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Abstract—The record layer is the main bridge between TLS
applications and internal sub-protocols. Its core functionality
is an elaborate form of authenticated encryption: streams
of messages for each sub-protocol (handshake, alert, and
application data) are fragmented, multiplexed, and encrypted
with optional padding to hide their lengths. Conversely, the sub-
protocols may provide fresh keys or signal stream termination
to the record layer.

Compared to prior versions, TLS 1.3 discards obsolete
schemes in favor of a common construction for Authenticated
Encryption with Associated Data (AEAD), instantiated with
algorithms such as AES-GCM and ChaCha20-Poly1305. It
differs from TLS 1.2 in its use of padding, associated data
and nonces. It also encrypts the content-type used to multiplex
between sub-protocols. New protocol features such as early
application data (0-RTT and 0.5-RTT) and late handshake
messages require additional keys and a more general model
of stateful encryption.

We build and verify a reference implementation of the
TLS record layer and its cryptographic algorithms in F?,
a dependently typed language where security and functional
guarantees can be specified as pre- and post-conditions. We
reduce the high-level security of the record layer to crypto-
graphic assumptions on its ciphers. Each step in the reduction
is verified by typing an F? module; for each step that involves
a cryptographic assumption, this module precisely captures the
corresponding game.

We first verify the functional correctness and injectivity
properties of our implementations of one-time MAC algorithms
(Poly1305 and GHASH) and provide a generic proof of their
security given these two properties. We show the security of
a generic AEAD construction built from any secure one-time
MAC and PRF. We extend AEAD, first to stream encryption,
then to length-hiding, multiplexed encryption. Finally, we build
a security model of the record layer against an adversary
that controls the TLS sub-protocols. We compute concrete
security bounds for the AES_128_GCM, AES_256_GCM,
and CHACHA20_POLY1305 ciphersuites, and derive recom-
mended limits on sent data before re-keying.

We plug our implementation of the record layer into the
miTLS library, confirm that they interoperate with Chrome
and Firefox, and report initial performance results. Combining
our functional correctness, security, and experimental results,
we conclude that the new TLS record layer (as described in
RFCs and cryptographic standards) is provably secure, and
we provide its first verified implementation.

I. INTRODUCTION

Transport Layer Security (TLS) is the main protocol
for secure communications over the Internet. With the fast
growth of TLS traffic (now most of the Web [48]), numerous
concerns have been raised about its security, privacy, and
performance. These concerns are justified by a history of
attacks against deployed versions of TLS, often originating
in the record layer.

History and Attacks Wagner and Schneier [49] report
many weaknesses in SSL 2.0. The MAC construction offers
very weak security regardless of the encryption strength. The
padding length is unauthenticated, allowing an attacker to
truncate fragments. Stream closure is also unauthenticated;
although an end-of-stream alert was added in SSL 3.0,
truncation attacks persist in newer TLS versions [12, 44].

The original MAC-pad-encrypt mode is not generically
secure [31] and is brittle in practice, despite encouraging
formal results for specific algorithms [2, 11, 39]. Many
padding oracle attacks have surfaced over the years, ranging
from attacks exploiting straightforward issues (such as im-
plementations sending padding error alerts after decryption)
to more advanced attacks using side channels [1, 37].
Although well understood, padding oracle attacks remain
difficult to prevent in TLS implementations [45]. The CBC
mode of operation is also not secure against chosen-plaintext
attacks when the IV is predictable (as in TLS 1.0), which
is exploited in the BEAST attack [20]. Random explicit
IVs [15] and CBC mode for 64-bit block ciphers [10]
are also vulnerable to birthday attacks. Finally, fragment
compression can be exploited in adaptive chosen-plaintext
attacks to recover secrets [40].

Even with provably-secure algorithms, functional cor-
rectness and memory safety are essential, inasmuch as
implementation bugs can easily nullify security guarantees.
For instance, the OpenSSL implementation of ChaCha20-
Poly1305 has been found to contain arithmetic flaws [14]
and more recently, a high severity buffer overflow vulnera-
bility [47].

Changes in TLS 1.3 The IETF aims to robustly fix the
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Figure 1. Multiplexing of sub-protocol streams by the record layer,
depicting a TLS 1.3 draft-19 0-RTT handshake with re-keying.

weaknesses of the record layer by adopting a single AEAD
mode for all ciphersuites, thus deprecating all legacy modes
(MAC-only, MAC-pad-encrypt, RFC 7366 [26] encrypt-
then-MAC, compress-then-encrypt). The new AEAD mode
is designed to be provably-secure and modular, supporting
algorithms such as AES-GCM, AES-CCM, and ChaCha20-
Poly1305 within the same framework. The usage of AEAD
has also been improved: authentication no longer relies
on associated data, whereas implicit nonces derived from
initialization vectors (IV) and sequence numbers yield better
security and performance.

What is the Record Layer? TLS involves establishing
and using many encryption keys. In the key exchange
literature, a common viewpoint is to treat each key generated
in the handshake as belonging to a specific, independent
application. Under this model, the handshake encryption key
is used only by the handshake to encrypt its own messages,
and must be separate from the application data key used
only to encrypt application data fragments. This model does
not fit the actual use of keys in TLS: it fails to capture TLS
1.2 renegotiation (where handshake messages are interleaved
with the application data stream), TLS 1.3 post-handshake
authentication and re-keying, or even alerts in any TLS
version. In our modularization of TLS, following Bhargavan
et al. [11], we consider that each sub-protocol of TLS—
handshake, change cipher spec (CCS), alert and application
data (AppData)—defines its own data stream. The role of
the record is to multiplex all of these streams into one,
corresponding to network messages after fragmentation,
formatting, padding, and optional record-layer encryption.
Under this model, the record layer is the exclusive user for
all non-exported keys generated by the handshake, and there
is no need to assign keys to any given sub-protocol stream.

Figure 1 illustrates the stream multiplexing for a TLS
1.3 connection with 0-RTT data and one re-keying from the
point of view of the client. Separate channels are used for
writing and reading. Within each channel, a band in the
figure represents a stream, and arrows represent message
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Figure 2. Modular structure of our proof. Green arrows denote security
reductions proved by typing.

fragments (incoming for left arrows, outgoing for right
arrows) over time (flowing from left to right). Dashed arrows
represent fragments used to signal key changes to the record
layer. In TLS 1.2, CCS messages signal key changes; in TLS
1.3 this function is taken over by handshake messages.

Related Work Since the first draft of TLS 1.3 in April
2014, the handshake and key schedule have undergone
significant analysis efforts [17, 18, 23, 28, 29, 32] as their
design evolved over 19 iterations (at the time of writing). In
contrast, few authors have analyzed changes to the record
layer: Fischlin et al. [22] and Badertscher et al. [3] analyze
an early draft that did not feature many of the current
changes (for instance, it still relied on associated data to
authenticate record meta-data), and Bellare and Tackmann
[7] specifically focus on the way nonces are derived from
IVs. This focus on the handshake protocol may be explained
by the difficulty of analyzing the record independently of the
handshake, and more generally, of defining the precise scope
of its functionality. Authenticated and Confidential Channel
Establishment (ACCE) [27, 33] is a game-based model that
combines the handshake and the record protocols. While
ACCE models capture complex features of TLS 1.2 such as
renegotiation [25], its focus is primarily on the handshake,
and it is unclear how to capture features such as post-
handshake authentication [19]. Other limits of ACCE models
are discussed in [3].

Our contributions We provide a reference implementation
of the TLS record layer and its underlying cryptographic
algorithms using the F? programming language. We define
security as an indistinguishability game and show a reduc-
tion with concrete bounds (Table I) for any distinguisher
to standard, low-level cryptographic assumptions. Our proof
structure is depicted in Figure 2; from the bottom up:



1) We build a generic library for one-time message au-
thentication codes (MAC) based on the Wegman-Carter-
Shoup construction. We implement the GHASH and
Poly1305 algorithms, and we prove the functional correct-
ness (with regards to mathematical specifications), memory
safety, and encoding injectivity of the resulting low-level
code (§III). Similarly, we build a library for pseudo-random
functions (PRF), and provide functionally-correct, memory-
safe implementations for AES and ChaCha20 (§IV). We
express the security guarantees of these libraries using cryp-
tographic idealizations backed by game-based assumptions.

2) We describe a generic AEAD construction that
captures both RFC 5288 [41] for AES-GCM (as de-
scribed in NIST SP800-38D [21]) and RFC 7539 [38] for
ChaCha20-Poly1305 through an interface compatible with
RFC 5116 [36]. We show that this construction satisfies a
standard notion of AEAD security (§V) that combines in-
distinguishability under chosen-plaintext attacks (IND-CPA)
with ciphertext integrity (INT-CTXT). Our proof applies to
our F? implementation and, based on the idealizations of
our two libraries, is verified by typing—as are the following
three steps:

3) From AEAD, we build and verify stream encryption,
which uses AEAD nonces and record sequence numbers
according to the TLS version-specific format (§VI).

