
Classes for the Masses (Extended Abstract)
Claudio Russo

(Microsoft Research)
Matt Windsor

(University of York)

Don Syme
(Microsoft Research)

Rupert Horlick
(University of Cambridge)

James Clarke
(University of Cambridge)

ABSTRACT
Type classes are an immensely popular and productive fea-
ture of Haskell. They have since been adopted in, and
adapted to, numerous other languages, including theorem
provers. We show that type classes have a natural and ef-
ficient representation in .NET that paves the way for the
extension of F#, C# and other .NET languages with type
classes. Our encoding is type preserving and promises easy
and safe cross-language inter-operation. We have extended
the open source C# compiler and language service, Roslyn,
with pervasive support for type classes and have prototyped
a more minimalist design for F#.

1. INTRODUCTION
Haskell’s type classes [10, 11] are a powerful abstraction

mechanism for describing generic algorithms applicable to
types that have different representations but common inter-
faces. A type class is a predicate on types that specifies a set
of required operations by their type signatures with optional,
default code. A type may be declared to be an instance of a
type class, and must supply an implementation for each of
the class’ operations. Type classes may be arranged hierar-
chically, permitting subsumption and inheritance.

Many modern languages have adopted features inspired
by type classes, with different implementation techniques.
Scala has implicits[9], implicit method arguments denoting
dictionaries, that are inferred by the compiler but repre-
sented, at run-time, as additional heap-allocated arguments
to methods (with commensurate overhead). C++ came very
close to adopting concepts[7], a rather different extension
of the template mechanism, directly inspired by Haskell’s
type classes but enforcing compile-time code specialization
for performance. Rust has traits[3]. Swift has protocols[4].

Contribution We describe a simple encoding that allows
us to add type classes to any .NET language, allowing in-
teroperable definitions of type classes. Our encoding relies
on the CLR’s distinctive approach to representing and com-
piling generic code[8, 12]. Unlike, for example, the JVM,
the CLR byte-code format is fully generic (all source level
type information, including class and method type parame-
ters, are represented in the metadata and virtual instruction
set). Parameterized code is JIT-compiled to type passing
code, with type parameters having run-time representations
as (second-order) values. The JIT compiler uses the rei-
fied types to generate specialized memory representations
(for instantiated generic types) and specialized (and thus
more efficient) code for generic methods. For example, scalar
types and compounds of scalars called structs have natural
unboxed representations familiar to C(++) programmers;
generic array manipulating code will manipulate array el-
ements without boxing when instantiated at scalar types.
This run-time specialization allows the JIT to avoid the

uniform (i.e. lowest-common-denominator) representations
adopted by many implementations of ML, Haskell, the JVM
and most dynamic languages.

Haskell compilers typically compile type classes using the
so-called dictionary translation. The translation, guided
by source types, inserts evidence terms that justify type
class constraints. The evidence terms are dictionaries (i.e.
records) of functions that provide implementations (and thus
proofs) for all of the constraint’s methods. Although simi-
lar to object-oriented virtual method tables, dictionaries are
not attached to objects, but passed separately as function
arguments. Because type classes are resolved statically, ag-
gressive in-lining can remove most, but not all, indirection
through dictionary parameters. This leads to efficient code
with fewer indirect calls and leaner representations of values
than full-blown objects. Objects, in contrast, must lug their
method-tables wherever they go.

Given the obvious similarity between type passing and dic-
tionary passing, it is perhaps not surprising that type pass-
ing forms an excellent implementation technique for Haskell’s
dictionary passing. This talk will give on overview of the
technique that we are applying to provide efficient, inter-
operable type class implementations to both C# and F#.

2. THE REPRESENTATION
This section sketches our representation of the Haskell’98

type classes on .NET by example. For each example, we give
the Haskell code, underlying .NET code in vanilla C#, and
proposed F# syntax. We use vanilla C# as a more readable
proxy for .NET intermediate bytecode and metadata.

Type Classes A Haskell type class, for example:

class Eq a where
(==) :: a -> a -> Bool

is naturally represented in C# as:

interface Eq<A> { bool Equal(A a, A b); }

For F#, we use a Trait-attributed interface declaration:

[<Trait>]
type Eq<’A> = (* an interface *)
abstract equal: ’A -> ’A -> bool

Haskell Overloads Haskell’s declaration of class Eq a

implicitly declares its members as overloaded operations:

(==) :: (Eq a) => a -> a -> Bool

Observe that the overloaded operation has a more general
constrained type (Eq a) =>....

This generic operation is captured in C# by the method:

static bool Equal<A,EqA>(A a, A b) EqA: struct, Eq<A>
=> default(EqA).Equal(a, b);

This method has not one, but two, type parameters. The
first, A, is just the type parameter from the declaration. The

second, EqA, is a type parameter that is constrained to be
a struct and is evidence for the constraint that A supports
interface Eq<A>.

The use of the struct constraint on EqA is significant and
subtle. Structs are stack-allocated so essentially free to cre-
ate, especially when they contain no fields. Moreover, every
struct type, including a type parameter T of kind struct, has
a default (all-zero) value denoted by expression default(T).
Invoking a method on a default value of reference type would
simply raise a null-reference exception because the receiver
is null. However, methods on structs (including interface
methods) can always be properly invoked by calling the
method on the struct’s default value.

Thus an operation over some class can be represented as a
static generic method, parameterized by an additional dic-
tionary type parameter (here EqA). Derived operations with
type class constraints can be represented by generic methods
with suitably constrained type parameters. Finally, Haskell
dictionary values correspond to C# dictionary types.

