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ABSTRACT

As the Web evolves towards a service-oriented architecture, ap-

plication program interfaces (APIs) are becoming an increasingly

important way to provide access to data, services, and devices. We

study the problem of natural language interface to APIs (NL2APIs),

with a focus on web APIs for web services. Such NL2APIs have

many potential beneits, for example, facilitating the integration of

web services into virtual assistants.

We propose the irst end-to-end framework to build an NL2API

for a given web API. A key challenge is to collect training data,

i.e., NL command-API call pairs, from which an NL2API can learn

the semantic mapping from ambiguous, informal NL commands

to formal API calls. We propose a novel approach to collect train-

ing data for NL2API via crowdsourcing, where crowd workers are

employed to generate diversiied NL commands. We optimize the

crowdsourcing process to further reduce the cost. More specii-

cally, we propose a novel hierarchical probabilistic model for the

crowdsourcing process, which guides us to allocate budget to those

API calls that have a high value for training NL2APIs. We apply

our framework to real-world APIs, and show that it can collect

high-quality training data at a low cost, and build NL2APIs with

good performance from scratch. We also show that our modeling

of the crowdsourcing process can improve its efectiveness, such

that the training data collected via our approach leads to better

performance of NL2APIs than a strong baseline.
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1 INTRODUCTION

Beneiting from a conluence of factors, such as service-oriented

architecture (SOA), cloud computing, and Internet-of-Things (IoT),

application program interfaces (APIs) are playing an increasingly

important role in both the virtual and the physical world. For exam-

ple, web services (e.g., weather, sports, and inance) hosted in the

cloud provide data and services to end users via web APIs [1, 7], and
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͞If I get tagged in a Facebook 

photo, then save it to Dropbox͟
Trigger: Facebook.tagged_in_photo 

Action: Dropbox.save

͞How many unread emails about 

PhD application do I have?͟
GET-Messages{(FILTER(isRead=False), 

SEARCH( PhD application    COUNT()}

͞Where is my next meeting?͟
GET-Events{(SELECT(location),TOP(1), 

ORDERBY(start,asc),FILTER(start>now)}

IFTTT

Ours

Figure 1: NL command (left) and API call (right) pairs col-

lected by our framework vs. IFTTT [19]. GET-Messages and

GET-Events are diferent web APIs for searching emails and

calendar events, respectively. An API can be called with dif-

ferent parameters. We target fully parameterized API calls,

while IFTTT concerns API calls with simple parameters.

IoT devices expose their functionalities via APIs to other devices

on the network [9].

Traditionally APIs are mainly consumed by various kinds of soft-

ware, e.g., desktop applications, websites, and mobile apps, which

then serve users via graphical user interfaces (GUIs). GUI has made

a great contribution to the popularization of computing, but many

limitations gradually present themselves as the computing land-

scape evolves. On the one hand, as computing devices become

smaller, more mobile, and more intelligent, the requirement of a

screen for GUIs becomes a burden in many cases, e.g., for wearables

and IoT devices. On the other hand, users have to adapt to diferent

ad-hoc GUIs to use diferent services and devices. As the number

of available services and devices rapidly increases, however, the

learning and adaptation cost on users also increases. Natural lan-

guage interface (NLI), also known as conversational user interface

(CUI) and exempliied by virtual assistants like Apple Siri [3] and

Microsoft Cortana [21], emerges as a promising alternative, which

aims to act as a uniied and intelligent gateway to a wide range of

back-end services and devices.

In this paper, we study the problem of natural language interface

to APIs (NL2APIs). Diferent from general-purpose NLIs like virtual

assistants, we study how to build NLIs for individual web APIs, e.g.,

the API to a web service like ESPN for sports1. Such NL2APIs have

the potential to address the scalability issue of general-purpose

NLIs [21] by allowing for distributed development. The usefulness

of a virtual assistant is largely determined by its breadth, i.e., the

number of services it supports. However, it is very tedious for a

virtual assistant to integrate web services one by one. If there is a

low-cost way for individual web service providers to build an NLI to

their respective APIs, the integration cost may be greatly reduced.

A virtual assistant then needs not to handle the heterogeneous

interfaces to diferent web services; rather, it only needs to integrate

the individual NL2APIs, which enjoys the uniformity of natural

1Our core techniques can also be applied to other APIs like those for smartphone apps
or IoT devices, but we focus on web APIs in this work.
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language. On the other hand, NL2APIs can also facilitateweb service

discovery [20], recommendation [35], and help API programming

by reducing the burden to memorize the available web APIs and

their syntax [10].

Example 1. Two examples are shown in Figure 1. An API can be

called with diferent parameters. For the email search API, users

may ilter emails by some properties or search for some keywords.

Given an API, the main task of an NL2API is to map NL commands

into the corresponding API calls.

Challenge. Training data collection is one of the most critical

challenges of current NLI research and application [24, 28]. NLIs

rely on supervised training data, consisting of NL command-API

call pairs in the case of NL2API, to learn the semantic mapping from

NL commands to the corresponding formal representations [32].

Due to the lexibility of natural language, users can describe an API

call in syntactically divergent ways in natural language, i.e., para-

phrasing. For the second example in Figure 1, users may also say

łWhere is the upcoming meeting?ž or łFind next meeting’s location.ž

It is crucial to collect suicient training data in order to learn such

language varieties [24]. Existing work of NLIs usually collect train-

ing data in a best-efort manner. For example, most related to ours

is [19], which targets to map NL commands in IF-This-Then-That

(IFTTT) form into API calls (Figure 1). Their training data is directly

dumped from the IFTTT website (http://ifttt.com). However, if an

API gets no or insuicient coverage, there is no way to remedy it.

