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ABSTRACT

Internet-enabled cameras pervade daily life, generating a huge am-
ount of data, but most of the video they generate is transmitted over
wires and analyzed offline with a human in the loop. The ubig-
uity of cameras limits the amount of video that can be sent to the
cloud, especially on wireless networks where capacity is at a pre-
mium. In this paper, we present Vigil, a real-time distributed wire-
less surveillance system that leverages edge computing to support
real-time tracking and surveillance in enterprise campuses, retail
stores, and across smart cities. Vigil intelligently partitions video
processing between edge computing nodes co-located with cameras
and the cloud to save wireless capacity, which can then be dedicated
to Wi-Fi hotspots, offsetting their cost. Novel video frame priori-
tization and traffic scheduling algorithms further optimize Vigil’s
bandwidth utilization. We have deployed Vigil across three sites
in both whitespace and Wi-Fi networks. Depending on the level
of activity in the scene, experimental results show that Vigil al-
lows a video surveillance system to support a geographical area
of coverage between five and 200 times greater than an approach
that simply streams video over the wireless network. For a fixed
region of coverage and bandwidth, Vigil outperforms the default
equal throughput allocation strategy of Wi-Fi by delivering up to
25% more objects relevant to a user’s query.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Distributed networks
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1. INTRODUCTION

Video surveillance today has become pervasive: it provides inven-
tory control for today’s retail stores, security for corporate and ed-
ucational campuses, and both security and demand monitoring for
roadways and rapid transit networks in smart cities. Furthermore,
the trend is expected to increase: according to a recent IDC report
as much as 5,800 exabytes of video footage will be stored by the
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year 2020 [15]. But, while cities such as London and Beijing have
close to a million cameras deployed today, the vast majority of them
are wired into the physical infrastructure, which incurs massive de-
ployment cost and effort. As a result, the coverage these cameras
provide is necessarily limited. Smart video cameras currently on
the market such as Dropcam [8] use a passive infrared motion de-
tection sensor to transmit video in response to human or animal
movement, but miss potentially notable stationary objects or peo-
ple in a camera’s field of view. We therefore see an opportunity for
a surveillance system to radically scale by leveraging a user’s query
to look deeper into the video feed.

This paper examines the possibility of building a wireless video
surveillance network over UHF whitespace and unlicensed Wi-Fi
spectrum bands for uploading real-time video feeds to the cloud,
similar to today’s wired video surveillance systems. The impor-
tant challenge in realizing such a system is the limited capacity
of wireless spectrum, far from sufficient to accommodate many si-
multaneous high-definition video feeds. The bandwidth usage of
Dropcam has already been shown to be several order of magnitude
higher than peer-to-peer file-sharing applications [3]. Moreover,
wireless networks suffer channel losses that need to be overcome
by channel coding and retransmission techniques, introducing over-
head that further limits the effective capacity of the network. When
wireless capacity lags behind the surveillance cameras’ demands,
queue lengths increase and the system is forced to degrade applica-
tion performance.

Our approach begins with an analysis of more than 250 hours
of real-world video feeds showing that most of the time there is
nothing of interest in a video feed. For example, in one of our
deployments in a lounge area, we found that over a period of two
weeks, 99.8% of the time a state-of-the-art face detection algorithm
finds no faces, obviating the need to use wireless capacity to upload
video feed to the cloud. Even watching a scene where many peo-
ple are present such as a busy corridor during a lunchtime period
in an office building, state-of-the-art vision algorithms detect very
few faces most of the time. Figure 1 shows a time series of faces
detected and a CDF of the face count: 80% of the time the face-
detection algorithm finds no faces.

We present Vigil, a real-time wireless video surveillance system
that leverages edge computing [24] to enable wireless video sur-
veillance to scale to many cameras and expand its region of cover-
age in a crowded wireless spectrum. Vigil’s processing flow begins
with a user inputting a query into the system, such as locating peo-
ple or objects of interest, counting the number of people passing
in an area of interest, or locating people seen nearby a person of
interest. Vigil’s edge compute nodes (ECNs) then locally process
each camera’s video feed with lightweight, stateless vision algor-
ithms such as motion and object detection, resulting in a stream of
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Figure 1: Time series and CDF of a count of the number of faces a
state-of-the-art vision algorithm detects during a busy period at an
office building.

analytic information comprising the indices of significant frames in
the raw surveillance video stream. This analytic information trig-
gers the ECNs to upload analytic information, together with signif-
icant associated video frames, to the cloud. The ECN also locally
stores video footage temporally-close to frames of significance for
subsequent retrieval. Later and if needed, Vigil performs a deeper
analysis on the video feed (e.g. object/face recognition or trajectory
synthesis).

Once Vigil has extracted analytic information from cameras’ video
frames, it has to decide the relative importance of different frames
to the query at hand. This allows it to prioritize more important
frames over less important frames when wireless capacity is scarce.
To quantify frames’ relative importance, we propose and evaluate
a new metric called ops (objects per second) whose objective is
to maximize the number of query-specified objects (of interest in
the video frame) delivered to the cloud while minimizing the band-
width required to upload images containing those objects. We also
incorporate a priority-based mechanism into Vigil so that queries
can incorporate their own logic into the way that Vigil prioritizes
traffic, overriding ops.

Once Vigil has prioritized frames, a novel traffic scheduling al-
gorithm uploads the frames most relevant to the user’s query in
reverse-priority order (i.e. most-relevant frames first), to ensure ef-
ficient utilization of available wireless capacity. This video content-
aware uploading strategy suppresses a large fraction of unrelated
image data, conserving utilization of the scarce wireless medium
while simultaneously boosting the responsiveness of the system.

As an additional feature, Vigil scavenges the wireless capacity it
conserves to provide public Wi-Fi access. This hybrid network de-
sign offsets the deployment and maintenance cost of the underlying
network infrastructure.

We have deployed Vigil at three sites in two countries under
vastly different operational conditions. Two of our deployments are
based on TV whitespace networks, and operate in multiple indoor
locations and a campus-wide outdoor area. A third deployment is
based on a Wi-Fi network and deployed indoors. We compare the
performance of Vigil to an “oracle” system running a state-of-the-
art vision algorithm on all the frames every camera captures and
uploading these frames to the cloud. Depending on the level of
activity in a scene, experimental results show that Vigil allows a
video surveillance system to support a geographical area of cover-
age between five and 200 times greater than an approach that sim-
ply streams video over the wireless network. For a fixed region
of coverage and bandwidth, Vigil outperforms the default equal
throughput allocation strategy of Wi-Fi by delivering up to 25%
more objects relevant to a user’s query.

(b) Line of pedi)le.

(a) Object of interest.

Figure 2: The two Vigil use-cases targeted in this paper.