For F#, we do not overload a top-level Equal binding
but, instead, allow qualifed access to trait members (e.g.
Eq.equal), as in:

let equal = Eq.equal (* defines overloaded equal *)

Instances A Haskell instance declaration is represented
by the declaration of an empty (field-less) .NET struct that
implements the associated type class (itself an interface).
This gives us a cheap representation of Haskell instances.

For example, the Haskell instance declaration:

instance Eq Integer where
x == y = x ‘integerEq‘ y

can be represented by the C# structure:

struct EqInt : Eq<int>
{ public bool Equal(int a, int b) => a == b; }

For F#, we use a Witness-attributed struct declaration:

[<Witness>]
type EqInt = (* a struct *)
interface Eq<int> with member equal a b = a = b

Note that the F# syntax, unlike Haskell, names the in-
stance as in the C# representation. In Haskell, instances are
anonymous but names are useful for explicit disambiguation
and interoperation with languages that cannot always rely
on type argument inference (such as C#).

Derived Instances This Haskell code defines a family
of derived instances: given an equality type a, it defines
equality over lists of a.

instance (Eq a) => Eq ([a]) where
nil == nil = true
a:as == b:bs = (a == b) && (as == bs)

_ == _ = false

We can represent such a Haskell parameterized instance
as a generic struct:

struct EqList<A, EqA> : Eq<List<A>>
where EqA : struct, Eq<A> {
public bool Equal(List<A> a, List<A> b) =>

(a.IsNull && b.IsNull)
|| (a.IsCons && b.IsCons

&& default(EqA).Equal(a.Head,b.Head)
&& Equal(a.Tail,b.Tail)); }

This struct implements the interface Eq<List<A>>, but only
when instantiated with a suitable type argument and ev-
idence for constraint Eq<A>. Notice that EqList has, once

again, an additional evidence type parameter EqA for con-
straint Eq<A>. Instantiations of the generic struct EqList<->,
in turn, construct evidence for Eq<List<A>>.

For F# we use a parameterized Witness-declaration:

[<Witness>]
type EqList<’A,’EqA when ’EqA :> Eq<’A>> = (* a struct *)
interface Eq<’A list> with
member equal a b = match a,b with
| a::l,b::m -> Eq.equal a b && Eq.equal l m
| [],[] -> true | _,_ -> false

Other features We do not have space to describe the
representations of other features but suffice to say that we
can encode [5]: type class operations that themselves have
constrained types in their signatures (using interface meth-
ods that are generic); type class hierarchies using interface
inheritance; default operations using shared static methods;
instances requiring polymorphic recursion; instances as data
(to constrained term constructors) and multi-parameter type
classes. Moreover, choosing to provide named rather than
anonymous instances would allow us to selectively support
explicit as well as implicit evidence when preferable. We
cannot support higher-kinded type classes (like Monad), be-
cause .NET lacks higher-kinded abstraction. First-order as-
sociated types are in reach. For C#, evidence inference is
a mild generalization of type argument inference, with in-
stantiations derived from the pervasive and locally assumed
concept hierarchy. For F#, we have adapted Haskell’s more
elaborate techniques for propagating inferred type class con-
straints, by extension of F#’s existing constraint system.

Implementations We prioritized our efforts on design-
ing and implementing type classes for C# in a fork[1] of
Microsoft’s open source Roslyn compiler[2], adopting a ded-
icated syntax loosely inspired by C++ concepts[7]. The
F# design and implementation [6] was the result of a 3-
day hackathon aiming for a minimal viable product (with
suboptimal syntax). Performance results are promising - we
anticipated .NET’s code specialization to turn virtual calls
to dictionary members into direct calls, but the JIT exceeded
expectations and aggressively inlined those calls. The JIT
failed to eliminate dictionary arguments that became dead
after inlining; hoist dictionary allocations out of loops or do
CSE on dictionary values. Fortunately, the latter two are
suitable compiler optimizations.

[1] Roslyn concepts fork,
https:// github.com/CaptainHayashi/ roslyn.

[2] Roslyn https:// github.com/dotnet/ roslyn.

[3] Rust traits https:// doc.rust-lang.org/ book/ traits.html .
[4] Swift https:// swift.org.
[5] https:// github.com/CaptainHayashi/ roslyn/ blob/master/

concepts/ docs/ concepts.md .
[6] https:// github.com/CaptainHayashi/ visualfsharp/ tree/

hackathon-vs.
[7] D. Gregor, J. Järvi, J. Siek, B. Stroustrup, G. Dos Reis,

and A. Lumsdaine. Concepts: Linguistic support for
generic programming in c++. OOPSLA ’06, pages 291–310.

[8] A. Kennedy and D. Syme. Design and Implementation of
Generics for the .NET Common Language Runtime. PLDI
’01, pages 1–12.

[9] B. C. Oliveira, A. Moors, and M. Odersky. Type classes as
objects and implicits. OOPSLA ’10, pages 341–360, 2010.

[10] S. Peyton Jones. Haskell 98 language and libraries : the
revised report. Cambridge University Press, May 2003.

[11] P. Wadler and S. Blott. How to make ad-hoc polymorphism
less ad hoc. POPL ’89, pages 60–76.

[12] D. Yu, A. Kennedy, and D. Syme. Formalization of
Generics for the .NET Common Language Runtime. POPL
’04, pages 39–51.

https://github.com/CaptainHayashi/roslyn
https://github.com/dotnet/roslyn
https://doc.rust-lang.org/book/traits.html
https://swift.org
https://github.com/CaptainHayashi/roslyn/blob/master/concepts/docs/concepts.md
https://github.com/CaptainHayashi/roslyn/blob/master/concepts/docs/concepts.md
https://github.com/CaptainHayashi/visualfsharp/tree/hackathon-vs
https://github.com/CaptainHayashi/visualfsharp/tree/hackathon-vs

	Introduction
	The Representation

