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Abstract

Expressions for error probabilities have been derived
for commonly used signal constellations such as QAM
and MPSK. However, closed form expressions cannot
be found for more complex signal constellations such
as hexagonally packed signals. Saddle point integration
(SPI) has been shown to be an efficient method of evalu-
ating the one dimensional cumulative distribution func-
tion (CDF) of a random variable. SPI integrates the
moment generating function (MGF) of the test statis-
tic instead of probability density function (PDF). In
this paper, the SPI method is used to evaluate Pe for
general, complex signal constellations. The first step is
to determine the decision regions for each symbol us-
ing an algorithm from the graphics literature for calcu-
lating Voronoi diagrams. Next, these decision regions
are subdivided into subregions that can evaluated using
SPI. The SPI method is very flexible and allows one to
model many different system effects such as phase off-
set, DC offset, and colored noise.

1 Introduction

QAM or MPSK are typically used as the modulation
methods for modern digital communication systems.
However, from the sampling theory point of view, these
modulation schemes are not the most efficient use of
the complex baseband area. With continued advances
in semiconductors, future communication systems may
support more densely packed signal constellations re-
sulting in higher bandwidth efficiency. Expressions for
error probabilities have been derived for the commonly
used signal constellations such as QAM and MPSK.

However, closed form expressions cannot be found for
more complex signal constellations such as hexagonally
packed signals. Helstrom [1], [2], [5] and Ritcey [3], [4]
demonstrated that saddle point integration (SPI) pro-
vides a computationally efficient method for evaluating
the one dimensional, cumulative distribution function
(CDF) for many different types of probability density
functions (PDFs) provided that the Laplace transform
of the PDF exists. SPI computes the CDF by inte-
grating the moment generating function (MGF) along
a contour in the complex plane instead of integrating
the PDF directly. In this paper, the SPI method is ex-
tended to two dimensions with arbitrary linear decision
regions. With this new method, we evaluate the Pe for
general, complex, baseband signal constellations.

An example of a signal constellation which is divided
into distinct decision regions for each symbol is given
in figure 1. The probability of detection for the lth
decision subregion associated with the nth symbol with
apriori detection probability an is

Pd(n, l) = an

∫ R2

R1

∫ m2xr+b2

m1xr+b1

p(xr, xi)dxidxr. (1)

A subregion is defined to have left and right vertical
side boundaries located at xr = R1 and xr = R2, re-
spectively. The subregion is bounded below by xi =
m1xr + b1 and above by xi = m2xr + b2. For subre-
gions with no upper (lower) boundary, we set m2 (m1)
equal to zero and b2 (b1) equal to ∞.

The probability of error for the entire signal constel-
lation with N symbols and Ln subregions for the nth
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Figure 1: Cross pattern signal constellation with detec-
tion regions.

symbol is

Pe = 1−
N∑

n=1

Ln∑

l=1

Pd(n, l). (2)

In order to be practical, the algorithm must accept a
set of symbol locations and determine the decision sub-
regions, Pd(n, l), and associated decision boundaries for
each symbol. We solve this problem using an algorithm
from the graphics literature to construct Voronoi dia-
grams. Next, these detection regions are subdivided
into subregions that can be evaluated using SPI. The
SPI method is extremely flexible allowing one to eas-
ily model additional system effects such as phase offset,
DC offset, and colored noise.

This paper is organized as follows. In section 2, the SPI
method is derived for the evaluation of the CDF for
complex distributions. In section 3, we discuss the al-
gorithm for determining the decision boundaries. Next,
we show how to model the effects of phase and DC off-
set as well as colored noise in section 4. Finally, we
present numerical results in section 5.

2 Saddle Point Integration Within A
Subregion

In this section, we derive a method for calculating the
detection probability for the lth subregion of the nth
symbol. To simplify the equations, we set Pd = Pd(n, l)

with the corresponding PDF, p(x) = pn,l(x). Let
h(u) = E{exp(−uT x)} be the moment generating
function (MGF) of the complex random variable x writ-
ten as a random vector, x = (xr xi)T ,

h(ur, ui) =
∫ ∞

−∞

∫ ∞

−∞
p(xr, xi)e−(urxr+uixi)dxrdxi.