Also, training data collected in this way is hard to support advanced

commands with multiple parameters. For example, we analyzed

the annonymized logs of calls made to the Microsoft’s email search

API in one month, and found that roughly 90% involved 2 or 3

parameters, nearly evenly split, and the parameterizations are quite

diversiied. Therefore, we aim to fully exercise an API’s parame-

terizations and support advanced NL commands. How to collect

training data for a given API in such an active and conigurable

way remains an open problem.

Despite the extensive studies on NLI to other formal represen-

tations like relational databases [15], knowledge bases [4, 30], and

web tables [18, 26], little research has been conducted on NLI to web

APIs. We propose the irst end-to-end framework to build an NLI for

a web API from scratch. Given a web API, our framework consists

of 3 steps: (1) Representation. The original HTTP format of web API

contains many irrelevant and thus distractive details for NLIs. We

propose an intermediate semantic representation for web APIs, so

that an NLI can stay agnostic of the irrelevant details. (2) Training

data collection. We propose a novel approach to solicit supervised

training data from crowdsourcing. (3) NL2API. We propose two

NL2API models, a language model based retrieval model [23] and a

sequence-to-sequence (Seq2Seq) neural network model [27].

One of the key technical contributions of this work is a novel

approach to actively collect training data for NL2API via crowd-

sourcing, where we employ humans to annotate API calls with NL

commands. It has three design goals: (1) Conigurable. One should

be able to specify for which API, what parameterization, and how

much training data she wants to collect. (2) Low-cost. Crowd work-

ers, who are much more afordable than domain experts, should be

employed. (3) High-quality. The quality of training data should not

be compromised.

There are two main challenges in designing such an approach.

First, API calls with advanced parameterizations, like the ones in

Figure 1, are not understandable by average users, so how to design

the annotation task such that crowd workers can handle it with ease?

We start of by designing an intermediate semantic representation

for web APIs (Section 2.2), which allows us to easily generate API

calls with desired parameterizations. Then we design a grammar

to automatically convert each API call into a canonical NL com-

mand, which may be somewhat clumsy but is understandable by

average crowd workers (Section 3.1). Crowd workers only need to

paraphrase the canonical command into a more natural way, which

makes training data collection less error-prone because paraphras-

ing is a much easier task for crowd workers.

Second, how to identify and only annotate the API calls of a high

value for training NL2APIs? Due to the combinatorial explosion of

parameterization, the number of API calls, even for a single API, can

be quite large. It is not economic, nor necessary, to annotate all of

them. We propose a irst-of-its-kind hierarchical probabilistic model

for the crowdsourcing process (Section 3.2). Similar to language

modeling for information retrieval [23], we assume NL commands

are generated from the corresponding API calls, and estimate a

language model for each API call to capture this generative process.

The foundation of our model is the compositional nature of API calls,

or that of formal meaning representations in general. Intuitively,

if an API call is composed of some simpler API calls (e.g., łunread

emails about PhD applicationž = łunread emailsž + łemails about

PhD applicationž), we can infer its language model from those of

the simpler API calls, without even annotating it. Therefore, by

just annotating a small number of API calls, we can estimate a

language model for all the others. Certainly the estimated language

models are not perfect, otherwise we would have already solved

the NL2API problem. Despite the imperfect estimation, however, by

foreseeing the language model of unannotated API calls, our model

provides a holistic view of the whole API call space as well as the

interplay of natural language and API calls, with which it becomes

possible to optimize the crowdsourcing process. In Section 3.3, we

present an algorithm that selectively annotates API calls with the

objective to make diferent API calls more distinguishable, i.e., to

make their language models more divergent from each other.

We apply our framework to two deployed web APIs from the Mi-

crosoft Graph API suite2. We demonstrate that high-quality training

data can be collected at a low cost using the proposed approach3.

We also show that our approach makes crowdsourcing more efec-

tive. Under the same budget, it can collect better training data than

a strong baseline, leading to better accuracy of NL2APIs.

In summary, our main contributions are three-fold:

• We are among the irst to study NL2API, and proposed an

end-to-end framework to build an NL2API from scratch.

• We proposed a novel approach to collect training data for

NL2API via crowdsourcing, and a novel crowdsourcing op-

timization strategy based on a irst-of-its-kind hierarchical

probabilistic model for the crowdsourcing process.

• Weapplied our framework to real-worldwebAPIs and showed

that reasonably performingNL2APIs can be built from scratch.

2https://developer.microsoft.com/en-us/graph/
3The dataset will be available at https://aka.ms/nl2api

http://ifttt.com
https://developer.microsoft.com/en-us/graph/


Table 1: OData Query Options.

Query option Description

SEARCH(String) search for entities containing speciic keywords

FILTER(BoolExpr) ilter entities according to certain criteria, e.g., isRead=False

ORDERBY(Property,

order)
sort entities according to a property in ’asc’ or ’desc’ order

SELECT(Property) instead of full entities, only return a certain property

COUNT() count the number of matched entities

Top(Integer) only return the irst certain number of results

2 PRELIMINARY

2.1 RESTful API

In recent years, web APIs following the REST architectural style [1],

i.e., RESTful APIs, are becoming more and more popular because of

their simplicity. RESTful APIs are also used in smartphone apps [34]

and IoT devices [9]. Restful APIs revolve around resources, address-

able via URIs, and provide access to resources to a broad range of

front-end consumers via simple HTTP verbs like GET, PUT, POST,

etc.Wewill mainlyworkwith RESTful APIs, but the core techniques

can be generalized to other APIs.

