based on
proof-of-work; however, its ledger is considerably more ex-
pressive than that of Bitcoin’s: it stores Turing-complete
programs in the form of Ethereum Virtual Machine (EVM)
bytecode, while transactions are construed as function calls
and can carry additional data in the form of arguments. Fur-
thermore, contracts may also use non-volatile storage and
log events, both of which are recorded in the ledger.

The initiator of a transaction pays a fee for its execution
measured in units of gas. The miner who manages to ap-
pend a block including the transaction gets to claim the fee
converted to Ether at a specified gas price. Some operations
are more expensive than others: for instance, writing to stor-
age and initiating a transaction is four orders of magnitude
more expensive than an arithmetic operation on stack val-
ues. Therefore, Ethereum can be thought of as a distributed
computing platform where anyone can run code by paying
for the associated gas charges.

The integrity of the system relies on the honesty of a
majority of miners: a miner may try to cheat by not running
the program, or running it incorrectly, but honest miners will
reject the block and fork the chain. Since the longest chain is
the one that is considered valid, miners are incentivized not
to cheat and to verify that others do as well, since their block
reward may be lost unless malicious miners can supply the
majority of new blocks to the network.

While Ethereum’s adoption has led to smart contracts
managing millions of dollars in currency, the security of
these contracts has become highly sensitive. For instance,
a variant of a well-documented reentrancy attack was re-
cently exploited in TheDAO [2], a contract that implements
a decentralized autonomous venture capital fund, leading to
the theft of more than $50M worth of Ether, and raising the
question of whether similar bugs could be found by static
analysis [6].

In this paper, we outline a framework to analyze and
formally verify Ethereum smart contracts using F? [9], a
functional programming language aimed at program verifi-
cation. Such contracts are generally written in Solidity [3],

1 2016/8/11

a JavaScript-like language, and compiled down to bytecode
for the EVM. We consider the Solidity compiler as untrusted
and develop a language-based approach for verifying smart
contracts. Namely, we present two tools based on F?:

Solidity? a tool to translate Solidity program to shallow-
embedded F? programs (Section 2).

EVM? a decompiler for EVM bytecode that produces
equivalent shallow-embedded F? programs that operate
on a simpler machine without stack (Section 3).

These tools enable three different forms of verification:

1. Given a Solidity program, we can use Solidity? to trans-
late it to F? and verify at the source level functional cor-
rectness specifications such as contract invariants, as well
as safety with respect to runtime errors.

2. Given an EVM bytecode, we can use EVM? to decompile
it and analyze low-level properties, such as bounds on the
amount of gas consumed by calls.

3. Given a Solidity program and allegedly functionally
equivalent EVM bytecode, we can verify their equiva-
lence by translating each into F?. Thus, we can check the
correctness of the output of the Solidity compiler on a
case-by-case basis using relational reasoning [1].

1.1 Architecture of the Framework

Solidity*
Subset	of	F*

EVM*
Subset	of	F*

Verified	Translation

Verified	Decompilation

✅

✅

Functional	 Correctness

Runtime	Safety

F*
Solidity
Source	Code

EVM
Compiled	Bytecode

Verify

Verify

Equivalence	
Proof

Figure 1. Overview of the architecture of our framework

Our smart contract verification framework is a two-
pronged approach (Figure 1) based on F?. F? comes with
a type system that includes dependent types and monadic
effects, which we apply to generate automated queries to
statically verify properties on EVM bytecode and Solidity
sources.

While it is clearly favorable to obtain both the Solidity
source code and EVM bytecode of a target smart contract,
we design our architecture with the assumption that the veri-
fier may only have the bytecode. At the moment of this writ-
ing, only 396 out of 112,802 contracts have their source code
available on http://etherscan.io. Therefore we provide
separate tools for decompiling EVM bytecode (EVM?), and
analyzing Solidity source code (Solidity?).

