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Abstract 

In this paper, we propose a method that separates 
specular reflections from polarized color images. With 
line constraints in RGB color space and spatial do- 
main information, we used a Variational energy mini- 
mization approach to restore diffuse reflections. With 
anisotropic smoothing, our method preserves the shape 
of textures and successfully separates specular reflec- 
tions. Also, saturation of specular reflections is consid- 
ered using a simple inpainting method. 

1 Introduction 

There are mainly two kinds of light reflection: spec- 
ular and diffuse. Because of strong directional depen- 
dency, specular reflections present difficulties in many 
areas of computer vision algorithms such as shape from 
shading and photometric stereo. 

To separate specular reflections, various algorithms 
have been developed. Brelstaff and Blake[l] addressed 
the problem, of detecting speularities in gray level 
images with a Lambertian constraint. Klinker et 
a1.[2] developed a color-based method from Shafer's 
dichromatic reflectance model[3]. Sato and Ikeuchi[4] 
achieved separation using color signatures generated by 
varying the illumination direction and Lin et a1.[5] used 
a color histogram with multi-stereo images. 

A polarization approach was introduced by Wolff 
and Boult[6][7] where polarizing filters are used to ef- 
fectively separate diffuse and specular reflections for 
areas with a constant Fresnel ratio. Nayar et a1.[8] 
used polarization in conjunction with color information 
from a single view to separate reflection components. 
Their work relies on polarization for specularity detec- 
tion from dielectric materials and on color for separa- 
tion of specular and diffuse reflection components using 
the dichromatic model. They showed that by varying 
the polarization filter, the color of the specular compo- 
nent can be determined independently for each image 
point resulting in a line subspace on which the diffuse 
vector must lie. Neighboring diffuse colors that satisfy 
these line constraints are used to compute the diffuse 
color vector for the point. 

Extending previous work[8], we present a simple 
variational approach to separate specular reflections 
using color and polarization. We decomposed the color 
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space into two subspaces in each pixel: the specular 
line space and the diffuse plane space. The line space 
is parallel to the constraint line of polarization in each 
pixel, while the plane space represents a plane per- 
pendicular to the specular direction. In specular line 
space, our energy functional smoothes anisotropically 
the spatial variation of specular components depending 
on boundary values, and the direction of the smooth- 
ing is controlled by gradient information in the diffuse 
plane space. As a constraint, anisotropic homogeneous 
smoothness of the separated specular reflections is em- 
ployed in our energy functional and controlled by the 
gradient information of the polarization-varying spec- 
ular intensity in the polarized images. 

The narrow dynamic range of sensor and high in- 
cident angle can cause saturations with erroneous line 
constraints. To overcome this, a simple constrained 
Total Variation inpainting[9] method is applied dur- 
ing preprocessing. With this approach, our algorithm 
can deal with saturated specular images. In the cn- 
ergy minimization process following preprocessing, our 
method successfully separates specular reflections from 
the polarized images, which overall tcxtures 
and diffuse reflections. 

2 Color and Polarization 

For non-polarized incident light (which is typical), 
diffuse reflection is non-polarized, while specular reflec- 
tion exhibits partial polarization. Because of partial 
polarization of specular reflections, the color intensity 
I (@)  of a pixel viewed through a polarizer with angle -9 
can be expressed as 

where Id is the diffuse intensity, I,, is the polarization- 
constant specular intensity, I,, is the polarization- 
varying specular intensity, and cr is the phase angle de- 
termined by the projection of the surface normal onto 
thc polarization filter plane. 

The above equation predicts that a specular pixel as 
seen through different polarizer angles will have color 
readings that lie on a line in RGB space, as shown in 
Figure 1. This line extends toward the illumination di- 
rection from the underlying diffuse color, because the 
polarizer attenuates the partially polarized specular in- 
tensity but not the unpolarized diffuse component. For 
a user-defined threshold t ,  a pixel is considered to be 
specular region when 



3 Separation of Specular and Diffuse 
Reflections 

The specular constraint line in equation (1) can be 
represented as a parametric form L(p) with the normal- 
ized line direction vector [a, p, r] a t  each pixel (x, y) ,  as 
shown in Figure 1. Imin can be decomposed into two 
orthogonal vectors passing through the origin: Ikin 
and 19. The half line space I' is the specular directional 
line parallel to L(p) and reacts on polarizer, while I g  

is a vector on the plane orthogonal to I' and L(p). I t  
is noted that the vector I g  is a constant vector inde- 
pendent of the polarizer angle 8 at  each pixel. 