We will adopt the popular Open Data Protocol (OData, [16]) for

RESTful API, and will use two web APIs from the Microsoft Graph

API suite as example (Figure 1), which are respectively used to

search a user’s emails and calendar events. In OData, resources

are entities, each associated with a list of properties. For exam-

ple, the Message entity, which represents email, has properties

like subject, from, isRead, receivedDateTime, etc. In addition,

OData deines a set of query options to enable advanced resource

manipulation. For example, one can search for emails from a spe-

ciic person or received on a certain date using the FILTER option.

The query options we will use are listed in Table 1. We call each

combination of an HTTP verb and an entity or entity set as an API,

e.g., GET-Messages for email search. Each parameterized query

option, e.g., FILTER(isRead=False), is called a parameter, and

an API call is an API with a list of parameters.

2.2 NL2API

The core task of an NLI is to map an utterance (natural language

command) into a certain formal meaning representation, e.g., logical

forms or SPARQL queries for knowledge bases [4], or web APIs in

our setting. To better focus on the semantic mapping and stay agnos-

tic from irrelevant details, an intermediate semantic representation

is usually employed, instead of working directly with the target rep-

resentation. For example, combinatory categorial grammar [32] has

been widely used for NLI to data and knowledge bases. This kind

of abstraction is also critical for NL2API. There are a lot of details,

such as URL conventions, HTTP headers, and response codes, that

can deviate an NL2API from the core semantic mapping task. There-

fore, we deine an intermediate representation for RESTful APIs

(Figure 2), named API frame and reminiscent of frame semantics [2].

An API frame consists of ive parts. HTTP Verb and Resource are

basic in RESTful APIs. Return Type is useful for API composition,

where we compose multiple API calls to fulill a more complex

task. Required Parameters are mostly used in PUT or POST API calls,

e.g., sending an email requires recipient, title and body. Optional

Parameters are often involved in GET API calls to specify detailed

Figure 2: API frame. Top: natural language command. Mid-

dle: API frame. Bottom: API call.

Figure 3: Crowdsourcing pipeline.

information need.When there are no required parameters, we serial-

ize the API frame, e.g., GET-messages{FILTER(isRead=False),

SEARCH(“PhD application”), COUNT()}. An API frame can

be converted into the real API call deterministically. Necessary

contextual information, like user id, location, and datetime, will be

illed in during the conversion. For the second example in Figure 1,

the value now in the FILTER parameter will be replaced by the date-

time of the speciic command when converting the API frame to a

real API call. We will use API frame and API call interchangeably

hereafter.

3 TRAINING DATA COLLECTION

In this section we propose a novel approach to collect training

data for NL2API via crowdsourcing. We irst generate API calls and

convert each of them into a canonical command using a simple

grammar (Section 3.1), and employ crowd workers to paraphrase

the canonical commands (Figure 3). Based on the compositional

nature of API calls, we propose a hierarchical probabilistic model for

the crowdsourcing process (Section 3.2), and propose an algorithm

to optimize the crowdsourcing process (Section 3.3).
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Figure 4: Canonical command generation. Left: lexicon and grammar. Right: derivation example.

3.1 API Call and Canonical Command

We generate API calls solely from the speciication of an API. In

addition to the schema items like query options and entity prop-

erties, we also need property values to generate API calls, which

are not available in the API speciication. For properties of enu-

merable value type, e.g., Boolean, we enumerate all the possible

values (True/False). For properties with unconstrained value type,

e.g., Datetime, we synthesize a few representative values for each

property, e.g., today or this_week for receivedDateTime. Note

that these are abstract values at the API frame level, and will be

converted into real values according to the context (e.g., real-world

datetime) when an API frame is converted into a real API call.

We can easily enumerate all the combinations of query options,

properties, and property values to generate API calls. Simple heuris-

tics can be used to reduce combinations that are not very sensible.

For example, TOP has to be applied on a sorted list, so has to be used

together with ORDERBY. Also, Boolean properties like isRead can-

not be used in ORDERBY. But still, due to combinatorial explosion,

there are still a large number of API calls for each API.

Average users cannot understand API calls. So similar to [28],

we convert an API call into a canonical command. We deine an

API-speciic lexicon and an API-general grammar (Figure 4). The

lexicon supplies a lexical form, along with a syntactic category, for

each item (HTTP verbs, entities, properties, and property values).

For example, the lexicon entry ⟨sender→ NP[from]⟩ speciies that

the lexical form of the property from is łsenderž, and the syntactic

category is noun phrase (NP), which will be used in the grammar.

The syntactic category can also be verb (V), verb phrase (VP), ad-

jective (JJ), complementizer phrase (CP), generalized noun phrase

which is followed by another noun phrase (NP/NP), generalized

prepositional phrase (PP/NP), sentence (S), etc. It is worth noting

that although the lexion is speciic to each API and has to be pro-

vided by the administrator of the API, the grammar is designed

to be general, and can be re-used for any RESTful API following

the OData protocol directly or with slight modiication. The 17

grammar rules in Figure 4 can cover all the API calls used in the

following experiments (Section 5).

The grammar speciies how to step by step derive a canoni-

cal command from an API call. It is a set of rules in the form

⟨t1, t2, ..., tn → c[z]⟩, where {ti }
n
i=1 is a sequence of tokens, z is a

(partial) API call, and c is its syntactic category. We talk through the

example in Figure 4. For the API call at the root of the derivation

tree, because its syntactic category is S, we irst apply rule G4,

which split the full API call into 4 partial API calls. According to

their syntactic category, the irst 3 can be directly converted into

natural language phrases, while the last one takes another deriva-

tion subtree to be converted into a complementizer phrase łthat

is not read.ž One thing to note is that syntactic categories enable

conditional derivation. For example, if we are at VP[x = False],

both rule B2 and rule B4 can be applied, the syntactic category of

x then helps make the decision. If the syntactic category of x is VP,

rule B2 is triggered (e.g., x is hasAttachments→ łdo not have

attachmentž); if it is JJ, rule B4 is triggered (e.g., x is isRead→ łis

not readž). This avoids awkward canonical commands (łdo not readž

or łis not have attachmentž) and makes the generated canonical

commands more natural.