4) From stream encryption, we build a length-hiding
encryption interface by adding padding, the TLS-specific
content type multiplexing, and version-specific associated
data (§VII).

5) From length-hiding stream encryption with multiplex-
ing, we implement the TLS record layer by adding interfaces
to the handshake and alert sub-protocols that extend streams
to sequences of streams by installing and enabling keys
(§VIII). This captures novel protocol features of TLS 1.3
such as early application data (0-RTT and 0.5 RTT), late
handshake messages, and re-keying. Based on our security
bound, we propose a re-keying strategy that compensates for
potential weaknesses in AES-GCM.

6) We evaluate our implementation of the TLS record
layer (§IX) by linking our AES-GCM and ChaCha20-
Poly1305 ciphersuites to the handshake implementation of
miTLS [11]. We confirm network interoperability with other
TLS libraries both for TLS 1.2 and TLS 1.3 draft-14 and
draft-18. Our code and formal development maximize reuse
between TLS 1.2 and 1.3.

Additional Materials An extended version of this pa-
per with additional details and proofs of the results in
§III, §IV, and §V is available from a companion website
https://project-everest.github.io/record/. This website also
provides links to online repositories that include all verified
code we report on in the paper, as well as instructions on
how to verify, extract and run the code.

II. COMPOSITIONAL VERIFICATION BY TYPING

To implement and verify the record layer, we adopt a compo-
sitional approach to functional correctness and cryptographic
security based on F? [46], a dependently-typed program-
ming language. This section explains our approach on two
examples: arithmetic in a prime field for the Poly1305
algorithm, and basic authenticated encryption. We refer the
reader to Fournet et al. [24] for a general presentation of our
approach and Barthe et al. [4] for a probabilistic semantics
of F? and additional cryptographic examples.

We use F? not only to implement cryptographic con-
structions, but also as the formal syntax for their game-
based security definitions. This is akin to the approach
taken by Bhargavan et al. [13] in their proof of a TLS
1.2 handshake implementation using F7, an ancestor of F?.
In contrast to F7, F? supports an imperative programming
style that is closer to pseudo-code used by cryptographers in
code-based games [5]. For most of the paper, we use such
pseudo-code instead of more precise and verbose F? code.
We do not assume familiarity with F? and elide details of
its syntax, such as type annotations, that are not relevant for
the developments in this paper.

Functional Correctness of Poly1305 As a first example in
F? syntax, we specify arithmetic in the field GF (2130 − 5)
for the Poly1305 MAC algorithm as follows:

let p = 2^130 − 5 (∗ the prime order of the field ∗)
type elem = n:nat {n < p} (∗ the type of field elements ∗)
let x +@ y : Tot elem = (x + y) % p (∗ field addition ∗)
let x ∗@ y : Tot elem = (x ∗ y) % p (∗ field multiplication ∗)

This code uses F? mathematical (unbounded) natural num-
bers to define the prime order p of the field and the type
of field elements. (The formula {n < p} line 2 states that
this type is inhabited by natural numbers n smaller than p.)
The code also defines two infix operators +@ and ∗@ for
addition and multiplication in the field, relying on primitive,
unbounded integer arithmetic. Their result is annotated with
types Tot elem, to indicate that these operations are pure
total functions that return field elements. Hence, the F?

typechecker automatically checks that their result is in the
field; it would report an error if e.g. we omitted the reduc-
tion modulo p. These operations are convenient to specify
polynomial computations (see §III-B) but highly inefficient.

Instead, typical 32-bit implementations of Poly1305 rep-
resent field elements as mutable arrays of 5 unsigned 32-bit
integers, each holding 26 bits. This low-level representation
evenly spreads out the bits across the integers, so that
carry-overs during arithmetic operations can be delayed. It
also enables an efficient modulo operation for p. We show
below an excerpt of the interface of our lower level verified
implementation, relying on the definitions above to specify
its correctness.



abstract type repr = buffer UInt32.t 5 (∗ 5-limb representation ∗)
val select: memory → r:repr → Tot elem (∗ current value held in r ∗)
val multiply: e0:repr → e1:repr → ST unit

(requires live e0 ∧ live e1 ∧ disjoint e0 e1)
(modifies e0)
(ensures select e0′ = select e0 ∗@ select e1)

The type repr defines the representation of field elements
as F? buffers (i.e., mutable arrays) of 5 32-bit integers. It
is marked as abstract, to hide this representation from the
rest of the code. Functions are declared with a series of
argument types (separated by → ) ending with a return type
and an effect (e.g. Tot or ST). Functions may have logical pre-
and post-conditions that refer to their arguments, their result,
and their effects on the memory. If they access buffers, they
typically have a pre-condition requiring their caller to prove
that the buffers are ‘live’ in the current memory (that is, they
have been allocated and haven’t been de-allocated yet) and
they also explicitly state which buffers they modify.

The total function select is used only in specifications; it
reads the value of an element from the program memory. We
use it, for example, in the stateful specification of multiply.
In the types above, we keep the memory argument implicit,
writing select e0 and select e0′ for the values of e0 in initial
and final memories, respectively. (In real F? code, pre- and
post-conditions take these memories as explicit arguments.)

The multiply function is marked as ST, to indicate a stateful
computation that may use temporary stack-based allocations.
It requires that its arguments e0 and e1 be live and disjoint;
it computes the product of its two arguments and overwrites
e0 with the result. Its post-condition specifies the result in
terms of the abstract field multiplication of the arguments.

Implementing and proving that multiply meets its mathe-
matical specification involves hundreds of lines of source
code, relying on a custom Bignum library with lemmas on
integer representations and field arithmetic (see §IX). Such
code is easy to get wrong, but once F? typechecks it, we
are guaranteed that our low-level code is safe (e.g. it never
accesses buffers out of bound, or de-allocated buffers) and
functionally correct (since their results are fully specified).
All F? types and specifications are then erased, so that the
compiled code only performs efficient low-level operations.

Authenticated Encryption: Real Interface Let us consider
a simplified version of the authenticated encryption (AE)
functionality at the core of the TLS record layer. In F?, we
may write an AE module with the following interface:

val `p: nat
val `c: nat
type lbytes (`:nat) = b:bytes{length b = `}
type bbytes (`:nat) = b:bytes{length b ≤ `}
type plain = lbytes `p
type cipher = lbytes `c
abstract type key
val keygen: unit → ST key
val decrypt: key → cipher → Tot (option plain)
val encrypt: k:key → p:plain → ST (c:cipher{decrypt k c = Some p})

Plaintexts and ciphertexts are represented here as im-
mutable bytestrings of fixed lengths `p and `c. We frequently
rely on type abbreviations to statically enforce length checks
for fixed-length bytestrings using lbytes `, and for bounded-
length bytestrings using bbytes `. (Our presentation uses
immutable bytestrings for simplicity, whereas our record-
layer implementation also uses mutable buffers of bytes.)

Next, our interface defines an abstract type key; values
of this type can only be generated via keygen and accessed
via encrypt and decrypt. The internal representation of keys is
hidden from all other modules to protect their integrity and
secrecy. The function keygen needs to generate randomness
by calling an effectful external function; so we give this
function the ST effect to indicate that the computation is
impure and stateful (even though it does not explicitly
modify the memory). In particular, two calls to keygen may
yield different results. The function encrypt would typically
generate a nonce for use in the underlying AE construction,
and hence is also marked as stateful. In contrast, decrypt is
deterministic, so is marked with the Tot effect. Its result is
an optional plain value: either Some p if decryption succeeds,
or None otherwise. In pseudo-code we write ⊥ for brevity.

Our interface does not express any security guarantees
yet, but it does require a functional correctness guarantee,
namely that decryption undoes encryption.

Authenticated Encryption: Security Given an AE scheme,
one usually measures its concrete security as the advantage
of an adversary A that attempts to guess the value of b in
the following game:

Game Ae(A,AE)
b

$← {0, 1}; L← ∅; k
$← AE.keygen()

b′ ← AEncrypt,Decrypt(); return (b ?= b′)

Oracle Encrypt(p)

if b then c
$← byte`c ; L[c]← p

else c← AE.encrypt k p
return c

Oracle Decrypt(c)

if b then p← L[c]
else p← AE.decrypt k c
return p

The adversary A is a program that can call the two oracle
functions to encrypt and decrypt using a secret key k. In the
real case (b = 0) they just call the real AE implementation.
In the ideal case (b = 1), Encrypt returns a randomly
sampled ciphertext and stores the associated plaintext in a
log L, while Decrypt performs decryption by looking up the
plaintext in the log, returning ⊥ when there is no plaintext
associated with the ciphertext. Ideal AE is perfectly secure,
inasmuch as the ciphertext does not depend on the plaintext.
Thus, we define AE security by saying that the attacker
cannot easily distinguish between the real and ideal cases.