〈solidity〉 ::= (〈contract〉)*

〈contract〉 ::= ‘contract ’ @identifier ‘{’ (〈st〉)*‘}’

〈st〉 ::= 〈typedef 〉 | 〈statedef 〉 | 〈method〉

〈typedef 〉 ::= ‘struct ’ @identifier ‘ {’ (〈type〉@identifier ‘;’)* ‘}’

〈type〉 ::= ‘uint’ | ‘address’ | ‘bool’
| ‘mapping (’ 〈type〉 ‘=>’ 〈type〉 ‘)’
| @identifier

〈statedef 〉 ::= 〈type〉@identifier

〈method〉 ::= ‘function’ (@identifier)?‘()’ (〈qualifier〉)* ‘{’
(‘var’ (@identifier (‘=’ 〈expression〉)? ‘,’)+)?
(〈statement〉 ‘;’)* ‘}’

〈qualifier〉 ::= ‘private’ | ‘public’ | ‘internal’
| ‘returns (’ 〈type〉 (@identifier)? ‘)’

〈statement〉 ::= ε
| 〈type〉@identifier (‘=’ 〈expression〉)? (*decl*)
| ‘if(’ 〈expression〉 ‘)’ 〈statement〉

(‘else’ 〈statement〉)?
| ‘{’ (〈statement〉 ‘;’)* ‘}’
| ‘return’ (〈expression〉)?
| ‘throw’
| 〈expression〉

〈expression〉 ::= 〈literal〉
| 〈lhs expression〉 ‘(’ (〈expression〉 ‘,’)* ‘)’
| 〈expression〉 〈binop〉 〈expression〉
| 〈unop〉 〈expression〉
| 〈lhs expression〉 ‘=’ 〈expression〉
| 〈lhs expression〉

〈lhs expression〉 ::=
| @identifier
| 〈lhs expression〉 ‘[’ 〈lhs expression〉‘]’
| 〈lhs expression〉 ‘.’ @identifier

〈literal〉 ::= 〈function〉
| ‘{’ (@identifier ‘:’ 〈expression〉 ‘,’)* ‘}’
| ‘[’ (〈expression〉 ‘,’)* ‘]’
| @number |@address |@boolean

〈binop〉 ::= ‘+’ | ‘-’ | ‘*’ | ‘/’ | ‘%’
| ‘&&’ | ‘||’ | ‘==’ | ‘!=’ | ‘>’ | ‘<’ | ‘>=’ | ‘<=’

〈unop〉 ::= ‘+’ | ‘-’ | ‘!’

Figure 2. Syntax of the translated Solidity subset

2. Translating Solidity to F?

In the spirit of previous work on type-based analysis of
JavaScript programs [8], we advocate an approach where the
programmer can verify high-level goals of a contract using
F?. In this section, we present a tool to translate Solidity to
F?, and a simple automated analysis of extracted F? con-
tracts.

Solidity programs consist of a number of contract decla-
rations. Once compiled to EVM, contracts are installed us-
ing a special kind of account-creating transaction, which al-
locates an address to the contract. Unlike Bitcoin, where an

2 2016/8/11

http://etherscan.io

address is the hash of the public key of an account, Ethereum
addresses can refer indistinguishably to a contract or a user
public key. Similarly, there is no distinction between trans-
actions and method calls: when sending Ether to a contract,
it will implicitly call the fallback function (the unnamed
method of the Solidity contract). In fact, compiled contracts
in the blockchain consist of a single entry point that de-
cides depending on the incoming transaction which method
code to invoke. The methods of a Solidity contract have
access to ambient global variables that contain information
about the contract (such as the balance in this.balance),
the transaction used to invoke the contract’s method (such
as the source address in msg.sender and the amount of
ether sent in msg.value), or the block in which the invo-
cation transaction is mined (such as the miner’s timestamp
in block.timestamp).