3.2 Semantic Mesh

We can generate a lot of API calls using the above approach, but it

is not economic to annotate all of them via crowdsourcing. Next we

propose a hierarchical probabilistic model for the crowdsourcing

process, which provides information to later decide which API

calls to annotate. To the best of our knowledge, this is the irst

probabilistic model for the crowdsourcing process of NLIs, which

is featured by the unique and intriguing challenge of modeling the

interplay of natural language and formal meaning representations.

Formal meaning representations in general, and API calls in par-

ticular, are compositional by nature. For example, z12 = GET-Messages

{COUNT(),FILTER(isRead=False)} is composed of z1 = GET-

Messages{FILTER(isRead=False)} and z2 = GET-Messages

{COUNT()} (we will refer to these examples again later). Our key
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insight is that such compositionality can be exploited to model the

crowdsourcing process.

We start with the deinition of composition, based on the param-

eter set of API calls (c.f. Figure 2). Formally,

Deinition 3.1 (Composition). Given an API and a set of API calls

z1, z2, ..., zn+1,n > 1, if we denote r (z) as the parameter set of z,

{z1, z2, . . . , zn } is a composition of zn+1 if. {r (z1), r (z2), . . . , r (zn )}

is a partition of r (zn+1).

Based on the composition relationship of API calls, we can or-

ganize all the API calls of an API into a hierarchical structure. API

calls with the same number of parameters are represented as nodes

residing in the same layer, and compositions are represented as

directed edges between layers. We call this structure semantic mesh

(or SeMesh for short), illustrated in Figure 5.

Similar to the language modeling approach in information re-

trieval [23], we assume the utterances corresponding to the same

API call z are generated via a stochastic process, characterized by

a language model θz . For simplicity, we will focus on word prob-

abilities, thus θz : p(w |z),w ∈ V , whereV is the vocabulary. For

reasons that will become clear soon, instead of using the standard

unigram language model, we propose to use a Bag of Bernoulli

(BoB) distribution. Each Bernoulli distribution corresponds to a

random variableW of whether wordw appears in an utterance gen-

erated from z, and the BoB distribution is a bag of the Bernoulli

distribution of all the words, {p(W |z)}. We will use pb (w |z) as a

shorthand for p(W |z).

Suppose we have collected a (multi-)set of utterances uz for z,

the maximum likelihood estimation (MLE) of the BoB distribution

is the fraction of utterances containingw :

pb (w |z) =
|{u |w ∈ u,u ∈ uz }|

|uz |
,∀w ∈ V . (1)

Example 2. Given the aforementioned API call z1, suppose we

have collected two utterances u1 = łind unread emailsž and u2 =

łemails that are not read,ž then uz = {u1,u2}. pb (łemailsž|z) =

1.0 because word łemailsž appears in both utterances. Similarly,

pb (łunreadž|z) = 0.5 and pb (łmeetingž|z) = 0.0.

There are three basic node-level operations in semantic mesh:

annotate, compose, and interpolate.

ANNOTATE is to collect utterancesuz that paraphrase the canon-

ical command of a node z via crowdsourcing, and estimate an

empirical distribution θzem using maximum likelihood estimation.

COMPOSE tries to infer a language model based on the composi-

tions of the node, leading to the expected distribution θzex . Suppose

{z1, z2, . . . , zn } is a composition of z, if we assume their corre-

sponding utterances follow this composition relationship, then θzex
should factorize over {θz1 ,θz2 , ...,θzn }:

θzex = f (θz1 ,θz2 , ...,θzn ), (2)

where f is a composition function. For the BoB distribution, the

composition function will be:

pb (w |z) = 1 −

n∏

i=1

(1 − pb (w |zi )). (3)

In other words, suppose ui is an utterance of zi , u an utterance

of z, if {ui }
n
i=1 compositionally form u, then word w is not in u

if. it is not in any ui . When z has multiple compositions, θzex is

computed separately and then averaged. The standard unigram

language model does not lead to a natural composition function.

The normalization of word probabilities involves the length of

utterances, which in turn involves the complexity of API calls,

breaking the factorization in Eq. (2). It motivates us to propose the

BoB distribution.

Example 3. Suppose we have annotated the aforementioned API

call z1 and z2, each with two utterance,uz1 = {łind unread emailsž,

łemails that are not readž}, and uz2 = {łhow many emails do I

havež, łind the number of emailsž}. We have estimated the lan-

guage model θz1 and θz2 . The compose operation tries to estimate

θ
z12
ex without requiring uz12 . For example, for the word łemailsž,

pb (łemailsž|z1) = 1.0, and pb (łemailsž|z2) = 1.0, thus according to

Eq. (3), pb (łemailsž|z12) = 1.0, meaning that we believe this word

will appear in any utterance of z12. Similarly, pb (łindž|z1) = 0.5,

and pb (łindž|z2) = 0.5, thus pb (łindž|z12) = 0.75. Because the

word has a good chance to be generated from either z1 or z2, its

probability for z12 should be higher.

Of course, utterances are not always combined compositionally.

For example, multiple items in a formal meaning representation

can be compressed into a single word or phrase in natural lan-

guage, a phenomenon coined as sublexical compositionality [28].