This paper makes the following contributions:

1. Edge-computing architecture for wireless video surveillance:
We propose and evaluate a novel architecture for wireless video
surveillance that leverages edge computing for a highly scal-
able, real-time wireless video surveillance system. Our pro-
posed architecture partitions its design between computing el-
ements at the edge of the network and in the cloud.

2. Camera & frame selection to suppress redundancy: When
multiple cameras looking at the same scene capture different
views of an object or person of interest to the user’s query, Vigil
uploads only the frames that best capture the scene. This collab-
oration between cameras distinguishes Vigil from popular solu-
tions on the market such as Dropcam [8].

3. Content-aware traffic scheduling: We propose and experi-
mentally evaluate the ops metric, showing that it maximizes
utility in the sense of objects per second uploaded to the cloud
for person-counting applications and applications that recognize
objects. We also incorporate a priority-based scheduling mech-
anism, showing increased utility for security applications.

4. Hybrid surveillance-access network: We introduce a hybrid
network architecture where ECNs also provide Wi-Fi network
access to recoup the cost of deploying and running the surveil-
lance network.

2. MOTIVATION: USE CASES

Security and counter-terrorism. Across our cities, CCTV cam-
eras are installed in underground transport networks, on buses, and
in airports and other public areas. We envisage online, real-time
processing of the wireless video feed so that law enforcement and
counter-terrorism can track public threats in real-time. For exam-
ple, in the event of multiple co-ordinated attacks on public trans-
port, the video surveillance network can pick out the face of one
perpetrator, scan the database of cloud-stored video for other peo-
ple the perpetrator was spotted with, and then search for those asso-
ciated persons in real-time as the attack progresses, directing law-
enforcement to the locations of the perpetrator’s accomplices for
intervention.

Locating people or objects of interest. In many situations, people
are interested in locating objects or people of interest, such as an
“Amber Alert” in the United States, or an unattended bag of a cer-
tain color (Figure 2(a)). An airport might choose to continuously
run a query on CCTV footage looking for bags that are not held by
any person nearby, flagging up unattended baggage to airport au-
thorities. Traffic monitoring systems use vision-based algorithms
to detect and count the number of cars on the highways [4,22].

Customer queue analytics. In places where customers line up for
service, such as coffee shops, supermarkets, or amusement parks,
management has an interest in knowing numbers of people waiting
in line and the dynamics thereof over the course of a day (Fig-
ure 2(b)). Cameras are used to track line length, but face or body
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Figure 3: Vigil architecture, in which Edge computing nodes
(ECN) are connected to camera devices to perform simple vision
analytic functions, while uploading a relevant portion of video feed
to a Controller in the Internet. Cameras monitoring the same areas
form a cluster.

counting is challenging, as people strike different poses and turn
at different angles to the camera. Consequently, a better design is
to deploy an array of cameras surrounding the queuing area. The
system then fuses their data together to form a more accurate count
of the people in line.

3. DESIGN

Vigil proposes a novel architecture (Contribution 1 in Section 1)
that leverages the computing elements at the edge of the network to
minimize bandwidth consumption of a wireless video surveillance
network without sacrificing surveillance accuracy. Vigil consists
of the two major components shown in Figure 3. The controller
is located in the cloud and receives users’ queries, coordinating all
the other parts of the system to answer the query. An edge compute
node (ECN) is a small computing platform (e.g., a laptop or embed-
ded system) that is attached to a camera to bring cloud resources
close to the edge of the network.! 2 Each ECN receives the video
feed from its connected camera, and executes the first, stateless,
stages of computation such as face detection or object recognition.
It then periodically uploads analytic results to the controller. The
ECNs also perform video compression, indexing and maintaining
a short-term store of the video frames they capture. ECNs connect
to the controller via wireless links operating over TV whitespace
or Wi-Fi bands. The controller runs a frame scheduling algorithm,
requesting ECNs to only upload a fraction of relevant video frames
to conserve wireless bandwidth.

Vigil further utilizes saved wireless bandwidth to provide pub-
lic network access, by augmenting each ECN with a Wi-Fi access
point. The AP forwards users’ traffic over the controller to the
Internet, thus providing Internet hotspot functionality for nearby
users (Contribution 4 of Section 1).

To improve the accuracy of vision analytic functions, we intro-
duce the notion of a cluster: a group of camera nodes monitoring

Note that we use the terms ECN and camera interchangeably in
the remainder of the paper.

2We discuss the case of connecting multiple cameras to a single
ECNin§7.
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(a) Camera 1 (b) Camera 2
Figure 4: Different views on the same scene can reveal more peo-
ple at favorable angles to the camera, as captured by Camera 1’s
view of this scene with three people.

(¢) Camera 3

a single geographical area with substantially overlapping views, as
illustrated in Figure 3. Leveraging a cluster of cameras allows us
to capture multiple views of objects from different angles and over-
come the limitations of the state-of-the-art visions algorithms (Fig-
ure 4). These clusters are constructed during a calibration phase
based on the covered area of each camera. Vigil effectively fuses
the observations from cameras in a cluster to improve surveillance
accuracy without significant wireless bandwidth overhead while
existing surveillance systems upload video from each camera to
the cloud before executing vision analytic functions.

Design goals and scope. The primary goal of our design is to

maximize the number of query-specified objects the system returns

while minimizing the bandwidth required to upload the images con-
taining these objects. We also limit the scope of our design, noting
the following non-goals:

1. Each vision algorithm has a certain accuracy and degree of con-
fidence in the results it returns. Improving the accuracy of vision
algorithms is outside this paper’s scope.

2. Enough cameras are present and use a high enough resolution
and frame rate so that with high probability, the resulting raw
video streams capture objects of interest.

3. In a Vigil deployment, cameras are line-powered, so there are
no battery-conservation issues.

The next section describes the ECN in detail, followed by a descrip-
tion of how Vigil’s controller prioritizes frames to upload within a
cluster of ECNs (§3.2, Intra-cluster processing), and arbitrates de-
mand across multiple clusters (§3.3, Inter-cluster traffic shaping).

3.1 Edge compute node

We begin by describing the stateless image processing functions
performed by each ECN. Each Vigil application implements a call-
back API frameUtility, which returns an integer value evalu-
ating the importance of a video frame to that application. Refer-
ring to our two use-cases, queue counting application at a coffee
shop defines frameUtility to be the number of people visible
in the frame. The application that locates people or objects of in-
terest defines frameUtility to be one if the object of interest
is found in the frame, and zero otherwise. When Vigil receives
a new query, the query contains a definition of the frameUtil-
ity function, which is disseminated to all ECNs. Each ECN calls
frameUtility on every received frame to generate an array of
analytic data we denote as utils. It then uploads these analytic
data to the controller.> While we focus on person-counting appli-
cations to define frameUtility in this paper, Vigil can process
any queries that can process a vision analytic function at ECN and
output a frameUtility (for example, an object or a license plate
number is present or not).

