
Closing the Network Diagnostics Gap with Vigil

Behnaz Arzani∗, Selim Ciraci †, Luiz Chamon∗, Yibo Zhu‡, Hongqiang Liu‡

, Jitu Padhye‡, Geoff Outhred†, Boon Thau Loo∗
∗ University of Pennsylvania, †Microsoft, ‡Microsoft Research

CCS CONCEPTS
•Networks → Transport protocols; Error detection and error
correction; Network performance analysis; Network measurement;

KEYWORDS
Data Centers, TCP, Network Diagnosis, Tomography

1 INTRODUCTION
Vigil started with an ambitious goal: For every TCP retransmis-
sion in our data centers, we wanted to pinpoint the network link
that caused the packet drop that triggered the retransmission with
negligible diagnostic overhead or changes to the networking infras-
tructure.

This goal may sound like an overkill—after all, TCP is supposed
to be able to deal with a few packet losses. Packet losses might
occur due to simple congestion instead of network equipment fail-
ures. Even network failures might be transient. Above all, there
is a danger of drowning in a sea of data without generating any
actionable intelligence.

These objections are valid, but so is the need to diagnose TCP
“failures” which can result in severe problems for applications. For
example, in our data centers, VM images are stored in a storage
service. Even a small network outage can cause the host kernel to
“panic” and reboot the VM. In fact, 17% of VM reboots in our data
centers are caused by network issues and in over 70%, no monitoring
systems was able to pinpoint the link(s) that caused the problem.

Since VM reboots directly affect the end customer, we place
very high value on understanding their root causes. Any persistent
pattern in such transient failures is a cause for concern and is po-
tentially actionable. An example of such failure is silent packet
drops [1]. Such problems are nearly impossible to detect with tra-
ditional monitoring systems (e.g., SNMP counters). If a switch is
experiencing such problems, we may want to reboot or replace it.
Such interventions are “costly” in that they affect a large number of
VMs. Therefore, we need a system to correctly assign the blame in
face of such transient failures.

None of the existing systems meet the ambitious goal we have
set for ourselves. Pingmesh [1] sends periodic probes to detect link
failures and can therefore leave “gaps” in coverage, as it must man-
age the overhead of probing. Also, since it uses out-of-band probes,
it cannot detect failures that affect only in-band data. NetPoirot [2]
identifies the network as a likely cause of performance issues, but

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGCOMM Posters and Demos ’17, Los Angeles, CA, USA
© 2017 Copyright held by the owner/author(s). 978-1-4503-5057-0/17/08. . . $15.00
DOI: 10.1145/3123878.3131979

cannot find the specific device that causes the problem. Roy et.
al. [3] report a system that monitors all paths in the network for
possible link failures. Their system requires modifications to routers
and assumes a specific topology. Everflow [4] cannot be directly
used to pinpoint the location of packet drop, since it would require
capturing all traffic, which is not scalable.

We propose Vigil, a simple, lightweight, always-on monitoring
tool. Vigil records the path of TCP connections that suffer from
retransmission and assigns a proportional “blame” to each link on
the path. It then provides a ranking of the links that represents their
relative packet drop rates. Using this ranking, it can find the most
likely cause of packet drops on each TCP connection.

Vigil does not require any changes to the existing networking
infrastructure nor to the client software—the monitoring agent is an
independent entity sitting on the side. Vigil detects in-band failures
and is hence more useful than tools such as Pingmesh [1]. Vigil
continues to perform well in the presence of noise. Finally, Vigil’s
overhead is negligible.

While the high-level design of Vigil is deceptively simple, the
practical challenges of making Vigil work are non-trivial. For exam-
ple, its path discovery is based on a traceroute-like approach. Due
to the use of ECMP, traceroute packets have to be carefully crafted
to ensure that they follow the same path as the TCP connection.
Also, we needed to ensure that we do not overwhelm the routers
along the path with traceroute packets (traceroute responses are han-
dled by control-plane CPUs of the routers, which are quite puny).
To this end, we need to do careful calculations to ensure that our
sampling strikes the right balance between the need for accuracy
and the overhead on the switches. On the theoretical side, we are
able to show that Vigil’s simple blame assignment scheme is highly
accurate even in the presence of noise.