To separate specular reflection from Imin, we have 
to locate pd(> 0) given by 

After I: is determined, specular and diffuse reflections 
can be separated using a simple vector calculation. 
Therefore, to locate I;, we only need to work on I' 
space with the initial value Ikin a t  each pixel. 

(3) 
non-texture area resulting in isotropic smoothing. 

In equation ( 5 ) ,  vl is the eigenvector matrix of struc- 
ture tensor from I g  and K is a constant which is sim- 
ilar to that of the anisotorpic diffusion[ll]. Because 
VIg has information on texture variation independent 
of specular reflection, Dl guides the direction of the 
smoothing with vl and adjusts the amount of smooth- 
ness with p. Our model can be explained as an inpaint- 
ing algorithm[9] [lo]. Image inpainting has previously 
been used to fill in missing areas in an image by ex- 
tending boundary image information into the missing 
area. Our model fills the specular component of the 
boundary into the detected specular region. The ma- 
trix Dl controls the inpainting with ul and p. If IVIg1 
is strong in some pixels, which means the strong dif- 
fuse texture in that region, then p will place a barrier 
in that direction. Also. DI becomes identitv matrix in 

Figure 1: Decomposition of Imin at each pixel into I 9  

and Iiin in RGB color space. 

In the neighborhood, all decomposed Igs lie on the 
same plane assuming a smooth illumination change, 
which results in parallel specular constraint lines. The 
approximated parallelism will be guaranteed by pre- 
processing with equation (7). If we define the plane as 
diffuse plane space as shown in Figure 2, ILin and I: 
can be represented as a 1-dimensional height from the 
diffuse plane space and we can make a 2-dimensional 
image with heights for all pixel positions. Finally, as- 
suming that all of the decomposed Igs are constant, 
we only need to process 2-dimensional image Iiin to 
separate diffuse reflection image. 

Based on the decomposed specular line image Ikin, 
we proposcd a energy functional to be minimized: 

where X is the Lagrange multiplier, R is the detected 
spccular region, and Dl. D, are 2x2 constant matrices. 
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Figure 2: 1-dimensional ILin image example. 

As a constraint term in the energy functional, the 
anisotropic shape information of the detected specu- 
lar reflections is employed. Generally, specular reflec- 
tions show an abrupt change in at  most one direction 
and the direction of change can be approximated by 
the polarization-varying specular intensity I,,. How- 
ever, because the amount of change could not be known 
for lack of an exact I,,, we introduced a homogeneous 
anisotropic smoothness shape prior to the detected 
specular reflections with the matrix D,. up is the eigen- 
vector matrix of structure tcnsor from I,,, and c is a 
small constant. 

Finally, our energy functional minimizes spccular 
variation from the boundary to the edge direction 
of pure diffuse texture and separates the anisotropi- 
cally smoothed specular reflections. Because of the 
anisotropic property of the process, our method can 
preserve the shape of textures independently of specu- 
lar components. 

4 Problem of Saturation 

In our formulation and in previous work[8], the linc 
is considered as an exact and strong constraint. This 
is a true assumption only if all intensities of the polar- 
ized images are not saturatcd, as in Figure 3(a). Pixel 
saturation resulting from such conditions as narrow dy- 
namic range sensors or intense specular reflections can 
lead to an erroneous polarization linc constraint, as 
shown in Figure 3(b). For cxamplc, if any component 
of R, G, and B is saturatcd, the direction of the line 



equation deviates from the true line and the diffuse 
point in RGB space cannot be reached. If a blue com- 
ponent of Imi, is extremely saturated, the line equa- 
tion will be parallel to the RG plane, which results in 
no change of blue color. 