One such example is shown in Figure 3, where three parameters,

TOP(1), FILTER(start>now), and ORDERBY(start,asc), are

compressed into a single word łnextž. However, it is impossible to

get such information without annotating an API call, reminiscent of

the chicken-and-egg problem. In the absence of such information,

it is reasonable to adopt a default assumption that utterances follow

the composition relationship of API calls, which makes it possible to

compute the expected distribution. As we will experimentally show

in Section 5.3, this is a plausible assumption. It is worth noting that



this assumption is only used to model the crowdsourcing process

for data collection. During testing time, utterances issued by real

users can violate this assumption. It is possible for the natural lan-

guage interface to handle such non-compositional cases if they are

covered by the collected training data.

INTERPOLATE combines all the available information about z,

i.e., the annotated utterances of z and the information inherited

from compositions, and get a more accurate estimation of θz by

interpolating θzem and θzex .

θz = α ∗ θzem + (1 − α) ∗ θ
z
ex , 0 ≤ α ≤ 1. (4)

The balance parameter α controls the trade-of between the an-

notations of the current node, which are accurate but scarce, and

the information inherited from compositions based on the compo-

sitionality assumption, which may not be as accurate but is rich. In

some sense, θzex serves a similar purpose as smoothing in language

modeling [33], which is to better estimate the probability distribu-

tion when there is insuicient data (annotations). A larger α means

a larger weight on θzem . For a root node that has no composition,

θz = θzem . For an unannotated node, θz = θzex .

Now we describe an algorithm to update a semantic mesh, i.e., to

compute θz for all z (Algorithm 1), even when only a small portion

of nodes have been annotated. We assume θzem is already up-to-

date for all annotated nodes. In a top-down, layer-wise manner, we

consecutively compute θzex and θz for every node z. Upper layers

much be updated irst so that the expected distribution of lower-

layer nodes can be computed. As long as we have annotated all the

root nodes, we can compute θz for all the nodes.

Algorithm 1 Update Node Distributions of Semantic Mesh

1: function SeMesh.update( )

2: for all layer from top to bottom do

3: for all node z in the current layer do

4: z.compose()

5: z.interpolate()

3.3 Crowdsourcing Optimization

Semantic mesh gives a holistic view of the whole API call space as

well as the interplay of utterances and API calls, baaed on which

we can selectively annotate only a subset of high-value API calls.

In this section, we propose a diferential propagation strategy for

crowdsourcing optimization.

Given a semantic mesh, suppose the node set is Z , our goal is

to iteratively select a subset of nodes ÅZ ⊂ Z for crowd workers to

annotate. If we call the set of nodes annotated so far as the state,

then what we will be seeking for is a policy π : Z \ ÅZ → R that

scores each unannotated node based on the current state.

Before plunging into discussing how to compute a good policy,

let’s assume we already have that, so we can irst sketch our crowd-

sourcing algorithm at a high level (Algorithm 2), and discuss related

techniques. More speciically, we irst annotate all root nodes so

that we can estimate the distribution for all the nodes in Z (line 3).

In each iteration, we update node distributions (line 5), compute

the policy based on the current state of the semantic mesh (line 6),

greedily select the unannotated node with the highest score (line 7),

Figure 6: Diferential propagation. z12 and z23 are the node

pair under examination. w is a score computed based on

d(z12, z23), and is propagated iteratively from the bottom up,

halved in each iteration. A node’s score is the absolute dif-

ference of its scores from z12 and z23 (thus diferential). z2
gets a 0 score because it is a shared parent of z12 and z23; an-

notating it will not help much in distinguishing z12 and z23.

and annotate the node and result in a new state (line 8). In practice,

one can also annotate multiple nodes per iteration for eiciency.

Under a broad deinition, our problem can be categorized as

an active learning problem [22], with the same goal to select a

subset of examples to annotate, in order to get a training set that

can improve the performance of a learner. However, several key

distinctions make classic active learning techniques like uncertainty

sampling [14] not directly applicable. In a typical active learning

setting, a learner, which would be an NLI in our case, tries to learn a

mapping f : X → Y , whereX is the input example space, consisting

of a small set of labeled examples and a large set of unlabeled

examples, and Y is usually a small set of class labels. The learner

evaluates the informativeness of the unlabeled examples, and selects

the most informative one to get a label in Y from crowd workers. In

our problem, however, the annotation task is the other way around.

We need to select an instance from Y , a large API call space, and ask

crowd workers to label it with examples in X , the utterance space.

We also do not assume to be tied with a speciic learner. Therefore,

we propose a new solution for our problem. Nonetheless, we take

inspiration from the rich literature of active learning.

We irst deine an objective, based on which we quantify the

informativeness of nodes. Intuitively, we want diferent API calls

to be distinguishable. In semantic mesh, it means that the distri-

bution θz of diferent nodes are divergent enough. We irst repre-

sent each θz as an n-dimensional vector, (pb (w1 |z), . . . ,pb (wn |z)),

where n = |V| is the vocabulary size. Under a certain vector dis-

tance metric d (we use L1 distance between the vectors in the

experiments), we denote d(zi , zj ) = d(θ
zi ,θzj ), i.e., the distance of

two nodes is that of their distributions. A straightforward objective

is then to maximize the sum of the distance between all pairs of

nodes. However, optimizing over all pair-wise distances could be

computationally prohibitive and also unnecessary. A distant node

pair can already be easily distinguished, so it is less beneicial to

further increase their distance. Instead, we can focus on the node

pairs that are causing the most confusion, i.e., the ones with the

smallest distance.

Θ =

K∑

i=1

d(zi , z
′
i ), (5)

where {(z1, z
′
1), . . . , (zK , z

′
K
)} are the irst K node pairs if we

rank all node pairs by distance in ascending order.