For this game, we define A’s advantage probabilistically
as |2Pr[Ae(A,AE)]− 1|, e.g. an adversary flipping a coin to
guess b will succeed with probability 1

2 and has 0 advantage.
In this paper, we adopt a more flexible notation for



indistinguishability games: we keep the sampling of b and
the call to the adversary implicit, and instead indicate the
oracles available to this adversary. Hence, we write the game
above (with the same oracles) equivalently as

Game Aeb(AE)

L← ∅ ; k
$← AE.keygen(); return {Encrypt,Decrypt}

This notation facilitates the re-use of oracles for build-
ing other games, much like F? modules. In general, we
write Gb to refer to an indistinguishability game G where
the adversary A tries to guess the value of the ran-
dom bit b by calling the oracles returned by G. For
all such games, we equivalently define the advantage as∣∣∣Pr[AG1

= 1]− Pr[AG0

= 1]
∣∣∣.

Embedding games in F? modules Although we wrote
the game Aeb above in pseudo-code, each game in this
paper reflects a verified F? module, written e.g. AEb, that
uses a boolean flag b to select between real and ideal
implementations of the underlying cryptographic module
AE. For example, AEb may define the key type and encrypt
function as

abstract type key = {key: AE.key; log: encryption_log}
let encrypt (k:key) (p:plain) =

if b then
let c = random_bytes `c in
k.log ← k.log ++ (c,p);
c

else AE.encrypt k.key p

where the (private) key representation now includes both the
real key and the ideal encryption log. The encrypt function
uses k.log to access the current log, and ++ to append a new
entry, much as the Encrypt oracle.

Idealization Interfaces The idealized module AEb can
be shown to implement the following typed interface that
reflects the security guarantee of the Aeb game:

abstract type key
val log: memory → key → Spec (seq (cipher × plain))
val keygen: unit → ST k:key

(ensures b ⇒ log k′ = ∅)
val encrypt: k:key → p:plain → ST (c:cipher)

(ensures b ⇒ log k′ = log k ++ (c,p))
val decrypt: k:key → c:cipher → ST (o:option plain)

(ensures b ⇒ o = lookup c (log k) ∧ log k’ = log k)

The interface declares keys as abstract, hiding both the
real key value and the ideal log, and relies on the log to
specify the effects of encryption and decryption. To this end,
it provides a log function that reads the current content of the
log—a sequence of ciphertexts and plaintexts. This function
is marked as Spec, indicating that it may be used only in
specification and will be discarded by the compiler after
typechecking.

Each of the 3 ensures clauses above uses this proof-only
function to specify the state of the log before (log k) and after
the call (log k′). Hence, the interface states that, in the ideal

case, the function keygen creates a key with an empty log;
encrypt k p returns a ciphertext c and extends the log for k
with an entry mapping c to p; and decrypt k c returns exactly
the result of looking up for c in the current log. This post-
condition formally guarantees that decrypt succeeds if and
only if it is passed a ciphertext that was generated by encrypt;
in other words it guarantees both functional correctness and
authentication (a notion similar to INT-CTXT).

AEb is also parametrized by a module Plainb that defines
abstract plaintexts, with an interface that allows access to
their concrete byte representation only when b = 0 (for real
encryption). By typing AEb, we verify that, when b = 1,
our idealized functionality is independent (information-
theoretically) from the values of the plaintexts it processes.

From the viewpoint of the application, the plaintext ab-
straction guarantees that AE1 preserves the confidentiality
and integrity of encrypted data (as in classic information
flow type systems). An application can rely on this fact to
prove application-level guarantees. For instance, an applica-
tion may prove, as an invariant, that only well-formed mes-
sages are encrypted under a given key, and thus that parsing
and processing a decrypted message always succeeds.

Probabilistic Semantics We model randomness (e.g.
random_bytes) using primitive sampling functions. Two
Boolean terminating F? programs A0 and A1 are equivalent,
written A0 ≈ A1, when they return true with the same
probability. They are ε-equivalent, noted A0 ≈ε A1, when
|Pr[A1⇓ true]−Pr[A0⇓ true]| ≤ ε where Pr[A⇓v] denotes
the probability that program A evaluates to value v according
to the probabilistic semantics of F?. These definitions extend
to program evaluation contexts, written Ab[_], in which
case ε depends on the program plugged into the context,
which intuitively stands for the adversary. Equipped with
these definitions, we can develop code-based game-playing
proofs following the well-established approach of Bellare
and Rogaway [5] directly applied to F? programs rather than
pseudo-code. For example, we can reformulate AE security
as AE1[A] ≈ε AE0[A], where A now ranges over well-
typed Boolean programs parameterized by the two functions
encrypt and decrypt defined by AEb. Our definition of ε-
equivalence between real and ideal implementations of AEb

matches the definition of A’s advantage in the Aeb game.

Concrete security definitions and reductions As illus-
trated for AE below, our security definitions will consist
of a game and a notation for the adversary advantage,
parameterized by a measure of oracle use (e.g. how many
times an adversary calls an oracle is called). We intend to
provide concrete bounds on those advantages, as a function
of their parameters. To this end, our reduction theorems
will relate the advantage for a given construction to the
advantages of its building blocks.



Definition 1 (AE-security): Given AE, let εAe(A[qe, qd])
be the advantage of an adversary A that makes qe queries
to Encrypt and qd queries to Decrypt in the Aeb(AE) game.

Equipped with this definition and our idealized interface
for AE, we can prove the security of programs using ideal
AE (b = 1), say with advantage ε, and then bound the
advantage of the same programs using real AE (b = 0) to
ε+ εAe(A[qe, qd]).

We can either assume that this definition holds for our real
AE module with an εAe that is small for realistic adversaries
(possibly relying on functional correctness and some prior
proof of security), or we can prove that our AES-GCM
module (say) achieves some bound on εAe by reduction to
a simpler assumptions on the AES cipher module. In later
sections, we will show how we can precisely compute the
adversary A’s advantage in the game above from a related
adversary B’s advantage in winning the PRF game on the
underlying cipher (e.g. AES). The proof relies on standard
cryptographic game transformations that are applied, on
paper, at the level of F? code, combined with functional
correctness proofs about the real and ideal code, verified
automatically by F?.

Games vs Idealized Modules We conclude this presenta-
tion of our approach by discussing differences between the
games on paper and the modules of our implementation.

Standard-compliant modules include many details elided
in informal games; they also use lower level representations
to yield more efficient code, and require additional type
annotations to keep track of memory management.

These modules are part of a general-purpose verified
cryptographic libraries, providing real functionality (when
idealizations flags are off) so they always support multiple
instances of their functionality. Here for instance, AEb has a
function to generate keys, passed as parameters to the encrypt
function, whereas the game oracle uses a single, implicit
key. (This difference can usually be handled by a standard
hybrid-argument reduction.)

Modules rely on the F? type system to enforce the rules
of the games. Hence, dynamic checks in games (say, to test
whether a nonce has already been used) are often replaced
with static pre-conditions on typed adversaries. Similarly,
types enforce many important but trivial conditions, such as
the length of oracle arguments, and are often kept implicit
in the paper.

III. ONE-TIME MACS

Anticipating on §V, the AEAD construction uses fresh
key materials for each message, so we consider authentica-
tion when keys are used to compute at most one MAC.

We treat two main constructions, GHASH and Poly1305,
using the same definitions, code, and proofs, inasmuch as

possible. We initially suppose that the whole key is freshly
generated for each MAC (as in ChaCha20-Poly1305) before
presenting the general case where a part of the key is shared
between multiple MACs (as in AES-GCM).

A. One-time MAC functionality and security

We outline below our interface for message authentication
code (MAC), omitting its functional specification (see §IX).
val `k0

: nat (∗ static key length, may be 0 ∗)
val `k: n:nat {`k0

≤ `k} (∗ total key length ∗)
val `t: nat (∗ tag length ∗)
val `m: nat (∗ maximal message length ∗)
type key0 = lbytes `k0

(∗ static key shared between MACs ∗)
type key = lbytes `k (∗ one−time key (including static key) ∗)
type tag = lbytes `t (∗ authentication tag ∗)
type message = b:bbytes `b {wellformed b}
val keygen0: unit → ST key0
val keygen: key0 → ST key
val verify: key → message → tag → Tot bool
val mac: k:key → m:message → Tot (t:tag{verify k m t})

This interface defines concrete byte formats for keys, tags,
and messages. Authenticated messages are strings of at
most `m bytes that comply with an implementation-specific
well-formedness condition. (We need such a condition for
GHASH.) We let m range over well-formed messages.

Key-generation functions are marked as stateful (ST) to
reflect their use of random sampling. Static keys of type key0
may be used to generate multiple one-time keys of type key.
(For example, keygen may concatenate the static key with
`k − `k0 random bytes.) To begin with, we assume `k0 = 0
so that k0 is the empty string ε.