3 As discussed below in Section 3.2.2, an advanced intra-cluster sc-
heduling algorithm also requires ECNs to upload the location of
each detected object.
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Figure 5: The intra-cluster frame selection algorithm processes on
counts representing the number of objects from each ECN camera
in a cluster. This example shows object counts over a certain time
epoch from two ECNs.

We note here that camera placement, focus, environmental con-
ditions, motion and many other factors can blur objects and faces
of interest to the system. Indeed, based on our experience, vision
algorithms such as face detection are more likely to fail on blurred
images, and so frameUtility implicitly factors the image qual-
ity into the number of detected objects.* We elaborate further on
this design choice in Section 7.

Video storage. Each ECN is equipped with some persistent storage
devices to retain all the video frames captured close to the time of
detected events. This allows Vigil to support “drill-down” queries,
which can be answered by uploading additional video data from
ECNs to the cloud for more detailed analysis. Consequently, Vigil
provides a time window, such as one or two weeks, within which
the system retains important video information, as existing wired
surveillance systems do.

3.2 Intra-cluster processing

The Vigil controller runs an intra-cluster algorithm to determine the
most valuable frames from cameras within a cluster to upload (Con-
tribution 2 in Section 1). The key challenge is to eliminate redun-
dant observations of multiple cameras within a cluster, capturing
the same objects, to minimize communication bandwidth without
actually exchanging the redundant frames. This section describes
our intra-cluster scheduling algorithm in two iterations: a straw-
man version described next, and its generalization in Section 3.2.2,
which proposes a re-identification approach to check if the same
objects are captured by cameras in a cluster.

3.2.1 Basic frame-selection algorithm

The basic algorithm selects frames to upload by examining the
frame utility array utils[c] that each ECN c reports to the con-
troller. We show an example of the controller’s view of the frame
utility arrays for a cluster containing two ECNs in Figure 5: each
element of util is an object count captured by a ECN during con-
secutive time slots. The maximum object count is based on the
vision analytic function ECN is running (i.e., practically, the vision
analytic algorithm will only detect a limited number of faces in a
frame, for example). To reduce protocol overhead, our intra-cluster
algorithm operates over a certain number of L, time slots, referred
to as an epoch in this section. The controller selects a single ECN in
each epoch—the selected ECN then uploads a fraction of its frames
to the controller determined by inter-cluster traffic shaping (§3.3 on
p. 5). The basic version of our scheduling algorithm proceeds in
three steps:

Step 1: The controller sums the L, object counts from each camera
across the epoch, selecting the camera ¢* with the highest average
counts (most information about the scene) in the epoch. In the

4Blurry frames will result in fewer objects being detected, thus the
frameUtility metric will characterize blurry frames as less use-
ful. Furthermore, the minimum size required in terms of face pixels
is encoded in the face or person detector.
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Figure 6: Step 2 of the Vigil intra-cluster frame selection algo-
rithm aggregates one camera’s beginning frame index and utility
into a selected image sequence (sis) array containing a sequence
of (frame index, utility) pairs.

running example of Figure 5, the algorithm selects Camera 1 for
further processing.

Step 2: The second step of the algorithm processes Camera ¢*’s
counts, finding the frames that begin changes to the scene, and col-
lecting them into a selected image sequence array sis, as shown
in Figure 6. The sis array contains pairs of (frame index, utility),
sorted by utility, breaking ties in utility by favoring the sis element
with the longer duration sequence of images.

The frames can only be uploaded at a rate lower than the capacity
of the wireless link from the ECN to avoid network congestion and
frames from being dropped. To avoid congestion, the controller
estimates the link capacity (in bits per second) C available from
each ECN by examining the near-term sending rates and the loss
rates. The ECN measures a time-averaged packet loss rate L at its
wireless link layer, and the physical-layer bit rate R. The ECN then
estimates the link capacity as:

C=R-(1-1). @))
Step 3: The final step of the algorithm takes as input the estimated

available wireless capacity C, and estimates the number of bits that
ECN c¢* can upload. We make a simplifying assumption that ECNs
within a cluster have similar wireless links to controller because
they cover same geographical area of interest. Suppose the size (in
bits) of the frames in the sis is Njs and the length of the epoch in
seconds is 7. At the end of the epoch, the controller sends a control
message to ECN ¢* soliciting an upload. If N < C-T,, the ECN
uploads sis, along with all the changing frames as indicated in the
sis after compression. Otherwise, the ECN uploads a fraction of
the compressed images in sis in the decreasing order of utility.
In the example of Figure 6, sis[0] has utility of 3, so frame 2 is
uploaded first, followed by frame 7 and 0.

We note that this algorithm is an approximation that will lose in-
formation when more than one camera in the cluster sees objects
that other cameras in the cluster miss. So, we describe a sophis-
ticated intra-cluster algorithm to select the most valuable frames
within a cluster.

3.2.2 Sophisticated frame-selection algorithm

Vigil’s sophisticated intra-cluster frame-selection algorithm specif-
ically targets cases where one camera in a cluster sees objects that
other cameras miss to select more than one ECN to upload images
during a time epoch.

This algorithm relies on geometry and known locations of the
ECNs to detect redundant viewpoints without actually exchanging
the redundant frames. The algorithm first identifies duplicates of
the same objects from multiple ECNs in overlapping camera views
using object re-identification. It then prioritizes video frames from
the cluster, factoring the count of “re-identified” objects into the
frame utility metric.

Object re-identification. Object re-identification determines re-
dundant objects reported by multiple ECNs in a cluster with over-
lapping camera views. By selecting the smallest subset of camera
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Figure 7: Two cameras simultaneously capture a scene containing
the same two faces. To avoid redundant counting, Vigil projects
faces from Camera 1 to Camera 2 based on common reference
points denoted by the two blue lines labeled “Reference” in Cam-
era 1’s view. If projection error does not exceed the distance be-
tween the detected faces, re-identification correctly identifies the
two views of each face.

(a) Camera 1
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Figure 8: The advanced intra-cluster frame selection algorithm op-
erating on unique objects after applying the object re-identification
algorithm. Each letter denotes an unique object identified by re-
identification. The algorithm chooses ECN 1’s camera to be the
primary camera view, while debiting the object counts reported by
ECN 2 by the number of duplicate objects re-identified (in bold).

views to cover the overlapping views, we identify the unique ob-
jects across cameras within a cluster. To achieve this, Vigil uses the
following lightweight approach [33] called re-identification.