Algorithm 2 Iteratively Annotate a Semantic Mesh with a Policy

Input: number of nodes to annotate T (budget)

1: function SeMesh.annotate( )

2: for all root node z do

3: z.annotate()

4: for i ← 1 to T − |root nodes| do

5: SeMesh.update()

6: π ← SeMesh.compute˙policy()

7: z ← argmaxz π (z)

8: z.annotate()

Algorithm 3 Compute Policy based on Diferential Propagation

Input: number of node pairs K

1: function SeMesh.compute˙policy( )

2: compute pair-wise distance of all nodes

3: {(z1, z
′
1), . . . , (zK , z

′
K
)} ← K closest pairs

4: π ← {z : 0} for unannotated z

5: for i ← 1 to K do

6: w ← min(1.0, 1
d (zi ,z

′
i )
)

7: scores1 ← {z : 0} for all z

8: scores2 ← {z : 0} for all z

9: SeMesh.propagate(zi ,w, scores1)

10: SeMesh.propagate(z′i ,w, scores2)

11: for all unannotated node z do

12: π (z) ← π (z) + |scores1(z) − scores2(z)|

13: return π

Algorithm 4 Recursively Propagate a Score from a Source Node

to All Its Parent Nodes

Input: source node z, initial score w , current score dictionary

scores (passed by reference)

1: function SeMesh.propagate(z,w, scores)

2: scores(z) ← scores(z) +w

3: if z is not root node then

4: w ← w/2 ◃ halved in each iteration

5: for all composition of z do

6: for all node z′ in current composition do

7: SeMesh.propagate(z′,w, scores)

A node is more informative if annotating it can potentially in-

crease the objective Θ more. We propose a diferential propagation

strategy to quantify this. For a node pair whose distance is small,

we examine all their parent nodes: If it is shared by the node pair,

it should get a low score because annotating it will change both

nodes similarly; Otherwise, it should get a high score, and the closer

the node pair is, the higher the score should be. For example, if

the distance of the nodes, łunread emails about PhD applicationž

and łhow many emails are about PhD applicationž, are small, then

annotating their shared parent node, łemails about PhD applica-

tionž, will not help much in distinguishing the two nodes; rather, we

shall annotate their parents nodes that are not shared, like łunread

emailsž and łhow many emailsž. An illustrative example is shown

in Figure 6, and the algorithm is outlined in Algorithm 3. We take

the reciprocal of node distance, capped by a constant, as the score

(line 6), so that closer node pairs make a larger impact. For a node

pair, we in parallel propagate the score from each node to all its

parent nodes (line 9, 10 and Algorithm 4). The score of an unanno-

tated node is the absolute diference of its scores from a node pair,

accumulated across all the node pairs (line 12).

4 NATURAL LANGUAGE INTERFACE

To evaluate the proposed framework, we need to train NL2API

models using the collected data. There is yet any NL2API model

readily available, but we adapt two successful NLI models from

other domains to APIs.

4.1 LM based Retrieval Model

Following recent development of NLI to knowledge bases [5, 31],

we can treat NL2API as a retrieval problem, and adapt the language

model based retrieval model (LM, [23]) to our setting.

Given an input utterance u, the task is to ind the API call z in

the semantic mesh that best matches u. We irst convert the BoB

distribution θz = {pb (wi |z)} of each API call z into a unigram

language model:

plm (wi |z) =
pb (wi |z) + β

∑ |V |
i

pb (wi |z) + β |V|
, (6)

where we use additive smoothing, and 0 ≤ β ≤ 1 is a smoothing

parameter. A larger β means more weight to unseen words. API

calls can then be ranked by their log-likelihood:

logp(z |u) ∝ logp(u |z) + logp(z) (assuming uniform prior)

∝

|u |∑

i

logplm (wi |z) (7)

The highest-ranked API call is then used as the model output.

4.2 Seq2Seq Paraphrase Model

Neural networks are becoming a popular model choice for NLIs [12,

31], among which the Seq2Seq [27] model is in particular suitable

for NLIs, because it can naturally handle input and output sequences

of variable length. Here we adapt it for NL2API.

For an input sequence x = (x1,x2, . . . ,xT ), the model estimates

the conditional probability distribution p(y |x) for all possible out-

put sequences y = (y1,y2, . . . ,yT ′). The lengths T and T ′ can be

diferent, and both of them can be varied. In NL2API, x is an input

utterance. y could be either a serialized API call, or its canonical

command. We will use canonical commands as the target output

sequences, which in fact turns it into a paraphrasing problem [5].

An encoder, which is implemented as a recurrent neural network

(RNN) with gated recurrent units (GRUs) [8], irst encodes x into a

ixed-dimensional vector,

h0 = RNN (x), (8)

where RNN is a shorthand for applying a GRU on the whole input

sequence token by token and output its last hidden state.

The decoder, also implemented as an RNN with GRUs, takes h0
as its initial state, and processes the output sequence y one token

at a time to generate a sequence of states,



ht = GRU (yt ,ht−1). (9)

The output layer takes each decoder state as input and generates

a distribution over vocabularyV as output. We simply use an aine

transformation followed by softmax,

ot = {p(ot = w)|w ∈ V}

= so f tmax(Woht + bo ).
(10)

The inal conditional probability, which measures how well an

canonical commandy paraphrases the input utterancex , isp(y |x) =∏T ′

t=1 p(ot = yt ). API calls are then ranked by the conditional

probability of their canonical command. We refer readers to [27]

for more details of how to train the model.

5 EXPERIMENTS

We experimentally investigate the following research questions:

[RQ1]: Can we collect high-quality training data through the pro-

posed framework at a reasonably low cost? [RQ2]: Does semantic

mesh provide a more accurate estimation of language models than

maximum likelihood estimation? [RQ3]: Does the diferential propa-

gation strategy make the crowdsourcing process more efective?