The two main functions produce and verify MACs. Their
correctness is captured in the verify post-condition of mac:
verification succeeds at least on the tags correctly produced
using mac with matching key and message.

One-Time Security MAC security is usually defined using
computational unforgeability, as in the following game:

Game UF-1CMA(A,MAC)

k
$← MAC.keygen(ε); log← ⊥

(m?, t?)← AMac

return MAC.verify(k,m?, t?)
∧ log 6= (m?, t?)

Oracle Mac(m)
if log 6= ⊥ return ⊥
t← MAC.mac(k,m)
log← (m, t)
return t

The oracle permits the adversary a single chosen-message
query (recorded in log) before trying to produce a forgery.
The advantage of A playing the UF-1CMA game is defined
as εUF-1CMA(A[`m]) , Pr[UF-1CMA(A,MAC) = 1].

We seek a stronger property for AEAD—the whole ci-
phertext must be indistinguishable from random bytes—
and we need a decisional game for type-based composition,
so we introduce a variant of unforgeability that captures
indistinguishability from a random tag (when r is set).

Definition 2 (IND-UF-1CMA): Let εMac1(A[`m, qv]) be
the advantage of an adversaryA that makes qv Verify queries
on messages of length at most `m in the following game:



Game Mac1b(MAC)

k
$← MAC.keygen(ε); log← ⊥

return {Mac,Verify}

Oracle Verify(m?, t?)
if b return log = (m?, t?)
return MAC.verify(k,m?, t?)

Oracle Mac(m)
if log 6= ⊥ return ⊥
t← MAC.mac(k,m)
if b ∧ r
t

$← byteMAC.`t

log← (m, t)
return t

In this game, the MAC oracle is called at most once, on
some chosen message m; it returns a tag t and logs (m, t).
Conversely, Verify is called qv times before and after calling
MAC. When b is set, the game idealizes MAC in two ways:
verification is replaced by a comparison with the log; and
(when r is also set) the tag is replaced with random bytes.

We show (in the full paper) that our definition implies UF-
1CMA when qv ≥ 1 and that random tags are neither nec-
essary nor sufficient for unforgeability. We are not aware of
much prior work on Mac1 with r set; a pairwise independent
hash function would satisfy our IND-UF-1CMA definition
but may require longer keys [42].

Multi-Instance Security with a Shared Key In the AEAD
construction, we instantiate a one-time MAC for every
encryption and decryption. AES-GCM uses a static MAC
key derived from the AEAD key and shared between all
MAC instances. This state sharing is not captured by the
games above. To this end, we extend the Mac1b game into
a multi-instance version MMac1b with a setup that invokes
the keygen0 function to generate any key materials reused
across instances.

In the multi-instance case it is convenient to support
two kinds of instances: honest instances are created with
Keygen and idealized as in Mac1b; dishonest instances
are created with Coerce and use the real implementation
regardless of b. (Formally Coerce does not make the model
stronger, as an adversary can run all algorithms on his own.
However, the finer model is useful in hybrid arguments and
for composition with a PRF in §IV.)

Definition 3 (m-IND-UF-1CMA):
Let εMMac1(A[`m, qv, qi]) be the advantage of an adversary
A that creates qi instances and makes qv Verify queries
overall on messages of length at most `m in the game:

Game MMac1b(MAC)
log← ∅; k ← ∅; H ← ∅
k0

$← MAC.keygen0()
return {MAC,Verify,

Coerce,Keygen}

Oracle Mac(n,m)
if k[n] = ⊥ return ⊥
if log[n] 6= ⊥ return ⊥
t← MAC.mac(k[n],m)
if b ∧ n ∈ H
t

$← byteMAC.`t

log[n]← (m, t)
return t

Oracle Keygen(n)
if k[n] 6= ⊥ return ⊥
k[n]← MAC.keygen(k0)
H ← H ∪ n
Oracle Coerce(n, k)
if k[n] 6= ⊥ return ⊥
k[n]← k

Oracle Verify(n,m, t)
if k[n] = ⊥ return ⊥
v ← MAC.verify(k[n],m, t)
if b ∧ n ∈ H
v ← log[n] = (m, t)

return v

We confirm that Mac1 is a special case of MMac1 security
and that, even with a static key, it suffices to consider a single
verification query. (The proofs are in the full paper.)

Lemma 1 (MMac1 reduces to Mac1): Given A against
MMac1b, when `k0 = 0, we construct B against
Mac1b (linearly in qi) such that: εMMac1(A[`m, qv, qi]) ≤
qi εMac1(B[`m, qv]).

Lemma 2: Given A against MMac1b we construct B such
that: εMMac1(A[`m, qv, qi]) ≤ qv εMMac1(B[`m, 1, qi]).

Verified Implementation m-IND-UF-1CMA security re-
flects the type-based security specification of our idealized
module MMac1b, which has an interface of the form
val log: memory → key → Spec (option (message × tag))
val mac: k:key → m:message → ST (t:tag)

(requires log k = None)
(ensures log k′ = Some(m,t))

val verify: k:key → m:message → t:tag → ST (v:bool)
(ensures b ⇒ v = (log k′ = Some(m,t)))

The types of mac and verify express the gist of our security
property: the specification function log gives access to the
current content of the log associated with a one-time key;
mac requires that the log be empty (None in F?) thereby
enforcing our one-time MAC discipline; verify ensures that,
when b is set, verification succeeds if and only if mac logged
exactly the same message and tag. Their implementation is
automatically verified by typing MMac1b. However, recall
that typing says nothing about the security loss incurred by
switching b—this is the subject of the next subsection.

Our verified implementation of MMac1b supports the two
constructions described next, including code and functional
correctness proofs for their algorithms. It also provides a
more efficient interface for computing MACs incrementally.
Instead of actually concatenating all authenticated materials
in a message, the user creates a stateful hash, then repeatedly
appends 16-byte words to the hash, and finally calls mac or
verify on this hash, with a type that binds the message to
the final hash contents in their security specifications. Our
code further relies on indexed abstract types to separate keys
and hashes for different instances of the functionality, and
to support static key compromise.

B. Wegman-Carter-Shoup (WCS) Constructions

Next, we set up notations so that our presentation applies
to multiple constructions, including GHASH and Poly1305;
we factor out the encodings to have a core security as-
sumption on sequences of field elements; we verify their
injectivity; we finally prove concrete bounds in general, and
in particular for GHASH and Poly1305.

From bytes to polynomials and back In addition to fixed
lengths for keys and tags, the construction is parameter-
ized by

• a field F;



• an encoding function · from messages to polynomials
in F, represented as sequences of coefficients m ∈ F∗.

• a truncation function from e ∈ F to tag(e) ∈ byte`t ;

The key consists of two parts: an element r ∈ F and a one-
time pad s ∈ byte`t . We assume that r and s are sampled
uniformly at random, from some R ⊆ F and from byte`t ,
respectively. We write r‖s ← k for the parsing of key
materials into r and s, including the encoding of r into R.

Generic Construction Given a message m encoded into the
sequence of d coefficients m0, . . . ,md−1 of a polynomial
m(x) =

∑
i=1..dmd−ix

i in F, the tag is computed as:

hashr(m)← tag(m(r)) in F before truncation
mac(r‖s,m)← hashr(m)� s in byte`t

where the blinding operation � is related to addition in F
(see specific details below). We refer to hashr(m), the part
of the construction before blinding, as the hash.

Next, we describe the two instantiations employed in TLS.

GHASH [21] uses the Galois field GF (2128), defined as the
extension GF (2)[x]/x128+x7+x2+x+1, that is, the field
of polynomials with Boolean coefficients modulo the irre-
ducible polynomial x128+x7+x2+x+1. Such polynomials
are represented as 128-bit vectors. Conveniently, polynomial
addition, the blinding operation �, and its inverse � simply
correspond to 128-bit XOR. Polynomial multiplication is
also efficiently supported on modern processors. The mes-
sage encoding · splits the input message into 16-byte words,
seen as integers in 0..2128− 1; and the tag truncation is the
identity. For AES-GCM, GHASH has a keygen0 function
that samples a single r $← GF (2128) shared across all MAC
instances.

Poly1305 [8] uses the field GF (p) for p = 2130 − 5, that
is, the prime field of integer addition and multiplication
modulo p, whose elements can all be represented as 130-bits
integers. Its message encoding · similarly splits the input
message into 16-byte words, seen as integers in 0..2128− 1,
then adds 2` to each of these integers, where ` is the word
length in bits. (Hence, the encoding precisely keeps track of
the length of the last word; this feature is unused for AEAD,
which applies its own padding to ensure ` = 128.) The
truncation function is tag(e) = e mod 2128. The blinding
operation � and its inverse � are addition and subtraction
modulo 2128. For ChaCha20-Poly1305, both r and s are
single-use (`k0 = 0) but our proof also applies to the original
Poly1305-AES construction [8] where r is shared.