Figure 7 shows an example where two cameras simultaneously
detect the faces of two people in their overlapping views. The re-
identification algorithm identifies if the detected face instances be-
long to the same person or not. It first selects common reference
points between the camera views, for e.g., the two blue lines in Fig-
ure 7.° The reference points are then used to project any pixel in
Camera 1’s view onto the plane of Camera 2’s view. The detected
face instances are identified as the same person when the distance
between projected face and the detected face is below a threshold.
For e.g., the error e between the projection and the detected face in
Figure 7(b) is much smaller than the distance between the two dif-
ferent faces. We set an empirical value to determine the threshold
for this projection error e that accounts for any inaccuracy in mark-
ing reference points as benchmarked in Section 5.3. The thresh-
old value is set during a calibration stage and can remain useful
for a long period of time for static cameras. This re-identification
approach has linear complexity in number of cameras because it
projects all of the captured scenes to a common plane to calculate
inter-object distance.

To integrate the re-identification technique on top of the basic
algorithm Section 3.1, each ECN reports the center coordinates of
detected faces and the frame utility in the modified utils to the

S5The reference points are manually determined in a camera cali-
bration phase or extracted using algorithms that extract SIFT image
features [17].
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Figure 9: Step 2 of the advanced intra-cluster algorithm generates
a selected image sequence (sis) array comprising (camera identifier,
frame index, utility) tuples.

controller. The controller then performs re-identification using the
analytic data in utils. Based on the results of object reidenti-
fication, The controller then executes the following sophisticated
scheduling algorithm:

Step 1: The controller determines an ECN that has maximal aver-
age object counts (thus capturing the most information about the
scene) to be the primary ECN. It then projects the detected objects
from other (complementary) camera views onto the primary camera
view. For each re-identified object, the controller debits the object
count of all the complementary ECNs by one. This produces an
updated utility array for each ECN. For example, Figure 8 shows
unique object counts captured by two ECNs after applying object
re-identification, along with their utility arrays. We choose ECN 1
as the primary camera view, while debiting object counts for ECN 2
by the number of duplicate objects re-identified (marked in bold).

Step 2: The controller determines a selected sequence of frames
in the sis array for each ECN, which comprises tuples of (ECN
identifier, frame index, utility). As illustrated in Figure 9, the mod-
ified sis array includes the frames captured by the primary ECN
with changes in its object count (i.e., frames four, zero, two). It
also contains frames captured by the complimentary ECNs when
a frame captured by the primary ECN fails to cover all the unique
objects. For example, frames four and two of the (complementary)
ECN 2 are appended to the sis array because they include addi-
tional unique objects, i.e., objects h and i in frame four and object
e in frame two.

Step 3: The controller consults the estimated wireless capacity C to
determine whether all the selected frames in sis can be uploaded.
If not, it prioritizes the selected images from the primary ECN, in
decreasing order of their utility value. It then polls the selected
images from all the complementary ECNs, in the order of their
debited utility value.

Vigil can handle a large number of objects in a single frame as
long as the vision analytic function is capable of doing so. The
intra-cluster frame selection falls back to uploading each frame
when the number of objects per frame are very large for each cam-
era in the scene.

3.3 Inter-cluster traffic shaping

After determining the priority of frames to be uploaded within a
cluster, the Vigil controller needs to coordinate upload bandwidth
demand across the clusters that are within a wireless contention do-
main (i.e. served by a single access point). To do so, Vigil uses a
novel inter-cluster traffic scheduling algorithm that attempts to al-
locate upload rates to each cluster that maximizing the number of
useful objects per second delivered to the application (Contribu-
tion 3 in Section 1).

We describe our algorithm in the context of two application sce-
narios, i.e., counting applications such as customer queue analytics,
and security based applications such as tracking a person or finding
a suspicious object. These scenarios are monitored by two clusters
of ECNs, which can contend with each other for uploading im-
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Figure 10: The per-cluster ops queues at the controller measure
the utility, in operations per second, of sending the respective image
sequences from each cluster.

ages. For the application scenarios related to analyzing a queue of
customers or locating an object of interest, Vigil allocates rates pro-
portional to the objects detected per second at each camera cluster.
In these scenarios, the application can manually intervene when it
detects large number of people or objects. For e.g., in a Starbucks
coffee shop, the queues with higher person count could be served
faster, and at the airport security checkpoints, the queue with high-
est person count would use more personnel to manage the queue.
Following the notation of Section 3.2, we denote wireless capac-
ity from cluster ¢ as C.. Since different video frames compress at
different ratios, ECNs may also upload unequal frame sizes: we
denote the size of the compressed frame in ith index of the selected
image sequence from cluster ¢ as L{. Based on the these quantities,
we calculate the number of useful objects per second (ops) for ith
index of the selected image sequence of cluster c:

sis[c|[i].utility

L/C. @

ops[c][i] =
The numerator of the ops metric is a count of objects, while the de-
nominator has units of seconds (bits divided by bits per second).
The ops thus captures how many useful objects per second the
frame at ith index of the selected image sequence from cluster ¢
will deliver if it is scheduled for transmission.

Step 1: Every time epoch, each cluster c uploads its selected image
sequence sis, to the controller, which the controller stores in array
element sis[c], an array of selected image sequences indexed by
cluster number c.

Step 2: For each cluster ¢ and frame group index i, the controller
computes ops [c] [1] using Equation 2. The controller’s state now
appears as in Figure 10: a per-cluster queue of image sequences’
ops values.

Step 3: The controller schedules service to different clusters using
a variant of deficit round robin (DRR) scheduling [25] to approxi-
mate fair queuing [6]. To define terminology and provide context,
we now briefly recall the DRR algorithm, in the context of serving
Vigil clusters. Each cluster has a deficit counter, which represents
the amount of information it is allowed to transmit when it is its
turn. Vigil-DRR works by considering clusters in round-robin or-
der. The controller adds a fixed amount of credit, called the quan-
tum, to each cluster’s deficit counter.® If the cluster’s deficit counter
exceeds the size of the packet, then the cluster transmits the packet
and the controller decrements the cluster’s deficit counter by the
size of the transmitted packet.

Our DRR variant uses the reciprocal of ops in place of the packet
length, for queue weights

1

opslc][d]’ )

qlelli] =

SWe describe our setting of quantum in Section 4.
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Figure 11: The Vigil-DRR algorithm operating over three camera
clusters with a quantum of .

in the case that ops is non-zero, and drop the upload in the case that
ops is zero. Vigil-DRR provides fair air-time to different clusters,
each of which may have different wireless throughputs possible to
the base station. Vigil-DRR also provides fairness between clusters
in terms of the number of seconds per object change (utility). Thus
a cluster that can upload a frame containing two object changes
compared to a cluster that can upload a frame containing one object
change.