5.1 Crowdsourcing

We apply the proposed framework to two web APIs from Microsoft,

GET-Events and GET-Messages, which provide advanced search

services for a user’s emails and calendar events, respectively. We

build a semantic mesh for each API by enumerating all API calls

(Section 3.1) with up to 4 parameters. The API call distribution is

shown in Table 2. We use an internal crowdsourcing platform simi-

lar to Amazon Mechanical Turk. For the agility of experimentation,

we have annotated all API calls with up to 3 parameters. However,

we will only use a certain subset for training in each speciic ex-

periment. Each API call is annotated with 10 utterances, and we

pay 10 cents for each utterance. There are 201 participants in the

annotation task, who have been iltered using a qualiication test.

The workers took 44 seconds on average to paraphrase a canonical

command, so we can get 82 training examples from a worker per

hour with a cost of 8.2 dollars, which we believe is reasonably low.

In terms of annotation quality, we manually examined 400 collected

utterances, and found the error rate to be 17.4%. The main causes of

error are missing certain parameters (e.g., forgetting a ORDERBY or

a COUNT parameter) or misunderstanding certain parameters (e.g.,

ranking by ascending order when it is in fact by descending order),

each of which accounting for roughly half of the errors. The error

rate is on par with other crowdsourcing eforts for NLIs [28]. In

summary, we posit that the answer to [RQ1] is positive. The data

quality can be further improved by employing independent crowd

workers for post-veriication.

In addition, we have annotated an independent testing set ran-

domly selected from the whole semantic mesh, including API calls

with 4 parameters (Table 3). Each API call in the testing set was ini-

tially annotated with 3 utterances. We then screened and discarded

the erroneous ones to ensure the testing quality. Finally the testing

set contains 61 API calls and 157 utterances for GET-Messages,

and 77 API calls and 190 utterances for GET-Events. All the testing

utterances are not included in training, and there are even many

Table 2: API call distribution.

# of Params 1 2 3 4

GET-Messages 16 101 363 872

GET-Events 16 117 528 1679

Table 3: Testing set distribution: utterances (calls).

# of Params 1 2 3 4

GET-Messages 8 (3) 35 (14) 62 (24) 52 (20)

GET-Events 21 (7) 35 (15) 61 (25) 73 (30)

testing API calls (e.g., those with 4 parameters) that are never seen

in training, making it a very challenging testing set.

5.2 Experiment Setup

We use accuracy, i.e., the proportion of testing utterances for which

the top prediction is correct, as the evaluation metric. If not oth-

erwise stated, the balance parameter α = 0.3, and the smoothing

parameter of LM β = 0.001. The number of node pairs K used in

diferential propogation is set to 100 thousand. For the Seq2Seq

model, the state size of both the encoder and the decoder are set to

500. The parameters are selected based on a preliminary study on a

separate validation set (independent from testing).

In addition to its usefulness for crowdsourcing optimization, as

the irst-of-its-kind model for the crowdsourcing process of NLI,

semantic mesh bears its own technical merits. So we will evaluate

semantic mesh and the optimization algorithm separately.

5.3 Semantic Mesh Evaluation

Overall Performance. In this experiment, we evaluate the seman-

tic mesh model, and in particular, whether the operations compose

and interpolate lead to better estimation of language models. The

quality of language models can be relected by the performance

of the LM model: the more accurate estimation, the better perfor-

mance. We use several training sets, corresponding to diferent sets

of annotated nodes. ROOT is all the root nodes. TOP2 is ROOT plus

all the nodes in layer 2, and TOP3 is TOP2 plus all the nodes in

layer 3. This allows us to evaluate semantic mesh with diferent

amount of training data.

The results are shown in Table 4. For the baseline LM model,

we use maximum likelihood estimation (MLE) for language model

estimation, i.e., we use θzem for all annotated nodes, and the uniform

distribution for unannotated nodes. Not surprisingly, the perfor-

mance is rather poor, especially when the number of annotated

nodes is small, because MLE cannot provide any information about

the unannotated nodes. When we add compose to MLE, we are able

to estimate the expected distribution θex for unannotated nodes,

but θem is still used for the annotated nodes, i.e., no interpolate.

This brings a signiicant improvement across APIs and training

sets. With only 16 annotated API calls (ROOT), the simple LM model

with SeMesh can outperform the more advanced Seq2Seq model with

more than 100 annotated API calls (TOP2), and close to its perfor-

mance when using around 500 annotated API calls (TOP3). These

results clearly show that the language models estimated by the

compose operation is quite accurate, and empirically demonstrate

the plausibility of the compositionality assumption of utterances

(Section 3.2). It can be observed that GET-Events is in general



Table 4: Overall accuracy in percentage. Semantic mesh op-

erations signiicantly improve the simple LM model, mak-

ing it outperform the more advanced Seq2Seq model when

there is only a moderate amount of training data. The re-

sults demonstrate that semantic mesh provides accurate es-

timation of language models.

ROOT TOP2 TOP3

GET-Messages

LM 3.18 12.1 25.5

LM + compose 46.5 40.8 36.3

LM + compose + interpolate 46.5 47.8 50.3

Seq2Seq 5.73 22.9 57.3

GET-Events

LM 7.89 13.7 17.4

LM + compose 39.0 37.9 31.6

LM + compose + interpolate 39.0 42.6 44.2

Seq2Seq 8.95 20.5 45.3

harder than GET-Messages. This is because GET-Events involves

more temporal commands that are challenging; events can be either

in the future or past, while emails are always from the past.

The performance of LM + compose decreases when we use more

training data, which shows the inadequacy of solely using θem ,

and the need of combining θem with θex . When we interpolate

θem and θex , we get further improvements except on ROOT, where

none of the nodes has both θem and θex . In contrast with compose,

the more training data we use, the more signiicant improvement

interpolate brings. Overall, semantic mesh brings a signiicant

improvement over the MLE baseline. We posit that the answer to

[RQ2] is positive.