Injectivity Properties We intend to authenticate messages,
not just polynomial coefficients. To this end, we instantiate
our wellformed predicate on messages and show (in F?) that

∀ (m0: bytes) (m1: bytes).
( wellformed m0 ∧ wellformed m1 ∧

Poly.equals m0 m1 ) ⇒ m0 = m1

where Poly.equals specifies the equality of two formal polyno-
mials by comparing their sequences of coefficients, extend-
ing the shorter sequence with zero coefficients if necessary.
This enables the (conditional) composition of MACs with
suitable well-formedness predicates for AEAD in TLS. This
is required for GHASH as it is otherwise subject to 0-
message truncations.

We verify that the property above suffices to prove that
both encodings are secure, and also that it holds in particular
once we define wellformed as the range of formatted messages
for AEAD (which are 16-byte aligned and embed their own
lengths; see §V). We also confirm by typing that, with
Poly1305, there is no need to restrict messages: its encoding
is injective for all bytestrings [8, Theorem 3.2].

Security We give a theorem similar to those in prior
work [8, 30, 43] but parameterized by the underlying field
F, encoding · , truncation tag, and blinding operation �.
The theorem covers all uses of AES-GCM and ChaCha20-
Poly1305 in TLS.

Consider the MMac1 definition, covering both shared and
fresh values for r. Let qv be the number of oracle calls to
Verify (for which log[n] 6= (m?, t?)) and d a bound on the
size (expressed in number of field elements) of the messages
in calls to Mac and Verify.

Theorem 1: The Wegman-Carter-Shoup construction for
messages in Fd−1 is m-IND-UF-1CMA secure with concrete
bound εMMac1(A[`m, qv, qi]) = d.τ.qv

|R| with d = `m/16, and
τ = 1 for GHASH and τ = 8 for Poly1305.

The proof (in the full paper) uses Lemma 2 and establishes
a bound d·τ

|R| for an adversary that makes a single Verify

query. This bound follows from an d·τ
|R| -almost-�-universal

property, which has been separately proved for GHASH [35]
and Poly1305 [8]; the full paperalso includes its proof for
all instantiations of hashr for TLS.

Concrete bounds for GHASH: The range size for r is 2128

and there is no tag truncation, hence by Lemma 2 we get a
straight ε = d·qv

2128 , so for TLS the main risk is a failure of
our PRF assumption on AES, discussed in §VII.

Concrete bound for Poly1305: The effective range R of r
is reduced, first by uniformly sampling in 0..2128 − 1, then
by clamping 22 bits, to uniformly sampling one element out
of | R |= 2106 potential values. We lose another 3 bits of
security from the truncation of F to byte`t and by applying
Lemma 2 we arrive at ε = d·qv

2103 .

IV. PSEUDO-RANDOM FUNCTIONS FOR AEAD

We now consider the use of symmetric ciphers in counter
mode, both for keying one-time MACs and for generating
one-time pads for encryption. We model ciphers as PRFs.
For TLS, we will use AES or ChaCha20, and discuss
PRF/PRP issues in §VII. A pseudo-random function family



PRF implements the following interface:
type key
val keygen: unit → ST key
val `d : nat (∗ fixed domain length ∗)
val `b : nat (∗ fixed block length ∗)
type domain = lbytes `d
type block = lbytes `b
val eval: key → domain → Tot block (∗ functional specification ∗)

This interface specifies an abstract type for keys and a key-
generation algorithm. (Type abstraction ensures that these
keys are used only for PRF computations.) It also specifies
concrete, fixed-length bytestrings for the domain and range
of the PRF, and a function to compute the PRF. We refer to
the PRF outputs as blocks. As usual, we define security as
indistinguishability from a uniformly random function with
lazy sampling.

Definition 4 (PRF security): Let εPrf(A[qb]) be the ad-
vantage of an adversary A that makes qb Eval queries in
the game:

Game Prfb(PRF)
T ← ∅
k

$← PRF.keygen()
return {Eval}

Oracle Eval(m)
if T [m] = ⊥
if b then T [m]

$← byte`b

else T [m]← PRF.eval(k,m)
return T [m]

The AEAD constructions we consider use PRFs both to
generate keys for the one-time MAC used to authenticate the
ciphertext and to generate a one-time pad for encryption and
decryption. Accordingly, we partition the domain and use a
specialized security definition, with a separate eval function
for each usage of the PRF. (This will enable us to give more
precise types to each of these functions.)

We assume the PRF domain consists of concatenations
of a fixed-sized counter j and a nonce n, written j‖n. This
notation hides minor differences between AEAD algorithm
specifications, e.g. AES-GCM uses n‖j instead j‖n. Our
implementation handles these details, and verifies that j‖n
is injective for all admissible values of j and n.

For key generation, AES-GCM uses the PRF to derive
both a static MAC key k0 generated from the PRF (with
nonce and counter 0) and a 1-time MAC key for each
nonce (with counter 1) whereas Poly1305 uses a pure 1-
time MAC key for each nonce (with counter 0). To handle
both cases uniformly, we introduce a parameter j0 ∈ {0, 1}
to shift the counter before concatenation with the nonce. In
the following, we assume a compatible MAC, meaning that
either j0 = 0 ∧ `k0 = 0 ∧ `k ≤ `b or j0 = 1 ∧ `k0 ≤ `b ∧
`k − `k0 ≤ `b.

For pad generation, counter mode encrypts plaintext
blocks as p⊕ eval(j‖n) and decrypts by applying the same
pad to the ciphertext. In the PrfCtr game below, we separate
encryption and decryption, and we fuse the block generation
and the XOR, so that we can give separate types to plaintexts
and ciphertexts. (We truncate the block in case it is smaller

than the input, as required for the last block in counter-
mode.)

Definition 5 (PrfCtr security): Given PRF and MAC, let
εPrfCtr(A[qb, qg]) be the advantage of an adversary A that
makes qb queries to either EvalEnx or EvalDex and qg queries
to EvalKey in the following game:

Game PrfCtrb(PRF,MAC)
T ← ∅; R← ∅
k

$← PRF.keygen()

k0
$← MAC.keygen0()

if j0 ∧ ¬b
o← PRF.eval(k, 0`b)
k0 ← truncate(o,MAC.`k0)

return {EvalKey,EvalEnx,
EvalDex}

Oracle EvalKey(j‖n)
if j 6= j0 return ⊥
if T [j‖n] = ⊥

if b

km
$← MAC.keygen(k0)

else
o← PRF.eval(k, j‖n)
km ← truncate(k0‖o, `k)

T [j‖n]← km
return T [j‖n]

Oracle EvalEnx(j‖n, p)
if j ≤ j0 return ⊥
o

$← Eval(j‖n)
c← p⊕ truncate(o, |p|)
return c

Oracle EvalDex(j‖n, c)
if j ≤ j0 return ⊥
o

$← Eval(j‖n)
p← c⊕ truncate(o, |c|)
return p

Lemma 3 (PrfCtrb reduces to Prfb): Given PRF, MAC,
and A against PrfCtrb(PRF,MAC), we construct B against
Prfb(PRF) such that:

εPrfCtr(A[qb, qg]) = εPrf(B[qb + qg + j0]).

The proof is in the full paper. Intuitively, we have a
perfect reduction because, in all cases, the specialized game
still samples a single fresh block for each j‖n for a single
purpose, and returns a value computed from that block.

In the next section, once b holds and the MAC has
been idealized, we will use two oracles that further idealize
encryption and decryption:

Oracle EvalEnx′(j‖n, p)
if j ≤ j0 return ⊥
if T [j‖n] 6= ⊥ return ⊥
if b′ c

$← byte|p|

else c
$← EvalEnx(j‖n, p)

T [j‖n]← (p, c)
return c

Oracle EvalDex′(j‖n, c)
if j ≤ j0 return ⊥
if T [j‖n] = (p, c) for some p

return p
else return ⊥

When b′ holds, encryption samples c instead of o = p ⊕ c,
and records the pair (p, c) instead of just p ⊕ c; and
decryption simply performs a table lookup. This step is valid
provided the block at j‖n is used for encrypting a single p
and decrypting the resulting c. The oracles enforce this
restriction dynamically (on their second lines) whereas our
code enforces it statically, using type-based preconditions on
EvalEnx or EvalDex implied by the AEAD invariant of §V.

Verified Implementation Lemma 3 and the subsequent step
are not currently verified by typing. (Still, note that the
sampling of c instead of o is justified by F?’s probabilistic
semantic and could be verified using the relational typing
rule for sample in RF? [4])



We use an idealized PRF module with two idealization
flags (for b and for b′) that directly corresponds to the
specialized game PrfCtrb,b

′
parametrized by a Cipher mod-

ule that implements real AES128, AES256, and ChaCha20
(depending on an algorithmic parameter alg) and by a MAC
module. The separation of the PRF domain is enforced by
typing: depending on alg , j0, j, b, and b′, its range includes
keys, blocks, and pairs (p, c).