In this exploratory work, we consider a restricted subset
of Solidity, shown in Figure 2. Notably, the fragment we con-
sider does not include loops. The three main types of decla-
rations within a contract are type declarations, property dec-
larations and methods. Type declarations consist of C-like
structs and enums, and mappings (associative arrays imple-
mented as hash tables). Although properties and methods are
reminiscent of object oriented programming, it is somewhat
a confusing analogy: contracts are “instantiated” by the ac-
count creating transaction; this will allocate the properties
of the contract in the global storage and call the construc-
tor (the method with the same name as the contract). De-
spite the C++/Java-like access modifiers, all properties of a
contract are stored in the Ethereum ledger, and as such, the
internal state of all contracts is completely public. Methods
are compiled in EVM into a single function that runs when
a transaction is sent to the contract’s address. This transac-
tion handler matches the requested method signature with
the list of non-internal methods, and calls the relevant one.
If no match is found, a fallback handler is called instead (in
Solidity, this is the unnamed method).

2.1 Translation to F?

We perform a shallow translation of Solidity to F? as fol-
lows:

1. contracts are translated to F? modules;

2. type declarations are translated to type declarations:
enums become sums of nullary data constructors, structs
become records, and mappings become F? maps;

3. all contract properties are packaged together within a
state record, where each property is a reference;

4. each method gets translated to a function, no defunction-
alization is required since Solidity is first-order only;

5. we rewrite if statements that have a continuation de-
pending on whether one branch ends in return or throw
(moving the continuation in the other branch) or not (we
then duplicate the continuation in each branch).

6. to translate assignments, we keep an environment of lo-
cal, state, and ambient global variable names: local vari-
able declarations and assignments are translated to let

bindings; globals are replaced with library calls; state
properties are replaced with update on the state type;

7. built-in method calls (e.g.address.send()) are re-
placed by library calls.

We show a minimalistic Solidity contract and its F? trans-
lation in Figure 3. The only type annotation added by the
translation is a custom Eth effect on the contract’s methods,
which we describe in Section 2.2. The Solidity library de-
fines the mapping type (a reference to a map) and the as-
sociated functions update map and lookup. Furthermore,
it defines the numeric types used in Solidity, which are un-
signed 256-bit by default.

2.2 An effect for detecting vulnerable patterns
The example in Figure 3 captures two major pitfalls of So-
lidity programming. First, many contracts fail to realize that
send and its variants are not guaranteed to succeed (send
returns a bool). This is highly surprising for Solidity pro-
grammers because all other runtime errors (such as run-
ning out of gas or call stack overflows) trigger an exception.
Such exceptions (including the ones triggered by throw) re-
vert all transactions and all changes to the contract’s prop-
erties. This is not the case of send: the programmer needs
to undo side effects manually when it returns false, e.g.
if(!addr.send(x)) throw.

The other problem illustrated in MyBank is reentrancy.
Since transactions are also method calls, calling send is a
transfer of program control. Consider the following mali-
cious contract:
contract Malicious {

uint balance;
MyBank bank = MyBank(0xdeadbeef8badf00d...);

function Malicious(){
balance = msg.value;
bank.Deposit.value(balance)();
bank.Withdraw.value(0)(balance); // forwarding gas

}

function (){ // fallback function

bank.Withdraw.value(0)(balance);
}
}

It attacks the Withdraw method of MyBank by calling recur-
sively into it at the point where it does its send. The if

condition in the second Withdraw call is still satisfied (be-
cause the balances are updated after send, and there is no
check that it was successful). Even though the send in the
second call to Withdraw is guaranteed to fail (because un-
like method calls, send allocates only 2300 gas for the call),
it still corrupts the balance by decreasing twice, causing an
unsigned integer underflow. After corrupting the balance,