Vigil-DRR also maximizes the number of objects per second de-
livered to the controller. To see this, consider the example of Fig-
ure 10 where there are three clusters, with frames at their respective
queue heads having ops of two, one, and four respectively. If we
service the clusters at rates ry, rp, and r3 (bits per second), the
number of objects per second uploaded to the controller will be
the inner product of the preceding rate vector with the ops vector
(2, 1,4)2 ((rl,rz,r3),(2, 1,4)> =2-r1+1-rp+4-r3. The Cauchy-
Schwartz inequality states that we can maximize this inner prod-
uct (i.e., the number of objects per second uploaded) by choos-
ing (ry,r2,r3) proportional to the ops vector. Setting packet length
inversely proportional to ops in the DRR algorithm accomplishes
this, as DRR will schedule packets at rates inversely proportional
to the packet length normalized by the wireless throughput.

Figure 11 shows an example of Vigil-DRR in operation over
three clusters, with a quantum value of Y. Figure 11(a) shows
the initial state of all queues. At the first time-step, the algorithm
increments the deficit counter of the first queue by quantum (%2 in
this example) and then checks the g[] value of the change at the
head of the queue. Since it is %5, Vigil-DRR transmits the change
and decrements the deficit counter by ', leaving zero in the deficit
counter, as shown in Figure 11(b). At the next time-step, the algo-
rithm increments the deficit counter of the second queue by 5, but
the q[] value at the head of the second queue is greater than 2,
and no transmission occurs, as shown in Figure 11(c). At the final
time-step, the algorithm increments deficit [3] by Y2 and trans-
mits, leaving % in the deficit counter. The algorithm then proceeds
similarly in a round-robin fashion.
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For certain security-based applications such as intruder detection
and tracking a person, the ECN nodes may assign high-priority to
the captured frames. We modify the design of Vigil-DRR algo-
rithm similar to MDRR algorithm to allow a high priority queue
that allows the frames requesting priority access on the channel to
be uploaded immediately overriding the ops metric.

4. IMPLEMENTATION

In this section, we describe our implementation of Vigil. With
the goal of understanding system performance in sifu, we have de-
ployed Vigil at three sites. We describe these deployments in the
next section, and hardware and software details in Section 4.2 and
Section 4.3, respectively.

4.1 Testbed deployments

We deploy a single cluster of Vigil cameras at three sites under
vastly different operational conditions.” Firstly, we study an out-
door surveillance scenario by deploying a cluster of camera ECN
nodes at a shuttle bus stop at Site #1’s outdoor campus (Figure 12(d)),
where we monitor real-time vision analytic functions such as count-
ing passengers. The ECN nodes in this deployment connect to a
controller by long-distance backhaul links over TV whitespaces.
Secondly, we study an indoor surveillance scenario in a busy office
hallway by deploying a cluster of camera ECN nodes at Site #1,
where we monitor the frequency of passers-by. The ECN nodes in
this deployment use unlicensed 2.4 GHz Wi-Fi to connect to the
controller. Finally, we surveil an open-plan office at Site #2 (Fig-
ure 12(b)) and an indoor lab environment at Site #3 (Figure 12(c)),
where we monitor working hours and office occupancy. The ECN
nodes in these deployments use unlicensed 2.4 GHz Wi-Fi at Site #2
and TV whitespace radios at Site #3 to connect to the controller.
The indoor deployments in the three sites have been operational
for the last two months, giving us valuable information on traffic
patterns.

7Privacy of the monitored users is preserved by ensuring that the
cameras only capture users who had given prior permission to take
part in the study.

4.2 Hardware

This section describes the hardware platform we used to deploy the
controller and the ECNs. To implement the ECN nodes, we use lap-
tops running a user-space program to perform image analysis func-
tions on video feeds from the connected cameras. We have used
laptops and the Intel Next Unit of Computing (NUC) to prototype
our system, but embedded devices (e.g. Gatework routers or NUC)
with 500 MHz-1 GHz CPU have enough processing power to run
image analysis functions for ECNs. Recent trends in vision are
moving toward smart cameras, thereby enabling face recognition,
motion detection, and other image analysis tools to be implemented
to an increasing extent in hardware [10].

Each laptop is also attached to a Wi-Fi based router to provide
public Internet access. Wi-Fi traffic along with vision analytic data
are sent over the connected routers to a central controller. Linux-
based routers running the OpenWRT operating system upload vi-
sion analytic traffic from the ECN nodes to the controller. These
router boards control two different types of wireless interface cards
for communication in TV whitespaces and the 2.4 GHz ISM band,
respectively. In our outdoor deployment, we use TV-band trans-
mitters from Doodle Labs [7] for TV whitespace communications.
The radios are configured in a single vacant TV channel at a center
frequency of 580 MHz, with a 5 MHz bandwidth.® In our indoor
deployment, we use off-the-shelf 802.11a/b/g radios operating in
the 2.4 GHz band.

We implemented the central controller on a workstation hosting
a user-space program that collects ECN traffic for further process-
ing. Both ECN and controller run code implemented in Microsoft
Visual Studio on Windows 8.1.

4.3 Software architecture

This section describes the software architecture of the controller
and ECNs. The entire software codebase consists of 6,000 lines of
C Sharpcode that implements vision analytic algorithms and end-
to-end protocols, along with approximately 100 lines of C code for
ath5k driver modifications.

Virtual networking device: We use the tun virtual networking
device in OpenVPN [21] software at each camera node. All traffic
from Wi-Fi users is directed through this virtual device, which is
subsequently captured by our application for traffic shaping, then
transmission via the underlying whitespace interface.

MAC layer modifications: We disable the rate adaptation func-
tion in the ath5k driver, and allow the ECN nodes to control the
physical-layer data rate used to send each packet by appending a
special bit-rate in the header of each packet to be transmitted. This
allows the controller to accurately estimate the wireless capacity C
of the link from the ECN node to the controller (equation 1). In our
evaluation, we fixed C to isolate the effect of our frame selection
algorithms. However, any rate adaptation algorithm can be easily
adopted in ECNss to further improve performance.

5. EVALUATION

In this section we evaluate Vigil’s performance gains over conven-
tional approaches. Sections 5.1 and 5.2 evaluate the accuracy im-
provement of Vigil’s intra-cluster frame selection (§3.2.1) and in-
ter-cluster traffic shaping (§3.3) components. Section 5.3 presents
microbenchmarks that stress-test Vigil’s vision and advanced sc-
heduling algorithms (§3.2.2).

8Before each experiment, we query a commercial spectrum occu-
pancy database [27] to ensure this channel is vacant.
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Figure 13: Frame utilities and frames where utility changes. Up-
loading all the frames where utility changes gives 100% accuracy
relative to a baseline (i.e. human validation, or a vision algorithm
working on full M-JPEG camera streams).