V. FROM MAC AND PRF TO AEAD

We implement the two main AEAD constructions used
by TLS 1.3 and modern ciphersuites of TLS 1.2. We show
that their composition of a PRF and a one-time MAC yields
a standard notion of AEAD security. Our proof is generic
and carefully designed to be modular and TLS-agnostic: we
share our AEAD code between TLS 1.2 and 1.3, and plan
to generalize it for other protocols such as QUIC.

AEAD functionality Our authenticated encryption with
associated data (AEAD) has a real interface of the form
val `n: nat (∗ fixed nonce length ∗)
val `a: n:nat{n < 232} (∗ maximal AD length ∗)
val `p: n:nat{n < 232} (∗ maximal plaintext length ∗)
val cipherlen: n:nat{n ≤ `p} → Tot nat
type nonce = lbytes `n
type ad = bbytes `a
type plain = bbytes `p
type cipher = bytes

val decrypt: key → nonce → ad → c:cipher →
ST (option (p:plain{length c = cipherlen (length p)}))

val encrypt: k:key → n:nonce → a:ad → p:plain →
ST (c:cipher{length c = cipherlen (length p))

with two functions to encrypt and decrypt messages with
associated data of variable lengths, and types that specify
the cipher length as a function of the plain length. (We omit
declarations for keys, similar to those for PRFs in §IV.)

Definition 6 (Aead security): Let εAead(A[qe, qd, `p, `a])
be the advantage of an adversary that makes at most qe
Encrypt and qd Decrypt queries on messages and associated
data of lengths at most `p and `a in the game:

Game Aeadb(AEAD)
C ← ∅
k

$← AEAD.keygen()
return {Encrypt,Decrypt}

Oracle Encrypt(n, a, p)
if C[n] 6= ⊥ return ⊥
if b c

$← bytecipherlen(|p|)

else c← AEAD.encrypt(k, n, a, p)
C[n]← (a, p, c)
return c

Oracle Decrypt(n, a, c)
if b

if C[n] = (a, p, c) for some p
return p

return ⊥
else
p← AEAD.decrypt(k, n, a, c)
return p

Our definition generalizes AE in §II; it has a richer do-
main with plaintext and associated data of variable lengths;
a function cipherlen from plaintext lengths to ciphertext
lengths; and nonces n. It similarly maintains a log of

encryptions, indexed by nonces. Crucially, Encrypt uses the
log to ensure that each nonce is used at most once for
encryption.

Generic AEAD Construction Given a PRF and a compat-
ible MAC, AEAD splits plaintexts into blocks which are
then blinded by pseudo-random one-time pads generated
by calling PRF on increasing counter values, as shown
in §IV. (Blocks for MAC keys and the last mask may require
truncation.)

To authenticate the ciphertext and associated data, the
construction formats them into a single 16-byte-aligned
buffer (ready to be hashed as polynomial coefficients as
described in §III) using an encoding function declared
as val encode: bbytes `p × bbytes `a → Tot bbytes (`p + `a + 46)
and implemented (in pseudo-code) as

Function encode(c, a)
return pad16(a) ‖ pad16(c)
‖ length8(a) ‖ length8(c)

Function pad16(b)
r, b1, . . . , br ← split16(b)
return b ‖ zeros(16− |br|)

where the auxiliary function split`(b) splits the bytestring b
into a sequence of r non-empty bytestrings, all of size `,
except for the last one which may be shorter. (that is,
if r, b1, . . . br ← splitb(`), then b = b1 ‖ · · · ‖ br.); where
zeros(`) is the bytestring of ` zero bytes; and where
length8(n) is the 8-byte representation of the length of n.
Thus, our encoding adds minimal zero-padding to a and c,
so that they are both 16-bytes aligned, and appends a final
16-byte encoding of their lengths.

Recall that the domain of MAC messages is re-
stricted by the wellformed predicate. We now define
wellformed b = ∃ (c:cipher) (a:ad). b = encode c a and typecheck
the property listed in §III that ensures injectivity of the
polynomial encoding.

The rest of the AEAD construction is defined below,
using an operator otp⊕ p that abbreviates the expression
truncate(otp, |p|)⊕p, and a function untag16 that separates
the ciphertext from the tag.

Function keygen()

k
$← PRF.keygen(); k0 ← ε

if j0
o← PRF.eval(k, 0`b )
k0 ← truncate(o,MAC.`k0

)
return k0‖k

Function encrypt(K,n, a, p)
(k0, k)← split`k0

(K); c← ε

k1 ← PRF.eval(k, j0‖n)
km ← truncate(k0‖k1,MAC.`k)
r, p1, . . . , pr ← split`b (p);
for j = 1..r

otp← PRF.eval(k, j0 + j‖n)
c← c ‖(otp⊕ pj)

t← MAC.mac(km, encode(c, a))
return c‖t

Function decrypt(K,n, a, c)
(k0, k)← split`k0

(K); p← ε

k1 ← PRF.eval(k, j0‖n)
km ← truncate(k0‖k1,MAC.`k)
(c, t)← untag16(c)
m← encode(c, a)
if ¬MAC.verify(km,m, t)

return ⊥
r, c1, . . . , cr ← split`b (c);
for j = 1..r

otp← PRF.eval(k, j0 + j‖n)
p← p ‖(otp⊕ cj)

return p



The main result of this section is that it is Aead-secure
when PRF is Prf-secure and MAC is MMac1-secure:

Theorem 2 (AEAD construction): Given A against Aead,
we construct B against Prf and C against MMac1, with:

εAead(AEAD)(A[qe, qd, `p, `a]) ≤ εPrf(PRF)(B[qb])
+ εMMac1(MAC)(C[`p + `a + 46, qd, qe + qd])

where qb (the number of distinct queries to the PRF)
satisfies:

qb ≤ j0 + qe

(
1 +

⌈
`p
`b

⌉)
+ qd

Proof sketch: The proof is in the full paper; it relies
on the PrfCtrb,b

′
and MMac1b idealizations; it involves a

sequence of transformations from Aead0 to Aead1 that inline
successively more idealizations. Therefore, we introduce a
parametric game AeadCtr(X) for any game X that returns
EvalKey, EvalEnx, EvalDex, Mac, and Verify oracles:

Game AeadCtr(X)
(EvalKey,EvalEnx,EvalDex,Mac,Verify)← X()
return {Encrypt,Decrypt}

Oracle Encrypt(n, a, p)
if C[n] 6= ⊥ return ⊥
EvalKey(n); c← ε
r, p1, . . . , pr ← split`b (p)
for j = 1..r

c← c ‖EvalEnx(j0 + j‖n, pj)
c← c ‖Mac(n, encode(c, a))
C[n]← (a, p, c)
return c

Oracle Decrypt(n, a, c)
c, t← untag16(c)
EvalKey(n)
if ¬Verify(n, encode(c, a), t)

return ⊥
r, c1, . . . , cr ← split`b (c); p←ε
for j = 1 . . . r

p← p ‖EvalDex(j0 + j‖n, cj)
return p

When X is obtained from PrfCtr0 and MMac10 we have a
game that is equivalent to Aead0. We first switch to PrfCtr1

to get random MAC keys and then idealize MMac11. When
X is obtained from PrfCtr1 and MMac11 ciphertexts are
authenticated and we can switch to PrfCtr1,0 and then to
PrfCtr1,1. At this stage the PRF table contains randomly
sampled ciphertext blocks and decryption corresponds to
table lookup in this table. This is ensured on the code by
our AEAD invariant.

Verified Implementation We outline below the idealized
interface of our main AEADb module built on top of (the
idealized interfaces of) PrfCtrb,b

′
and MMac1b, both taken

as cryptographic assumption, and documented by the games
with the same names on paper. We focus on types for
encryption and decryption:

abstract type key (∗ stateful key, now containing the log ∗)
val log: memory → key →

Spec (seq (nonce × ad × cipher × plain)
val keygen : unit → ST (k:key)

(ensures b ⇒ log k = ∅)
val encrypt: k:key → n:nonce → a:ad → p:plain → ST (c:cipher)

(requires b ⇒ lookup_nonce n (log k) = None)
(ensures (b ⇒ log k′ = log k ++ (n,a,c,p)))

val decrypt: k:key → n:nonce → a:ad → c:cipher →
ST (o:option plain)
(ensures b ⇒ o = lookup (n,a,c) (log k))

As in §II, we have a multi-instance idealization, with a log
for each instance stored within an abstract, stateful key; and
we provide a proof-only function log to access its current
contents in logical specifications. Hence, key generation
allocates an empty log for the instance; encryption requires
that the nonce be fresh and records its results; and decryption
behaves exactly as a table lookup, returning a plaintext if,
and only if, it was previously stored in the log by calling
encryption with the same nonce and additional data.