(3)
Pd can be recovered by the inverse Laplace transform
of the MGF.

Pd =
∫ sr+j∞

sr−j∞

∫ si+j∞

si−j∞

h(ur, ui)
ui

Y (ur, ui)
dui

2πj

dur

2πj
(4)

where

Y (ur, ui) =
ψ1(ur, ui)
ur + uim2

− ψ2(ur, ui)
ur + uim1

(5)

and

ψ1(ur, ui) = Ω1(ur, ui)− Ω2(ur, ui)

ψ2(ur, ui) = Ω3(ur, ui)− Ω4(ur, ui)

Ω1(ur, ui) = exp(urR2 + ui(R2m2 + b2))

Ω2(ur, ui) = exp(urR1 + ui(R1m2 + b2))

Ω3(ur, ui) = exp(urR2 + ui(R2m1 + b1))

Ω4(ur, ui) = exp(urR1 + ui(R1m1 + b1)). (6)

The complex, normal PDF with mean, M, and covari-
ance, K, is

p(xr, xi) =
1√

4π2|K|e
− 1

2 (x−M)T K−1(x−M). (7)

Inserting (7) into (3), completing the square and inte-
grating yields the following MGF for a complex, normal
random variable,

h(u) = exp(−mT u +
1
2
uT Ku). (8)

It can be shown that the integrand of (4) is a two di-
mensional, convex ∪ function. Therefore, the integrand
has a minimum at the saddle point location s = (srsi)T .
Thus for <(ui) < 0, s = argmin(Φ(u)) where the phase,
Φ(u), is given by

exp(Φ(u)) =
h(ur, ui)

ui
Y (ur, ui). (9)



The saddle point can be computed using a simple multi-
dimensional least mean squares algorithm

snew = sold − µ5u Φ(u)|sold (10)

where µ is the step size, and 5u is the gradient with
respect to u. The first partial derivatives of Φ(u) re-
quired for the calculation of the gradient in (10) are

∂

∂ur
Φ(ur, ui) =

∂

∂ur
ln(h(ur, ui)) +

∂

∂ur
ln(Y (ur, ui))

∂

∂ui
Φ(ur, ui) =

∂

∂ui
ln(h(ur, ui))− 1

ui
+

∂

∂ui
ln(Y (ur, ui))

where

∂

∂ur
ln(Y (ur, ui)) =

R2Ω1(ur, ui)−R1Ω2(ur, ui)
Y (ur, ui)(ur + uim2)

− ψ1(ur, ui)
Y (ur, ui)(ur + uim2)2

− R2Ω3(ur, ui)−R1Ω4(ur, ui)
Y (ur, ui)(ur + uim1)

+
ψ2(ur, ui)

Y (ur, ui)(ur + uim1)2

and

∂

∂ui
ln(Y (ur, ui)) =

− m2ψ1(ur, ui)
Y (ur, ui)(ur + uim2)2

+
(R2m2 + b2)Ω1(ur, ui)− (R1m2 + b2)Ω2(ur, ui)

Y (ur, ui)(ur + uim2)

− (R2m1 + b1)Ω3(ur, ui)− (R1m1 + b1)Ω4(ur, ui)
Y (ur, ui)(ur + uim1)

+
m1ψ2(ur, ui)

Y (ur, ui)(ur + uim1)2
.

Rewriting (4) in terms of the phase, the Pd is given by

Pd =
∫ si+j∞

si−j∞

∫ sr+j∞

sr−j∞
exp(Φ(u))

dur

2πj

dui

2πj
. (11)

Extending the results from Schwartz [13] and Rice [9],
trapezoidal integration is used to numerically evaluate
the multidimensional integral in (11)

Pd = lim
∆ur→0,∆ui→0

F (u, ∆u) (12)

where

F (u, ∆u) =
−∆ur∆ui

4π2

Li∑

li=−Li

Lr∑

lr=−Lr

eΦ(u) + ET (∆u),

(13)
uk = sk + jlk∆uk, ∆uk is the step size along the kth
axis, and Lk provides the number of steps required to
achieve a result that is within the desired error toler-
ance. Evaluation of (12) produces two sources of error
due to finite step sizes and the truncation error. The
truncation error, ET (∆u), results from truncating the
integral computation at Lk and is also a function of the
step size.