The best accuracies are in the range of 0.45 to 0.6, which are

not very high but are on par with the state-of-the-art methods

on NLI to knowledge bases [31]. This relects the diiculty of the

problem, as the model has to accurately ind the best API call from

thousands of related API calls. Collecting more utterances for each

API call (c.f. Figure 7) and using more advanced models, such as

bi-directional RNN with attention mechanism [25], may further

improve the performance, which we leave for future work.

Impact of Hyper-parameters. We now examine the impact of

the two hyper-parameters in semantic mesh, the number of ut-

terances |u | and the balance parameter α , still based on the per-

formance of the LM model (Figure 7). Utterances are randomly

sampled when |u | < 10, and mean scores from 10 repeated runs

are reported. We only show the results of GET-Events, and the

results of GET-Messages are similar.

Not surprisingly, the more utterances we annotate for each node,

the better performance we get, although the gain gradually shrinks.

So it is often a good idea to get more utterances if one can aford.

On the other hand, the model’s performance is not very sensitive to

α , as long as it is in a reasonable range ([0.1, 0.7]). The impact of α

increases when there are more annotated nodes, which is expected,

because interpolation only inluences annotated nodes.

5.4 Crowdsourcing Optimization

In this experiment, we evaluate the proposed diferential prop-

agation (DP) strategy for crowdsourcing optimization. Diferent

crowdsourcing strategies iteratively select API calls to annotate. In

each iteration 50 API calls are selected by each strategy and then
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Figure 8: Crowdsourcing optimization experiment. Left:

GET-Events. Right: GET-Messages.

annotated, and the two NL2API models will be trained on the accu-

mulated annotated data, and then get evaluated on the testing set.

We use the basic LMmodel, which is independent of semantic mesh.

A better crowdsourcing strategy should lead to better model perfor-

mance for the same amount of annotations. Instead of annotating

the nodes on the ly via crowdsourcing, we use the annotations

we have already collected as the candidate pool (Section 5.1), so all

strategies will only select from API calls with up to 3 parameters.

The baseline strategy is breadth irst (BF), which, in a top-down

fashion, gradually annotates each layer of the semantic mesh. This

mimics the strategy used in [28]. It is a strong baseline. The upper-

layer API calls are usually more important, because they compose

the lower-layer API calls.

The experiment results are shown in Figure 8. For both NL2API

models and both APIs, DP in general leads to better performance.

When we only annotate 300 API calls for each API, for the Seq2Seq

model, DP brings an absolute accuracy gain over 7% on both APIs.

When it comes close to exhaust the candidate pool, the two algo-

rithms converge, which is expected. The results show that DP is

able to identify the API calls with high value for training an NL2API.

In summary, we posit that the answer to [RQ3] is positive.

6 RELATED WORK

Natural Language Interface. Research on natural language in-

terface (NLI) can date back to decades ago [29]. Early NLIs are

mostly rule-based. In the past years, learning-based methods have

become the mainstream. Popular learning algorithms include log-

linear models [4, 32] and more recently deep neural networks [26,

31]. There has been considerable research on NLI for relational

databases [32], knowledge bases [4], and web tables [26], but little

for APIs. Two main hurdles for NL2API are the lack of a uniied

semantic representation for APIs, and, partly due to that, the lack

of training data. We address both of them. We propose a uniied

semantic representation for APIs that follow the REST style [1],

and a novel approach to collect training data in this representation.



Training Data Collection for NLI. Training data for NLIs has

conventionally been collected in a best-efort manner. For example,

Berant et al. [4] collect NL questions through the Google Suggest

API, while Quirk et al. [19] collect NL commands and the corre-

sponding API calls from the IFTTT website. Only lately researchers

start to study how to build an NLI by collecting training data via

crowdsourcing. While crowdsourcing has become a common prac-

tice in language-related research, it is particularly challenging and

intriguing when it comes to NLI, because of the complicated in-

terplay of natural language and formal meaning representations.

Most existing work in this direction is from NLI to knowledge

bases [6, 24, 28], where the formal representation is logical forms in

a certain logical formalism. Wang et al. propose the idea of convert-

ing logical forms into canonical commands using a grammar [28],

while in [24] techniques are developed to reine the generated

logical forms and ilter out the ones that do not correspond to a

meaningful NL question. A semi-automated framework is proposed

in [13] to interact with users on the ly to map NL commands

into smartphone API calls. Similarly, Huang at al. [11] propose a

crowdsourcing framework where workers participate in an inter-

active dialog to fulill the annotation task for web API. But none

of the existing work has exploited the compositionality of formal

representations to optimize the crowdsourcing process.

Semantic Techniques for Web API. Some other semantic tech-

niques have emerged for web APIs. For example, semantic descrip-

tions of web APIs are extracted in [17] to facilitate API composition,

while in [20] a search mechanism is proposed to help ind web

APIs for composition. NL2API can potentially be applied to such

problems too, e.g., as a uniied search engine for inding APIs.

7 CONCLUSIONS AND FUTUREWORK

We formulated the natural language interface to web API (NL2API)

problem, and proposed an end-to-end framework to build anNL2API

from scratch, with the novel technical contributions in collecting

training data via crowdsourcing. It opens up an array of future di-

rections: (1) Language model. How to generalize from single words

to more complex language units like phrases? (2) Crowdsourcing

optimization. How to better exploit the semantic mesh? (3) NL2API

model. For example, the slot illing framework for spoken dialog

systems could be a good it to our API frame representation. (4) API

composition. How to collect training data when multiple APIs are

mashed up? (5) Tuning from interaction: how to continue improving

an NL2API through user interaction after initial training?
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