Figure 3: Saturation in a pixel 

Because the direction of the constraint lines depend 
only on light illumination, they are almost parallel in 
their neighborhoods, which means the smooth change 
in the vector [a ,  P, y]. With this assumption, Total 
Variation inpainting method[9] with constraint is a p  
plied in the preprocessing: 

subject to a2 + p2 + y2 = 1, (7) 

where S(=  { X ~ X  = 255,x E $2)) represents the satu- 
rated region, A, is a positive constant, and Qo repre- 
sents initial values in each component of [a ,  p, y]. In 
the non-saturated specular region R \ S, the equation 
(7) denoises each a,  @, and 7 ,  which guarantees the 
approximated parallelism of the constraint lines. Due 
to the lack of polarization effect, constraint lines can 
be wrong in the boundary(B) of the detected specular 
region. For this reason, inpainting is performed in B as 
well as S, which results in smooth changc of the line di- 
rection vector in the boundary. In other words, we used 
non-saturated line direction vectors in RGB space as a 
true information, and inpainted the information into S 
and B. 

Figure 4 shows a ,  P, y images before and after the 
inpainting preprocessing. we can notice the wrong val- 
ues in saturated and boundary regions before inpaint- 
ing. After inpainting, we restored a, P, y depending on 
the non-saturated region. With this approach, our al- 
gorithm can deal with saturated specular images which 
successfully separates the specular reflection from the 
polarized images. 

5 Implementation 

With the Euler Lagrange equation (9) derived from 
(4), we used gradient descent algorithm with time step 
T to obtain the solution: 

Figure 4: a ,  P, y of Figure 6 represented by gray scale 
images (the first row: before inpainting, the second 
row: after inpainting). 

Because the PDE (9) is a 2nd order derivative, it is easy 
to implement with a finite difference method and stable 
if T is small. Also, the functional (7) is implemented 
by the same procedure as mentioned above, except the 
projection onto the space satisfying the constraint aZ + 
p2 + -y2 = 1 at the end of each iteration. 

6 Experimental Results 

In experiments, six images with equal polarizer 
angle differences are obtained from a digital camera 
equipped with a linear polarizer. From the experiment 
(Figure 5), specular variations are smoothed out ( d c  
pending on the boundary values) in the flat region (red 
tomato), while the shape of stripe is preserved in the 
textured area (green pumpkin), as expected. Also, the 
separated specular reflections are very close to those in 
the I,,, image (Figure 5(d)). However, in our implc 
mentation of Nayar's work[8], some pixels show noise 
like results in the smooth region and pixcls exist which 
are not processed for the lack of appropriate neighbor- 
hood pixels, as shown in Figure 5(e)(f). 

With equation (1) and Fresnel ratio171 (relating ma- 
terial property of the object and incidcnt angle at each 
pixel), we made six polarization-simulated images in a 
graphical environment with single white light source, as 
shown Figure 6. Becausc G and B colors are saturated 
in some region, the separation fails without preprocess- 
ing. From the results, we observe that inpainting the 
line direction vectors in the saturated region works well 
if the non-saturated information is sufficient. 

7 Conclusions 

We proposed a method for separating specular re- 
flections from polarized images based on energy mini- 
mization. Our method conserves the shape of texture 
and diffuse color in specular region by controlling the 
direction of smoothing with two constant matrices. We 
also considered pixel saturation and our method can 
deal with the case of inter-reflection if the change is 
smooth. Because our formulation is simple, it is easy 
to implement and can be extended with the other con- 
straint. 

It is a well known fact that the variation of diffuse 
reflections with illumination color can not be restored 



F i e  5: Experiment with real &ages. (a) Zmin im- 
age. (b) detected epecular region(t = 10). (c)(d) sep 
mated di&cle(c) and apecular(d) reflections(A = 0.2). 
(e)(f) separated results by Nayat's method[$]. 

in polarized images. This is also same limitation for 
our cam. However, if there exists sufficient variation of 
M u m  reflections orthogonal to the illumination d i r e  
tion, our method can separate the specular reflections 
by controlling the direction of smoothing. 
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