For object-counting applications, we measure the accuracy of
Vigil as the accuracy of object counts relative to baseline data from
running vision algorithms on all frames of the raw video streams of
all available cameras. If the system uploads all the frames where
the object count changed (i.e. the zeroth, second, sixth, and eighth
frames, as shown in Figure 13) the system will make no errors rel-
ative to baseline and has 100% accuracy. Otherwise the accuracy is
the percentage of frames that the system uploads where the object
count changed.

5.1 Intra-cluster frame selection

In this section, we evaluate the accuracy of Vigil in a cluster of
cameras using intra-cluster frame selection (§3.2).

Methodology. In this experiment, we use video traces collected
from a cluster of three cameras at Site #3 in a lab environment.
The three cameras log video traces synchronously for a duration of
180 seconds, with about 2,000 image frames. The ECN connected
to the camera uploads detected face counts and the controller se-
lects which frames are uploaded from ECNs based on the intra-
cluster frame selection algorithm.

We choose the ECN’s slot time (§3.1, p. 3) to be 100 millisec-
onds: this strikes a good tradeoff between the detection errors of
vision algorithm and responsiveness in detecting people. We con-
figure the epoch time L, to be five slots: this choice of epoch length
reduces the protocol overhead of sending control messages, while
enabling use of the best available camera in detecting people. We
experimented with other choices of L, and found end-to-end per-
formance was not sensitive to this parameter.

We compare the accuracy of intra-cluster frame selection in Vigil
to two approaches: a Round-Robin approach that cycles through all
cameras within a cluster in a round-robin manner to upload frames
and a Single-Camera approach that arbitrarily selects a single cam-
era to upload frames. Note that all approaches only upload the
frames where the count of detected faces changes. We constrain
the capacity of wireless link from each ECN to the controller and
repeat the experiment five times.

Results. Figure 14 shows the performance gains of Vigil as we in-
crease the per-camera available wireless capacity for video traces
collected at low, medium and high activity levels. The bandwidth
required at each activity level is summarized in table 1. In Fig-

ure 14, the bandwidth required at low activity level (at most 16 Kbit/s)

is lower than the available per-camera wireless capacity and there-
fore, both Vigil and Round-Robin achieve more than 90% accuracy,
while the single camera suffers because of lack of sufficient cover-
age. Similar results are observed for medium activity level, except
Vigil outperforms other approaches when the available per-camera
wireless capacity 50 kbps is lower than the bandwidth required for
medium activity level (at most 80 kbps). Finally at high activity
level, the bandwidth required is much higher than the available per-
camera wireless capacity and we observe 23-30% gains for Vigil

Level # people Change interval(s)  Bandwidth(Kbps)
Low 1 5-15 4-16

Medium 4 1-2 32-80

High 7 0.2-1 100—400

Table 1: Summary of video traces used to benchmark intra-cluster
algorithms in terms of the number of participants, the frequency
of change in object counts, and required bandwidth to upload the
frames where object count changes.

compared to Round-Robin because Vigil prioritizes those frames
across cameras that maximize the accuracy.

We gather more insight in to why Vigil results in higher accuracy
compared to a round-robin or a single camera approach. Figure 15
illustrates that Vigil’s accuracy increases with the number of cam-
eras up to the point where no blind spots are left uncovered. In
this example, two cameras provide a significant gain over a sin-
gle camera approach, but subsequently adding more cameras does
not improve performance, because Vigil already prioritizes those
frames which maximize accuracy.

5.2 Inter-cluster scheduling

In this section, we evaluate the accuracy of Vigil across multiple
clusters of cameras by using the inter-cluster traffic scheduling al-
gorithm (§3.3), examining to what extent the system can maintain
accuracy as wireless capacity becomes more and more scarce, and
more camera clusters contend on the same wireless bandwidth. We
compare the accuracy of Vigil’s inter-cluster traffic scheduling al-
gorithm to two approaches: an equal throughput allocation which
is a throughput-based fairness policy that gives equal throughput to
all the camera clusters such as in the case of Wi-Fi and an equal
time based allocation which is a time-based fairness policy. Note
that all approaches only upload the frames from the selected image
sequence sis of each ECN.

Methodology. We simulate a network of clusters of cameras that
contend over a shared wireless channel. We vary the wireless ca-
pacity of this shared channel from 1 Mbps to 20 Mbps to quantify
the ability of inter-cluster frame selection to alleviate congestion on
the shared wireless medium. We emulate different activity levels
by modeling the arrivals at each camera cluster by a Poisson arrival
process to emulate the traffic patterns from our real-world deploy-
ments, where an increasing rate A corresponds to higher activity
levels. We assume that each arriving person departs after a constant
dwell time. A single image in our experiments is 30 Kbytes, which
takes approximately 240 ms to upload at one Mbit/s. We choose
a Vigil-DRR quantum of 100 (seconds/object) so that Vigil-DRR
would transmit a three-object frame without cycling round the clus-
ters. We found that Vigil-DRR is not sensitive to our choice of
quantum. We simulate the system over a time period of approxi-
mately one hour.

We evaluate the accuracy of Vigil-DRR algorithm across multi-
ple clusters of cameras. In these experiments, we simulate a net-
work of ten clusters of cameras that contend over a shared wire-
less bandwidth where each cluster has two cameras. The number
of faces detected at each cluster is modeled by a Poisson arrival
process, where the rate of the Poisson arrival process A4 is set to
2.5 (objects/second) for low activity level, 5 (objects/second) for
medium activity level, and 12.5 (objects/second) for high activity
level. Note that while Vigil selects the most relevant frames from
two cameras in each cluster based on intra-cluster frame selection,
but the equal throughput and equal time approach assume one cam-
era per cluster for fair comparison of traffic scheduling.
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Figure 15: Vigil’s accuracy in a single-cluster surveillance network
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5.2.1 Equal wireless capacity

We first consider the scenario where the available wireless capac-
ity is same from each ECN to the controller in ten camera clus-
ter. Figure 16 shows the performance gains of Vigil-DRR as we
increase the shared wireless capacity at low, medium and high ac-
tivity levels. We observe that Vigil-DRR requires more wireless
bandwidth to achieve 100% accuracy at higher activity levels. In
this example, Vigil-DRR utilizes only 10 Mbit/s at low activity
level to achieve 100% accuracy for ten camera clusters, but at high
activity level, it achieves only 80% accuracy at bandwidths as high
as 20 Mbps. Further, we note that Vigil-DRR significantly out-
performs the equal throughput allocation and equal time alloca-
tion approach when the shared wireless capacity is not sufficient
because it prioritizes the frames with maximum object count, us-
ing the ops metric. In this example, Vigil-DRR achieves gains of
20-25% over the other two approaches at 5 Mbit/s in low activity
level and 10 Mbit/s in medium activity level. Finally, we note that
the equal throughput and equal time allocation approaches achieve
similar accuracy gains because the available wireless capacity is
same from each ECN to the controller.