2 PROBLEM AND CHALLENGES
The goal of Vigil is to identify the cause of TCP retransmissions
with high probability.

The design of Vigil is driven by two practical requirements: (i) it
should scale to data center size networks and (ii) it should be deploy-
able in a running data center with as little change to the infrastructure
as possible.

There are a number of ways to identify the cause of packet drops.
One can continuously monitor switch counters. These are inherently
unreliable [5] and monitoring thousands of switches in a data center
at a fine time granularity is not scalable. Having to correlate this data
with each TCP retransmission significantly exacerbates this problem.
One can use a system like PingMesh that sends probe packets to
monitor link status. Such systems suffer from a trade-off: sending
too many probes creates unacceptable overhead whereas reducing
the probing rate leaves temporal and spatial gaps in coverage. More
importantly, the probe traffic does not capture what the end user

and the TCP connections see. Thus, we choose the third alternative,
which is to use data traffic itself as probe traffic [3]. Using data
traffic has the advantage that the system introduces little or no
monitoring overhead.

As one might expect, almost all traffic in our data centers is TCP
traffic. One way to monitor this type of traffic is to use a system
like Everflow. Everflow inserts a special tag in every packet and
has the switches mirror tagged packets to special collection servers.
Thus, if a tagged packet is dropped, we can easily determine the
link on which it happened. Unfortunately, there is no way to know
in advance which packet is going to be dropped, so we would have
to tag and mirror every single TCP packet. This is clearly infeasible.
We could tag only a fraction of packets, but doing so would incur in
another sampling rate trade-off.

Hence, it follows that we must rely on some form of network
tomography [6, 7, 8]. We can take advantage of the fact that TCP
is a reliable delivery protocol so that any packet loss results in
retransmission1,which can be easily detected. If we knew the path
of every TCP connection, we can set up a standard optimization
problem to determine which link may have dropped the packet. A
straightforward set cover optimization formulation that attempts to
minimize the number of “blamed” links will correctly identify the
cause of drops2.

Still, there are two issues with this approach: (i) the optimization
problem is known to be NP-hard [10] and solving it on the data-
center scale is not feasible; (ii) tracking the path of every single
TCP connection in the data center is not scalable in our setting.

One can use alternative solutions such as using Everflow to track
the path of SYN packets or use a system like the one described
in [3]. However, both these schemes rely on making changes to the
switches. The only way to capture the path of a TCP connection
without making any special infrastructure support is to run some-
thing like a traceroute. However, traceroute relies on getting ICMP
TTL exceeded messages back from the switches. These messages
are generated by the control plane, i.e., the switch CPU, not the
ASIC that drives the dataplane. To avoid overloading the CPU, our
datacenter administrators have capped the rate of ICMP responses to
100 per second. This severely limits the number of TCP connections
we can track.

Given these limitations, what can we do? We have shown that the
answer, for data center networks, is deceptively simple. We have
showm that if (a) we track the path only of those TCP connections
that have suffered retransmissions, (b) assign each link on the path
of such a connection a vote of 1/h, where h is the path length, and
(c) sum up the votes during a given period, then the top-voted links
are almost always the ones that are dropping packets! Unlike the
solution of the optimization problem, our scheme is able to provide
a ranking of the links in term of their drop rates, i.e. if link A has
a higher total vote than B, it is also dropping more packets (with
high probability). This allows Vigil to find the link most likely
responsible for each connection’s packet drops. We will show a
brief description of Vigil’s building blocks next, however, details of
our findings are omitted due to space limitations.

1False retransmissions are rare and we handle them.
2Examples of such an optimization problem can be found in [9]

D
IP

di
sc

ov
er

y

Software
Load

Balancer

Analysis
agent

...