Extending the results from Rice [10] provides an initial
estimate for the step size

∆uk =

√
2/

∂2

∂u2
k

Φ(s) (14)

for k ∈ {r, i}. The CDF is computed by halving the
step size in each dimension until the result converges
to the desired error tolerance. An algorithm for com-
puting the multidimensional sum in (12) is given by
Kohn [6].

3 Voronoi Diagrams

The first step to calculating the Pe for the signal con-
stellation is to determine all decision regions for each
symbol. Once the decision regions are known, the
SPI method outlined in the previous section can be
used to calculate Pd(n, l). The problem of determin-
ing the detection boundaries for general signal con-
stellations is identical to computing the Voronoi di-
agram for a set of two dimensional vertices in com-
puter graphics. The Voronoi diagram is the dual of
Delaunay triangulation which is a popular method for
generating triangular meshes. Thererfore, much re-
search has been devoted to this problem and several
efficient algorithms have been developed. We choose
to use an algorithm developed by Steven Fortune be-
cause it computes the results based on the entire set of
2-D vertices as opposed to other algorithms which be-
gin with 3 vertices containing all other vertices. Soft-
ware which implements the algorithm can be found at
http://netlib.org/voronoi/index.html.



4 Phase and DC Offset, Colored Noise

The SPI method allows one to consider the effects of
various system problems such as phase offset, DC offset,
and colored noise on the error probability. Phase offset
results from the inability of the receiver to perfectly
estimate the symbol’s phase. The result is a rotation
of the signal constellation. By applying a rotation to
the mean of each symbol in the signal constellation, we
can easily evaluate phase errors.

While phase offset results in a rotation of the signal
constellation, DC offset corresponds to a two dimen-
sional translation error. DC offset can be introduced
by a DC bias in the analog components of the trans-
mitter or receiver. Like the phase offset, DC offset can
be modeled by applying a two dimensional translation
to the mean of each symbol.

The detection boundaries in the receiver are fixed as-
suming that the received signal constellation does not
have either phase or DC offset. Thus, the detection
boundaries computed by the Voronoi diagram method
must be computed before the phase and DC offsets are
applied to the signal constellation.

Error probabilities are usually estimated for a model as-
suming additive white Gaussian noise (AWGN). How-
ever, in practice the noise is often colored due to effects
of the transmission medium or linear filters operating
on white noise. For the SPI method, the effects of col-
ored noise can be evaluated by setting the covariance
matrix for each symbol to something other than the
identity matrix.

5 Numerical Results

In this section, we compare error probabilities for 16-
ary QAM and a 16-ary hexagonal signal constellation
including the effects of phase offset, DC offset, and col-
ored noise. The 16-ary QAM signal constellation has
symbols located at S(i,q) where i, j ∈ {−3,−1, 1, 3}.
The 16-ary hexagonal signal constellation is shown in
figure 2. For this constellation, the symbols are located
at S(i, q) = S1 + (s,

√
3t) where s and t are integers

and S1 is located at (0, 2/
√

3). For all systems, the de-
sired error tolerance is 10e-7. In figure 3, we compare
error probabilities for the QAM and hexagonal signal

constellations for AWGN, phase offset, DC offset, and
colored noise, respectively. For both constellations, the
phase rotation examples introduce a phase offset of +10
degrees, the DC offset examples add a linear transla-
tion of (0.15,0.15), and the colored noise examples are
modeled with a covariance matrix, K, of

K =
∣∣∣∣

1.25 0.25
0.25 0.75

∣∣∣∣ . (15)
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Figure 2: 16-ary hexagonal signal constellation.
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Figure 3: Pe vs. Eb/N0 for 16-ary QAM and hexago-
nal signal constellation with AWGN, +10 degree phase
offset, (0.15,0.15) translation and colored noise.