5.2.2  Unequal wireless capacity

Now we consider a scenario where the available wireless capac-
ity from each ECN to the controller varies across ECNs. Fig-
ure 17 shows the performance gains of Vigil-DRR when the avail-
able wireless capacity from five clusters to ECN is C| and from the
other five clusters to ECN is C, in a network with ten clusters of
cameras. We first note that equal throughput allocation approach
penalizes the clusters with high wireless capacity C, to sacrifice

accuracy to ensure all clusters get equal throughputs. On the other
hand, equal time allocation approach ensures time-based fairness
allowing the clusters with high wireless capacity C, to upload more
frames than clusters with low capacity C;. But Vigil-DRR outper-
forms both these approaches in terms of accuracy for both the clus-
ters with low wireless capacity C; and high wireless capacity C;.
Further, the gap in accuracy between the high-capacity and low-
capacity clusters is much smaller for Vigil-DRR compared to equal
time allocation approach because of maximizing the ops metric.

5.3 Vision algorithm microbenchmarks

In this section, we evaluate the two vision algorithms Vigil uses:
face detection and a re-identification algorithm to associate faces
detected in overlapping camera views.

5.3.1 Fuace detection

This evaluation answers two questions: first, how accurate is the
Haar-cascade-classifier-based face detection algorithm used in our
system? Second, in terms of that accuracy, what is the impact of
various video compression schemes on system bandwidth savings?
‘We compare two state-of-the-art video compression algorithms, M-
JPEG and MPEG-4, to determine which fits the design of Vigil best.

Methodology. We use a single camera to record five-minute video
traces at two different resolutions. Each trace contains about 7,000
images. Two people arrive and departed randomly in the scene, fac-
ing the camera. The distance of the subjects to the camera ranges
from two to eight meters. The ground-truth person count is estab-
lished by visual confirmation. We compress the frames with differ-
ent state-of-the-art compression algorithms at different levels, and
then apply a face detection algorithm on the compressed images to
understand the tradeoff of accuracy and bandwidth required.

Results. Figure 18 shows a scatter plot of bandwidth required as
the accuracy of the face detection vision algorithm increases. For
each video compression algorithm, the accuracy of the face detec-
tion increases when it is compressed less because of low informa-
tion loss. Here Vigil-crop applies M-JPEG compression only on
the cropped faces in an image (by replacing the image background
with a single RGB color). We observe that Vigil-crop outperforms
M-JPEG compression without object cropping by 2-5x in band-
width savings. It even outperforms the state-of-the-art MPEG-4 al-
gorithm by a factor of two in bandwidth savings for the same accu-
racy. We therefore choose M-JPEG algorithm with object cropping
in Vigil. Further, we note that Vigil allows a wide accuracy and
bandwidth tradeoff compared to MPEG-4. This is because MPEG-
4 applies delta-based frame compression, which either removes all
the details in intermediate frames, or have to keep most of the re-
dundant information.
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Figure 19: CDF of the distance / between two people’s faces and
the projection errors e when mapped from one camera view to an-
other (illustrated in Figure 7(b)).

5.3.2  Object re-identification

We evaluate the accuracy of the re-identification algorithm described
in Section 3.2.2. This section addresses the question of how well
Vigil can tag faces in overlapping camera views as to the same per-
son.

Methodology. In this experiment, two cameras synchronously log
video traces at four indoor locations, where each trace consists of
300 images with the faces of same two people detected at differ-
ent locations. The two cameras have a partially overlapping view
as illustrated in Figure 7. The re-identification algorithm projects
the faces detected at the first camera onto the corresponding images
captured by the second camera. It then calculates the distance be-
tween the projection and the faces detected at the second camera,
which is the projection error e in Figure 7(b). This projection error
is then compared to the distance / between the two people’s faces
detected in the same camera view.

Results. Figure 19 shows the CDF of the projection error e and
the distance / between different faces of all the images at each cap-
tured location. We observe that the maximum projection error e is
89 pixels at these locations, and is much lower than / for most of
the cases. Thus, we use this maximum e as the threshold of as-
sociating projected faces in our implementation. (§ 3.2.2), which



Resolution Face detection Re-identification Compression
320 x 240 32ms 2ms 13ms
640 x 480 80ms 2ms 15ms

Table 2: Average processing delay of different vision analytic
functions in Vigil using a laptop with a 2.4GHz dual-core CPU.

can lead to >98.1% re-identification accuracy at all the measured
locations. The maximum projection error can be obtained by run-
ning this experiment as part of the camera calibration process. The
threshold value, set during calibration process, is useful for a long
period of time for static cameras. Finally, our current algorithm
can fail to distinguish unique objects that are densely located (e.g.,
within <89 pixel). In such a scenario, we may revert back to the ba-
sic intra-cluster scheduling by picking the maximum object counts
from all the ECNs. Enabling Vigil to dynamically switch between
different scheduling algorithms remains as our future work.

Finally, Table 2 summarizes the processing delay of running dif-
ferent vision analytic functions of Vigil on a standard laptop. The
latency is measured based on our video traces at two different res-
olutions. We observe a low latency of <80ms for all the process-
ing functions, which enables Vigil to promptly capture objects in
highly dynamic scenes.

5.4 Area coverage

The following back-of-the-envelope calculation shows that Vigil
can achieve significant area coverage gains over systems that stream
MPEG-4 video. Assuming that we cluster cameras in groups of
four covering a 100 sq. ft. area per cluster, each camera covers
an amortized 25 sq. ft. area. Assuming an available capacity of
20 Mbit/s, the status quo approach of deploying a camera stream
1 Mbit/s video (a typical MPEG-4 rate) will support 20 cameras,
for a total coverage area of 500 sq. ft. But referring to Table 1, we
see that the bandwidth a low activity scene actually requires is only
on the order of 10 Kbit/s, while a high activity scene requires ap-
proximately 200 Kbit/s. So Vigil can function at data rates ranging
from 40-800 Kbit/s per cluster, resulting in 500 clusters for low ac-
tivity and 25 clusters for high activity. Consequently, Vigil covers
between 2,500 sq. ft. and 50,000 sq. ft, resulting in a coverage gain
of between 5x and 200x over status quo video streaming.

6. RELATED WORK

We delineate Vigil from prior work in the following three cate-
gories, i.e., cloud-based video surveillance systems, vision analytic
algorithms, and video compression algorithms.