Top of the rack switch

Tier-1
switches

Host

TCP retransmission

Path

TCP Monitoring

Path Discovery

Other apps

Pre-processor

Host

Vigil

Other
apps

Figure 1: Overview of Vigil architecture

3 DESIGN OVERVIEW
Figure 1 shows the overall architecture of Vigil. Within our data
centers, Vigil is deployed side-by-side other applications on each
end-host as a user-level process running in the host OS. Vigil con-
sists of three agents:

The TCP monitoring agent detects potential retransmissions at
each end-host. The TCP monitoring agent is deployed on all end
hosts in the data center.

Upon a retransmission, the TCP monitoring agent then triggers
the path discovery agent to identify the set of links along this connec-
tion. The path discovery agent uses a modified version of traceroute
to discover this path to the destination IP (DIP).

At each end-host, at regular intervals, a voting based scheme is
carried out based on the reported paths of connections that suffered
retransmission within the epoch. The results of the vote is sent to a
centralized analysis agent to identify the top-voted links across the
entire data center.

Overall, the Vigil implementation consists of 6000 lines of C
code at the end-host. The analysis engine contains an additional
several hundred lines of code. Its memory usage never goes beyond
6 KB on any of our production hosts and its CPU utilization is
minimal (+1% overhead for each core). The bandwidth utilization
of Vigil is also minimal (maximum of 200 KBps per host).

4 ONGOING WORK
We are currently evaluating a prototype of Vigil on a large scale
production datacenter. There are various challenges that such a
deployment would need to overcome. These include: handling
NATs and software load balancers, avoiding false positives due to
high traffic skews, as well as potential noise caused by ACK drops
on the reverse path.

We are also working on a mathematical model of Vigil that allows
us to quantify its worse case accuracy.

REFERENCES
[1] GUO, C., YUAN, L., XIANG, D., DANG, Y., HUANG, R., MALTZ, D., LIU,

Z., WANG, V., PANG, B., CHEN, H., ET AL. Pingmesh: A large-scale system
for data center network latency measurement and analysis. In ACM SIGCOMM
(2015), pp. 139–152.

[2] ARZANI, B., CIRACI, S., LOO, B. T., SCHUSTER, A., OUTHRED, G., ET AL.
Taking the blame game out of data centers operations with NetPoirot. In ACM
SIGCOMM (2016), pp. 440–453.

[3] ROY, A., BAGGA, J., ZENG, H., AND SNEOREN, A. Passive realtime datacenter
fault detection. In ACM NSDI (2017).

[4] ZHU, Y., KANG, N., CAO, J., GREENBERG, A., LU, G., MAHAJAN, R.,
MALTZ, D., YUAN, L., ZHANG, M., ZHAO, B. Y., ET AL. Packet-level telemetry
in large datacenter networks. In ACM SIGCOMM (2015), pp. 479–491.

[5] WU, X., TURNER, D., CHEN, C.-C., MALTZ, D. A., YANG, X., YUAN, L.,
AND ZHANG, M. NetPilot: Automating datacenter network failure mitigation.
ACM SIGCOMM Computer Communication Review 42, 4 (2012), 419–430.

[6] ZHANG, Y., ROUGHAN, M., WILLINGER, W., AND QIU, L. Spatio-temporal
compressive sensing and internet traffic matrices. ACM SIGCOMM Computer
Communication Review 39, 4 (2009), 267–278.

[7] MA, L., HE, T., SWAMI, A., TOWSLEY, D., LEUNG, K. K., AND LOWE, J.
Node failure localization via network tomography. In ACM SIGCOMM IMC
(2014), pp. 195–208.

[8] LIU, C., HE, T., SWAMI, A., TOWSLEY, D., SALONIDIS, T., AND LEUNG,
K. K. Measurement design framework for network tomography using fisher
information. ITA AFM (2013).

[9] MYSORE, R. N., MAHAJAN, R., VAHDAT, A., AND VARGHESE, G. Gestalt:
Fast, unified fault localization for networked systems. In USENIX ATC (2014),
pp. 255–267.

[10] BERTSIMAS, D., AND TSITSIKLIS, J. N. Introduction to linear optimization.
Athena Scientific, 1997.

	Introduction
	Problem and challenges
	Design Overview
	Ongoing Work