As expected, the results in figure 3 shows that the
AWGN system offers better performance than any of



the other systems for both the hexagonal signal constel-
lation (HSG) and QAM. The HSG results for AWGN
show an improvement in the Eb/N0 of 0.25 dB for
Pe = 10e− 5. Likewise, the results for the case of col-
ored noise show a similar improvement in the Eb/N0 of
0.4 dB for the HSG at Pe = 10e− 5. In addition, both
signal constellations perform about 0.5 dB worse for
colored noise than for AWGN. However for the DC off-
set case, the hexagonal signal constellation offers only
a slight improvement over QAM. With DC offset, the
HSG and QAM perform worse by 1.50 and 1.25 dB,
respectively, in Eb/N0 when compared with AWGN for
Pe = 10e−5. Finally for the case of phase offset, QAM
constellation actually performs better than the hexago-
nal signal constellation for Eb/N0 > 12dB. In addition,
both signal constellations with phase offset perform sig-
nificantly worse than for AWGN, colored noise, or DC
offset.

6 Conclusions

In this paper, we have derived a method to evaluate er-
ror probabilities for general signal constellations. This
method is based on multivariate Saddle Point Integra-
tion and an algorithm used to calculate Voronoi dia-
grams. Using this method, we evaluated error proba-
bilities for 16-ary QAM and a 16-ary hexagonal signal
constellation. When considering densely packed signal
constellations, we have shown it is important to char-
acterize the system effects for the receiver and trans-
mission medium including phase offset, DC offset, and
colored noise. The system designer must then evalu-
ate the error probability associated with each of these
effects and determine if the performance of the pro-
posed constellation justifies the increased complexity
of the transmitter and receiver. Although the hexag-
onal signal constellation performs better than 16-ary
QAM under most conditions, it is more susceptible to
extreme phase rotation. Saddle Point Integration of-
fers a general and efficient method for evaluating all of
these effects for any signal constellation.

References

[1] C. W. Helstrom, Approximate evaluation of detec-
tion probabilities in radar and optical communica-

tions, IEEE Trans. Aero. & Elect. Sys., 14 (1978),
pp. 630-640.

[2] C. W. Helstrom, Evaluating the detectability of
gaussian stochastic signals by steepest descent in-
tegration, IEEE Trans. Aero. & Elect. Sys., 19
(1983), pp. 428-437.

[3] C. W. Helstrom and J. A. Ritcey, Evaluating radar
detection probabilities by steepest descent integra-
tion, IEEE Trans. Aero. & Elect. Sys., 20 (1984),
pp. 624-633.

[4] C. W. Helstrom and J. A. Ritcey, Evaluation of
the noncentral F-distribution by numerical contour
integration, SIAM J. Sci. Stat. Comput., 6 (1985),
pp. 505-514.

[5] C. W. Helstrom, Calculating error probabilities
for intersymbol and cochannel interference, IEEE
Trans. Commun., COM-34, 5 (1986), pp. 430-435.

[6] R. Kohn, Nesting do loops to any depth, J. Stat.
Comput. Simul., 4 (1981), pp. 41-45.

[7] R. Lugannani and S. O. Rice, Saddle point ap-
proximation for the distribution of the sum of in-
dependent random variables, Adv. Appl. Prob., 12
(1980), pp. 475-490.

[8] D. B. Owen, Orthant probabilities, Encyclopedia
of Stat. Science, ed. S. Kotz & N.L. Johnson, 6
(1985), pp. 521-523.

[9] S.O. Rice, Efficient evaluation of integrals of an-
alytic functions by the trapezoidal rule, Bell Sys.
Tech. Journal, 52 (1973), pp. 707-723.

[10] S.O. Rice, Distribution of quadratic forms in nor-
mal random variables - evaluation by numerical in-
tegration, SIAM J. Sci. Stat. Comput., 1 (1980),
pp. 438-448.

[11] C. Rivera, Analysis of communication systems
using the method of saddle point integration,
Ph.D. Dissertation, Dept. of Electrical Engineer-
ing, Univ. of Washington, Seattle, WA, 1995.

[12] C. Rivera and J. A. Ritcey, Error probabilities
for QAM systems on partially coherent channels
with intersymbol interference and crosstalk, IEEE
Trans. Commun., COM-46, 6 (1998), pp. 775-783.

[13] C. Schwartz, Numerical integration of analytic
functions, J. Comput. Physics, 4 (1969), pp. 19-
29.