Cloud-based video surveillance systems. Many of “smart” sur-
veillance systems today such as Dropcam [8]) rely on a wired net-
work to upload camera feed to the cloud for vision analysis. A
similar architecture has been explored in early research prototypes
like IrisNet [9], Bolt [11], and S3 [29] aiming to coordinate cam-
era sensors at a large scale. While existing systems manage to
address various scalability challenges in computation and storage,
their wired backhauls lead to high deployment cost and low flexibil-
ity in providing pervasive surveillance. To address this limitation,
Vigil has explored a wireless video surveillance design, while lever-
aging specific scheduling techniques combined with edge comput-
ing technology to conserve wireless bandwidth.

Another line of work [12,23]) aims to reduce the latency of up-
loading data to the cloud, by partitioning computation tasks be-
tween mobile sensors and the cloud. Odessa [23] supports inter-
active perception applications by dynamically offloading parts of
computation tasks from mobile devices to the cloud. A recent sys-

tem Gabriel [12] targets a similar class of augmented reality ap-
plications based on a cloudlet architecture, which comprises com-
putation devices located at the edge of network to reduce network
latency. In contrast to prior systems, Vigil focuses on an orthog-
onal problem of wireless bandwidth limitation, and tackles it with
various scheduling algorithms among multiple ECNs.

Dao et al. [5] present a framework that suppresses uploading of
redundant images from smartphones based on feature matching al-
gorithms run on thumbnails of candidate images to be uploaded.
Hu et al. [14] make a case for offload shaping, using image metrics
such as focus, blur detection, and similarity of successive frames.
These systems, developed in parallel with Vigil, differ from our
work because they make uploading decisions solely on image sim-
ilarity rather than the presence of objects in a user’s query. In ad-
dition, Vigil advances the state-of-the-art by using re-identification
algorithms running on images from multiple simultaneous cameras
and schedules the uploads to match the network conditions as well
as the dynamics of the scene.

Vision analytic algorithms. A large body of prior work has lever-
aged vision algorithms for different applications. For example,
Gabriel [12] and Glimpse [13] use a Harr Cascade classifier for
face detection. CarSafe [32] and WalkSafe [31] use SIFT based
object detection algorithms to detect cars and lanes on the road.
Finally, InSight [30] aims to detect clothing patterns by applying
Wavelets transformation on the distribution of color pixels. Vigil
is different from this prior work, and can give additional gains by
leveraging these advanced vision algorithms to make better sched-
uling decisions.

Video compression algorithms. Motion JPEG (M-JPEG) [1] and
MPEG-4 (H.264) [2] are two popular techniques for video com-
pression. We choose M-JPEG in Vigil because it offers a wide
range of trace between accuracy and image size (§5.3.1). It also
allows the controller to decode each image independently, without
waiting for other images in the same group to arrive. This effec-
tively reduces the end-to-end latency of surveillance applications
in a lossy wireless network.

Generally, video compression techniques are orthogonal to Vigil
as they rely on redundancy between frames to compress the video
stream. By sending only changes that maximize objects per second
delivered to the cloud, Vigil removes that redundancy, reducing
the efficacy of change-based video compression. State-of-the-art
video compression standards like MPEG-4 and H.264 use object
segmentation to identify moving objects in each frame of a video
sequence [26] and cross-frame compression to eliminate the redun-
dant image portions, e.g., background scenery.

The re-identification algorithms we study are part of a family of
algorithms that measure image similarity. Other algorithms include
perceptual hashing techniques that encode image properties onto
strings of bits [16, 19].

7. DISCUSSION

In this section we discuss various the design points of Vigil with
the full hindsight of the previous sections.

Required compute resources at edge compute node. Recent
trends in vision are moving toward smart cameras, thereby enabling
face recognition, motion detection, and other vision tools to be im-
plemented to an increasing extent in hardware [10, 20,28]. Conse-
quently, simple embedded platforms with 500 MHz-1 GHz CPU
are sufficient to implement the vision analytic functions at ECNs.

Amount of ECN-local storage. The local storage at ECN retains
video frames captured close in time to significant events in the



video stream. MPEG-4 video at sufficient resolution for our ap-
plication (320 x 200 or above) consumes a maximum bit-rate of
between 384 and 8,000 Kbit/second (172 to 3,600 Mbytes/hour),
depending on the encoding rate. The price of hard drive storage has
been rapidly falling over the years, reaching USD 0.03/gigabyte in
recent months [18], pricing the local storage between 'z and five
US cents per hour for MPEG-4 video. Based on these figures, we
expect the incremental cost for including storage for most queries
requires less than USD 1.00 per ECN, adding a negligible cost to
the overall bill.

Cost of distributed processing. Deploying ECNs together with
cameras can inevitably increase the infrastructure cost. However,
when wireless capacity is limited, the saved bandwidth by Vigil
can be used to forward users’ traffic, thereby recouping the cost of
ECNs. To further reduce the cost, we envision that multiple cam-
eras can connect to a single ECN to upload vision analytic func-
tions of each connected camera to the controller. But this leads
higher contention on the wireless medium between camera nodes,
and hence, a more complex design of scheduling algorithms that
we plan to address in future work.

Hybrid hotspot functionality. The hybrid camera-hotspot func-
tionality can subsidize the cost of a droplet. With the cost of a
camera in the range of USD 5-10, ECNs can become ubiquitous.

Choice of an object count-based metric. In Section 3.1 we mo-
tivated the use of an object count-based metric (frameUtility)
for Vigil. We choose an object count-based metric in our design
because it is a good first order approximation to frame value in a
vast number of surveillance applications such as object identifica-
tion and tracking. Also, our design is general enough to support any
utility function by letting the controller push the utility function to
the edge compute node. Therefore, the definition of utility can be
modified based on the specific surveillance function performed by
the system.

8. CONCLUSION

We began this work with the goal of investigating the feasibility
of building a scalable wireless surveillance system, and to that end
we built the Vigil system. In the process of building Vigil, we dis-
covered several interesting design points, introducing the ops met-
ric to maximize the number of query-specified objects uploaded to
the cloud, and using clusters to add redundancy to camera views
of a scene. We built and deployed Vigil in three different loca-
tions, and with this deployment experience our conclusion is that
a system like Vigil is sufficient for most but not all surveillance
use cases, but it is especially good for situations where the scene
changes are infrequent. Experimental results show that Vigil al-
lows a video surveillance system to support a geographical area
of coverage between five and 200 times greater than an approach
that simply streams video over the wireless network. For a fixed
region of coverage and bandwidth, Vigil outperforms the default
equal throughput allocation strategy of Wi-Fi by delivering up to
25% more objects relevant to a user’s query. We are currently pur-
suing future work to even further increase Vigil’s utility.
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