3 2016/8/11

contract MyBank {
mapping (address⇒ uint) balances;

function Deposit() {
balances[msg.sender] += msg.value;
}

function Withdraw(uint amount) {
if(balances[msg.sender] ≥ amount) {

msg.sender.send(amount);
balances[msg.sender] −= amount;
}
}

function Balance() constant returns(uint) {
return balances[msg.sender];
}
}

module MyBank
open Solidity

type state = { balances: mapping address uint; }
val store : state = {balances = ref empty map}

let deposit () : Eth unit =
update map store.balances msg.sender

(add (lookup store.balances msg.sender) msg.value)

let withdraw (amount:uint) : Eth unit =
if (ge (lookup store.balances msg.sender) amount) then
send msg.sender amount;
update map store.balances msg.sender

(sub (lookup store.balances msg.sender) amount)

let balance () : Eth uint =
lookup store.balances msg.sender

Figure 3. A simple bank contract in Solidity translated to F?

the malicious contract can freely withdraw any remaining
funds in the bank.

Using the effect system of F?, we now show how to detect
some vulnerable patterns such as unchecked send results in
translated contracts. The base construction is a combined
exception and state monad (see [9] for details) with the
following signature:

EST (a:Type) = h0:heap // input heap
→ send failed:bool // send failure flag
→Tot (option (a ∗ heap) // result and new heap, or exception

∗ bool) // new failure flag

return (a:Type) (x:a) : EST a =
fun h0 b0→ Some (x, h0), b0

bind (a:Type) (b:Type) (f:EST a) (g:a→EST b) : EST b =
fun h0 b0→

match f h0 b0 with
| None, b1→None, b1 // exception in f: no output heap
| Some (x, h1), b1→ g x h1 b1 // run g, carry failure flag

The monad carries a send failure flag to record
whether or not a send() or external call may have failed
so far. It is possible to enforce several different styles based
on this monad; for instance, one may want to enforce that
a contract always throws when a send fails. As an example,
we defined the following effect based on EST:

effect Eth (a:Type) = EST a
(fun b0→ not b0) // Start in non-failsure state
(fun h0 b0 r b1→

// What to do when a send failed
b1 =⇒ (match r with | None→True // exception

| Some (, h1)→ no mods h0 h1)) // no writes

The standard library then defines the post-condition
of throw to fun h0 b0 r b1→ b0=b1 ∧ is None r and the post-
condition of send to fun h0 b0 r b1→ r == Some (b1, h0).

Simply by typechecking extracted methods in the Eth

effect, we can detect dangerous patterns such as the send()
followed by an unconditional write to the balances table
in MyBank. Note that the safety condition imposed by Eth

is not sufficient to prevent reentrency attacks, as there is no
guarantee that the state modifictions before and after send
preserve the functional invariant of the contract. Therefore,
this analysis is useful for detecting dangerous patterns and
enforcing a failure handling style, but it doesn’t replace a
manual F? proof that the contract is correct.

Evaluation Despite the limitations of our tool (in particu-
lar, it doesn’t support many syntactic features of Solidity),
we are able to translate and typecheck 46 out of the 396
contracts we collected on https://etherscan.io. Out of
these, only a handful are valid in the Eth effect. This is a
clear sign that a large scale analysis of published contract is
likely to uncover widespread vulnerabilities; we leave such
analysis to future work.

3. Decompiling EVM Bytecode to F?

In this section we present EVM?, a decompiler for EVM
bytecode that we use to analyze contracts for which the
Solidity source is unavailable (as is the case for the majority
of live contracts in the Ethereum blockchain), as well as
low-level properties of contracts. A third use case of the
decompiler that we do not further explore in this paper is to
use EVM? together with Solidity? to check the equivalence
between a Solidity program and the bytecode output by the
Solidity compiler, thus ensuring not only that the compiler
did not introduce bugs, but also that any properties verified at
the source level are preserved. This equivalence proof could
be done, for instance, using rF? [1] a version of F? with
relational refinement types.

4 2016/8/11

https://etherscan.io

EVM? takes as input the bytecode of a contract as stored
in the blockchain and translates it into a representation in F?.
The decompiler performs a stack analysis to identify jump
destinations in the program and detect stack under- and over-
flows. The result is an equivalent F? program that, morally,
operates on a machine with infinite single-assignment regis-
ters which we translate as let bindings.