This step of the construction is entirely verifiable by
typing. To this end, we supplement its implementation with a
precise invariant that relates the AEAD log to the underlying
PRF table and MAC logs. For each entry in the log, we
specify the corresponding entries in the PRF table (one for
the one-time MAC key, and one for each block required
for encryption) and, for each one-time MAC key entry, the
contents of the MAC log (an encoded message and the tag
at the end of the ciphertext in the AEAD log entry). By
typing the AEAD code that implements the construction,
we verify that the invariant is preserved as it completes its
series of calls to the PRF and MAC idealized interfaces.
Hence, although our code for decryption does not actually
decrypt by a log lookup, we prove that (when b holds) its
results always matches the result of a lookup on the current
log. As usual, by setting all idealization flags to false, the
verified code yields our concrete TLS implementation.

Security bounds Theorem 2 can be specialized to provide
precise security bounds for the various AEAD ciphersuites:

Construction εAead(A[qe, qd, `p, `a]) ≤
AES128-GCM,
AES256-GCM

εPrf

(
B
[
qe

(
1 +

`p
16

)
+ qd + 1

])
+ qd

2128 ·
(
`p+`a+46

16

)
ChaCha20-
Poly1305

εPrf

(
B
[
qe

(
1 +

`p
64

)
+ qd

])
+ qd

2103 ·
(
`p+`a+46

16

)
VI. FROM AEAD TO STREAM ENCRYPTION (STAE)

TLS requires stream encryption: message fragments must
be received and processed in the order they were sent,
thereby defeating attempts to delete or re-order network
traffic. To this end, encryption and decryption use a local
sequence number to generate distinct, ordered nonces for
AEAD.

In practice, it is difficult to prevent multiple honest servers
from decrypting and processing the same 0-RTT encrypted
stream. Since decryption is now stateful, we must generalize
our model to support multiple parallel decryptors for each
encryptor. In our security definitions, we thus add a genD
oracle to generate new decryptors (with local sequence
numbers set to zero) from a given encryptor.



Otherwise, the stateful construction is quite simple: TLS
1.3 combines the sequence number with a static, random
‘initialization vector’ (IV) in the key materials to gener-
ate pairwise-distinct nonces for encrypting fragments using
AEAD. In contrast, TLS 1.2 nonces concatenate the static
IV with a per-fragment explicit IV that is sent alongside
the ciphertext on the network (except for ciphersuites based
on ChaCha20-Poly1305 which follow the TLS 1.3 nonce
format). Some TLS 1.2 implementations incorrectly use
uniformly random explicit IVs [15]. This is much inferior
to using the sequence number because of the high collision
risk on 64 bits. Therefore, in our implementation, we use
the following nonce construction:

n =

{
bigEndian8(seqn) ‖ iv4 for AES-GCM in TLS 1.2
bigEndian12(seqn)⊕ iv12 otherwise

where the indices indicate lengths in bytes. The use of
longer static IVs in TLS 1.3 is a practical improvement, as
(informally) it acts as an auxiliary secret input to the PRF
and may improve multi-user security [7]. This is particularly
clear for ChaCha20, where the key, nonce, and counter are
just copied side by side to the initial cipher state.

We easily verify (by typing) that both constructions are
injective for 0 ≤ seqn < 264, which is required (also by
typing) to meet the ‘fresh nonce’ pre-condition for calling
AEAD encryption. Formally, the state invariant for StAE
encryption is that 0 ≤ seqn < 264 and the underlying
AEAD log has an entry for every nonce n computed from
a sequence number smaller than seqn.

StAE functionality A stream authenticated encryption
functionality StAE implements the following interface:
type seqn_t = UInt64.t
val qe: seqn_t (∗ maximal number of encryptions ∗)
val cipherlen: n:nat{ n ≤ `p } → Tot nat (∗ e.g. `p + MAC.`t ∗)

type role = E | D
abstract type state (r:role)
val seqn: mem → state r → Spec seqn_t
val gen: unit → ST (s:state E) (ensures seqn s′ = 0)
val genD: state E → ST (s:state D) (ensures seqn s′ = 0)
val encrypt: s:state E → ad → p:plain →

ST (c:cipher{length c = cipherlen (length p))
(requires seqn s < qe) (ensures seqn s′ = seqn s + 1)

val decrypt: s:state D → ad → c:cipher →
ST (o:option (p:plain{length c = cipherlen (length p)}))
(requires seqn s < qe)
(ensures seqn s′ = if o = None then seqn s else seqn s + 1)

We omit type declarations for plain, cipher and ad as they
are similar to AEAD. For TLS, the length of additional
data `a can be 0 (TLS 1.3) or 13 (TLS 1.2) and the length
of IVs `iv is 12. Compared to previous functionalities, the
main change is that keys are replaced by states that embed
a 64-bit sequence number. Accordingly, in this section we
assume that at most 264 fragments are encrypted. The
stateful function gen initializes the encryptor state used by
the encryption algorithm, while genD initializes a decryptor

state used by the decryption algorithm. The stateful encrypt
and decrypt functions require that the sequence number in
the key state does not overflow (seqn s < qe) and ensure that it
is incremented (only on success in the case of decryption). In
pseudo-code, authenticated stream encryption is constructed
as follows:

Function gen()

k
$← AEAD.keygen()

iv
$← byte`iv

return {k ← k;
iv ← iv; seqn← 0}

Function genD(s)
return {k ← s.k;

iv ← s.iv; seqn← 0}

Function encrypt(s, a, p)
n← nonce(s.iv, s.seqn)

c
$← AEAD.encrypt(s.k, n, a, p)

s.seqn← s.seqn+ 1
return c

Function decrypt(s, a, c)
n← nonce(s.iv, s.seqn)
p← AEAD.decrypt(s.k, n, a, c)
if (p = ⊥) return ⊥
s.seqn← s.seqn+ 1
return p

Definition 7 (Stae): Let εStae(A[qe, qd, `p, `a]) be the ad-
vantage of an adversary A that makes qe encryption queries
and qd decryption queries in the game below.

Game Staeb(StAE)

s
$← StAE.gen()

D ← ∅ E ← ∅
return {GenD,Encrypt,

Decrypt}

Oracle GenD(d)
if (D[d] 6= ⊥) return ⊥
D[d]← StAE.genD(s)

Oracle Encrypt(a, p)
if b

c← bytecipherlen(|p|)

else
c← StAE.encrypt(s, a, p)

E[s.seqn− 1, a, c]← p
return c

Oracle Decrypt(d, a, c)
if (D[d] = ⊥) return ⊥
if b
p← E[D[d].seqn, a, c]
if (p 6= ⊥)
D[d].seqn← D[d].seqn+ 1

else
p← StAE.decrypt(D[d], a, c)

return p

The game involves a single encryptor, a table of decryp-
tors D, and a log of encryptions E. For brevity, it relies
on the stateful encryptor and decryptors specified above,
e.g. encrypts increments s.seqn and Encrypt records the
encryption with sequence number s.seqn−1. (Equivalently,
it could keep its own shadow copies of the sequence num-
bers.) In contrast with AEAD, decryption only succeeds for
the current sequence number of the decryptor.

Our definition corresponds most closely to level-4 (state-
ful) LHAE of [16]. In both definitions the requirement is
that decrypt only successfully decrypted a prefix of what was
sent. A difference is that we do not require real decryption
to continue rejecting ciphertexts upon decryption failure. We
also leave length-hiding and stream termination to §VII.

Theorem 3 (Stae perfectly reduces to Aead): Given
A against Stae, we construct B against Aead with

εStae(A[qe, qd, `p, `a]) = εAead(B[qe, qd, `p, `a]).



Figure 3. Constructing a TLS 1.3 record fragment

VII. TLS CONTENT PROTECTION: LENGTH-HIDING
STREAM ENCRYPTION

We are now ready to use stream encryption for protecting
TLS 1.3 traffic, which consists of a sequence of protocol-
message fragments, each tagged with their content type,
while hiding their content, their type, and their actual size
before padding. The steps taken by the record layer to
construct encrypted fragments are depicted in Figure 3,
with apparent size ` after padding. The last line adds the
(unprotected) record header; for backward compatibility, it
pretends to be a TLS 1.0 AppData record irrespective of its
actual encrypted content type. On the other hand, TLS does
not attempt to hide the record boundaries (as e.g. SSH) so
we do not expect indistinguishability from random for the
resulting record.