The EVM is a stack-based machine with a word size of
256 bits [10]. Bytecode programs have access to a word-
addressed non-volatile storage modeled as a word array, a
word-addressed volatile memory modeled as an array of
bytes, and an append-only non-readable event log. The in-
struction set includes the usual arithmetic and logic opera-
tions (e.g. ADD, XOR), stack and memory operations (e.g.
PUSH, POP, MSTORE, MLOAD, SSTORE, SLOAD), con-
trol flow operations (e.g. JUMP, CALL, RETURN), instruc-
tions to inspect the environment and blockchain (e.g. BAL-
ANCE, TIMESTAMP), as well as specialized instructions
unique to EVM (e.g. SHA3, CREATE, SUICIDE). As a pe-
culiarity, the instruction JUMPDEST is used to mark valid
jump destinations in the code section of a contract, but be-
haves as a NOP at runtime. This is convenient for identifying
potential jump destinations during decompilation, as jump-
ing to an invalid address halts execution.

The static analysis done by EVM? marks stack cells as
either of 3 types: 1. Void for initialized cells, 2. Local for
results of operations, and 3. Constant for immediate argu-
ments of PUSH operations The analysis identifies jumpable
addresses and blocks, contiguous sections of code starting at
a jumpable address and ending in a halting or control flow
instruction (we treat branches of conditionals as indepen-
dent blocks). A block summary consists of the address of
its entry point, its final instruction, and a representation of
the initial and final stacks summarizing the block effects on
the stack. An entry point may be either the 0 address, an ad-
dress marked with JUMPDEST, an immediate argument of
a PUSH used in a jump, or a fall-through address of a con-
ditional.

As a result of the static analysis, EVM? emits F? code,
using variables bound in let bindings instead of stack cells.
Many instructions can be eliminated in this way; the analysis
keeps an accurate account of the offsets of instructions in
the remaining code. Because the instructions eliminated may
incur gas charges, we keep track of the fuel consumption by
instrumenting the code with calls to burn, a library function
whose sole effect is to accumulate gas charges. Figure 4
shows the F? code decompiled from the Balance method
of the MyBank contract in Fig. 3.

We wrote a reference cost model for bytcode operations
that can be used to prove bounds on the gas consumption of
contract methods. As an example, Fig. 5 shows a type anno-
tation for the entry point of the MyBank contract decompiled
to F? that proves that a method call to the Balance function
will consume at most 390 units of gas.

let x 29 = pow [0x02uy] [0xA0uy] in
let x 30 = sub x 29 [0x01uy] in
let x 31 = get caller () in
let x 32 = land x 31 x 30 in
burn 17 (∗ opcodes: SUB, CALLER, AND, PUSH1 00, SWAP1, DUP2 ∗);
mstore [0x00uy] x 32;
burn 9 (∗ opcodes: PUSH1 20, DUP2, DUP2 ∗);
mstore [0x20uy] [0x00uy];
burn 9 (∗ opcodes: PUSH1 40, SWAP1, SWAP2 ∗);
let x 33 = sha3 [0x00uy] [0x40uy] in
let x 34 = sload x 33 in
burn 9 (∗ opcodes: PUSH1 60, SWAP1, DUP2 ∗);
mstore [0x60uy] x 34;
loadLocal [0x60uy] [0x20uy] (∗ returned value ∗)

Figure 4. Decompiled version of the Balance method of
the MyBank contract, instrumented with gas consumption.

val myBank: unit→ST word
(requires (fun h→ sel h mem = 0 ∧ sel h gas = 0 ∧
nonZero (eqw

(div (get calldataload [0x00uy]) (pow [0x02uy] [0xE0uy]))
[0xF8uy; 0xF8uy; 0xA9uy; 0x12uy]))) // hash of Balance method

(ensures (fun h0 h1→ sel h1 gas ≤ 390))

let myBank () =
burn 6 (∗ opcodes: PUSH1 60, PUSH1 40 ∗);
mstore [0x40uy] [0x60uy];
...
let x 28 = eqw [0xF8uy; 0xF8uy; 0xA9uy; 0x12uy] x 3 in
burn 10 (∗ opcode JUMPI ∗);
if nonZero x 28 then
begin (∗ offset: 165 ∗)

// decompiled code of Balance method
end

Figure 5. A proof of a bound on the gas consumed by a call
to the Balance method of MyBank.

4. Conclusion
Our preliminary experiments in using F? to verify smart con-
tracts show that the type and effect system of F? is flexible
enough to express and prove non-trivial properties. In par-
allel, Luu et al. [6] used symbolic execution to detect flaws
in EVM bytecode programs, and an experimental Why3 [5]
formal verification backend is now available from the Solid-
ity web IDE [4].

The examples we considered are simple enough that we
did not have to write a full implementation of EVM byte-
code. We plan to complete a verified reference implementa-
tion and use it to verify that the output of the Solidity com-
piler is functionally equivalent to the sources.

We implemented EVM? and Solidity? in OCaml. It would
be interesting to implement and verify parts of these tools
using F? instead. For instance, we could prove that the stack
and control flow analysis done in EVM? is sound with re-
spect to a stack machine semantics.

5 2016/8/11

References
[1] G. Barthe, C. Fournet, B. Grégoire, P.-Y. Strub, N. Swamy,

and S. Zanella-Béguelin. Probabilistic relational verification
for cryptographic implementations. In 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Lan-
guages, POPL ’14, pages 193–205. ACM, 2014.

[2] V. Buterin. Critical update re: Dao vulnerability.
https://blog.ethereum.org/2016/06/17/critical-

update-re-dao-vulnerability, 2016.

[3] Ethereum. Solidity documentation – Release 0.2.0. http:

//solidity.readthedocs.io/, 2016.

[4] Ethereum. Solidity-browser. https://ethereum.github.

io/browser-solidity, 2016.

[5] J.-C. Filliâtre and A. Paskevich. Why3 — where programs
meet provers. In 22nd European Symposium on Program-
ming, ESOP ’13, volume 7792 of Lecture Notes in Computer
Science, pages 125–128. Springer, 2013.

[6] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor.
Making smart contracts smarter. Cryptology ePrint Archive,
Report 2016/633, 2016. http://eprint.iacr.org/2016/
633.

[7] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system.
http://bitcoin.org/bitcoin.pdf.

[8] N. Swamy, C. Fournet, A. Rastogi, K. Bhargavan, J. Chen,
P. Strub, and G. M. Bierman. Gradual typing embedded
securely in javascript. In POPL ’14, pages 425–438. ACM,
2014.

[9] N. Swamy, C. Hriţcu, C. Keller, A. Rastogi, A. Delignat-
Lavaud, S. Forest, K. Bhargavan, C. Fournet, P.-Y. Strub,
M. Kohlweiss, J.-K. Zinzindohoué, and S. Zanella-Béguelin.
Dependent types and multi-monadic effects in F*. In 43rd
Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’16, pages 256–270. ACM,
2016.

[10] G. Wood. Ethereum: A secure decentralised generalised trans-
action ledger. http://gavwood.com/paper.pdf.

6 2016/8/11

https://blog.ethereum.org/2016/06/17/critical-update-re-dao-vulnerability
https://blog.ethereum.org/2016/06/17/critical-update-re-dao-vulnerability
http://solidity.readthedocs.io/
http://solidity.readthedocs.io/
https://ethereum.github.io/browser-solidity
https://ethereum.github.io/browser-solidity
http://eprint.iacr.org/2016/633
http://eprint.iacr.org/2016/633
http://bitcoin.org/bitcoin.pdf
http://gavwood.com/paper.pdf

	Introduction
	Architecture of the Framework

	Translating Solidity to F
	Translation to F
	An effect for detecting vulnerable patterns

	Decompiling EVM Bytecode to F
	Conclusion