Formatting: Content Type and Length Hiding Encryp-
tion and decryption rely on formatting and padding functions
over a type fragment indexed by a length ` indicating the
public maximal length of its content, specified as follows:

type len = n:nat {n ≤ 214} (∗ valid record length in TLS ∗)
type fragment (`:len) = {ct:byte; data:bbytes `}
val parse: `:len → lbytes (`+1) → Tot (option (fragment `))
val format: `:len → f:fragment ` → Tot (p:lbytes (`+1))

(ensures parse ` p = Some f)

These functions must be carefully implemented to prevent
any side channel. We also construct and parse records into
headers and payloads using functions

val parse_record: r:record → Tot (option (n:nat × c:lbytes n))
val format_record: n:nat → c:lbytes n → Tot (r:record)

(ensures parse_record r = Some (n,c))

These function specifications suffice to establish our theo-
rems below. We now give the concrete format function for
TLS 1.3:

Function format(` : len, f : fragment `)
f.data ‖[f.ct] ‖ pad0(`− |f.data|)

where pad0 n is the string of n 0x00 bytes. We verify the
post-condition of format by typing. We omit the correspond-
ing parse function and the code for processing headers.

The implementation of parse and format, and the converse
function for parsing a bytestring into a fragment value, require
precautions to avoid leaking the actual contents length using
side-channels. The code for processing headers does not
depend on the fragment, only on its length after padding.

Stream Closure As explained in §VI, stream integrity
ensures that decrypted traffic is a prefix of encrypted
traffic. Complementarily, the TLS record layer relies
on well-defined final fragments, specified as a predicate
val final: fragment ` → Tot bool, to ensure that no further en-
cryptions are performed on a stream after sending such a
fragment.

For LHAE, we extend the stateful key of StAE to record
the termination status of the stream, which can be queried
with the predicate val closed: mem → state r → Spec bool.
Furthermore, we extend the post-condition of encryption to
ensure that the state s′ after encrypting fragment f satisfies
closed s′ = final f. Therefore, upon receiving a final fragment,
the decryptor is guaranteed to have received the whole data
stream.
LHSE Construction and Game The construction is:

Function encrypt(s, `, f)
if closed(s) return ⊥
p← format(`, f)
c← StAE.encrypt(s, [], p)
if (final f) s← closed
return format_record(`, c)

Function decrypt(s, r)
if closed(s) return ⊥
`, c← parse_record(v)
p← StAE.decrypt(s, [], c)
f ← parse(`, p)
if (f 6= ⊥ ∧ final f) s← closed
return f

with the same state as StAE—we omit the unmodified
functions for generating encryptors and decryptors. When a
final fragment is sent or received, we erase the StAE state.

The TLS 1.3 construction uses empty associated data,
relying on implicit authentication of the underlying key and
sequence number. (Our code also supports the older TLS 1.2
construction, which uses 13 bytes of associated data in total,
obtained by appending the protocol version and the content
type to the sequence number of stream encryption.)

Definition 8 (Lhse): Given LHSE, let εLhse(A[qe, qd]) be
the advantage of an adversary A that makes qe encryption
queries and qd decryption queries in the game below.

Game Lhseb(LHSE)

s
$← Lhse.gen()

D ← ∅; F ← ∅
return {GenD,Encrypt,Decrypt}

Oracle GenD(d)
if (D[d] = ⊥)

D[d]← LHSE.genD(s)

Oracle Encrypt(`, f)
if b

r ← LHSE.encrypt(s, `, ffinal(f))
else

r ← LHSE.encrypt(s, `, f)
F [s.seqn− 1, r]← f
return v

Oracle Decrypt(d, v)
if (D[d] = ⊥) return ⊥
sd ← D[d]
if b

if closed(sd) return ⊥
f ← F [sd.seqn, r]
if (f 6= ⊥) sd.seqn++
if (f 6= ⊥ ∧ final f)

sd ← closed
else

f ← LHSE.decrypt(sd, v)
return f



where f0 (respectively, f1) is a fragment (respectively, a final
fragment), with fixed content type and data 0`.

The game logs the encryption stream in F , indexed by
fragment sequence numbers and ciphertexts. It has an oracle
for creating decryptors; it stores their state in a table D,
indexed by some abstract d chosen by the adversary. It does
not model stream termination, enforced purely by typing the
stream content.

Theorem 4 (Lhse perfectly reduces to Stae):
Given A against Stae, we construct B against Aead with

εLhse(A[qe, qd]) = εStae(B[qe, qd, 214 + 1, `a])

where `a is 0 for TLS 1.3 and 13 for TLS 1.2.

Multi-Stream LHSE In the next section (as in our interface
above), we use a multi-instance Lhse game, defined below.

Game Multi(Lhseb)
E ← ∅; return {Gen,GenD,Encrypt,Decrypt}

Oracle Gen(i)

if (E[i] = ⊥) E[i]
$← Lhseb()

Oracle GenD(i, d)

if (E[i] = ⊥) E[i]
$← Lhseb()

E[i].GenD(d)

Oracle Encrypt(i, `, f)
if (E[i] = ⊥) return ⊥
return E[i].Encrypt(`, f)

Oracle Decrypt(i, d, v)
if (E[i] = ⊥) return ⊥
return E[i].Decrypt(d, v)

For every fresh index i passed to Gen, we spawn an instance
of Lhse and we record its state and oracle in table E. In
all other cases, the oracles above now look up the shared
instance at i and forward the call to the instance oracle.

Security bounds for TLS Table I gives the concrete bounds
by ciphersuites, setting `p to 214 + 1 and `a to 0 (or 13
for TLS 1.2). ChaCha20 uses a Davies-Meyer construction
and is considered a good PRF. For AES-GCM ciphersuites,
blocks are relatively small (16 bytes) so we incur a loss
of q2b

2129 by the PRP/PRF switching lemma [6], intuitively
accounting for the probability of observing collisions on
ciphertext blocks and inferring the corresponding plaintext
blocks are different. As observed e.g. by Luykx and Paterson
[34], this factor limits the amount of data that can be sent
securely using AES-GCM.

Based on their suggestion to send at most 224.5 fragments
with the same key (itself based on a proof by [9] for the
UF-1CMA security of GHASH that avoids the full PRF-
PRP switching loss), our implementation may automatically
trigger TLS re-keying after sending 224.5 fragments. This
strategy results in the bound in the last row, which no longer
depends quadratically on qe and thus achieves a poor man’s
form of beyond birthday bound security.

VIII. THE TLS 1.3 RECORD PROTOCOL

Figure 4 presents the TLS 1.3 protocol from draft-19,
focusing only on how it drives the record layer. In par-
ticular, this presentation ignores most of the details of the

Ciphersuite εLhse(A[qe, qd]) ≤
General bound εPrf(B[qe(1 + d(214 + 1)/`be) + qd + j0])

+ εMMac1(C[214 + 1 + 46, qd, qe + qd])
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[
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]
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293
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εPrp(B[qb]) + q2b
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where qb = qe(1 + d(214 + 1)/16e) + qd + 1
AES128-GCM
AES128-GCM

qe
224.5

(
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]
) + 1

260
+ 1

256

)
with re-keying every 224.5 records (counting
qe for all streams, and qd ≤ 260 per stream)

Table I
SUMMARY OF SECURITY BOUNDS FOR THE TLS AEAD CIPHERSUITES.

handshake. Figure 1 in Section I illustrates the sub-protocol
streams from the point of view of the client.

The client sends the ClientHello message in cleartext,
and may then immediately install a fresh 0-RTT key kc0 in
the record layer and use it to encrypt a stream of early data.

The server receives this message and, if it accepts 0-RTT,
also installs the 0-RTT key kc0 and decrypts the client’s data.
Otherwise, it discards this first stream. In parallel, the server
sends a ServerHello message that allows both parties
to derive encryption keys kch and ksh for the handshake
messages, and kc1 and ks1 for application data. The server
installs ksh in the record and uses it to encrypt a first stream
of handshake messages, ending with a finished message that
triggers the installation of key ks1. If the server supports
0.5-RTT, it may immediately start using ks1 for sending
application data.

Once 0-RTT stream is complete (signaled by an
end-of-early-data message) and after processing the
ServerHello, the client installs the handshake keys kch
and ksh for encryption and decryption. It completes the
handshake by sending its own encrypted stream, ending with
a finished message, and installs the application traffic keys
kc1 and ks1.

Upon completing the handshake, the server also installs
kc1 for decryption. After this point, the connection is fully
established and both parties use the installed application
traffic keys for all content types: AppData, Alert, and even
Handshake messages (such as KeyUpdate).

Later, the client (or the server) can terminate their current
output stream by sending either a KeyUpdate handshake
message or a close-notify alert message. In the first case,
it installs and starts using the next application traffic key
kc2 (then kc3, etc.). The server (or the client) responds
accordingly, with a KeyUpdate or a close-notify. In the
first case, it installs and starts using the next traffic keys kc2
and ks2. In the second case, the connection is closed.

In all cases, each party uses a single stream at a time in
each direction, for sending and receiving all content types,
and each stream ends with a distinguished message that
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Figure 4. TLS 1.3 draft-19 message exchange, seen from the viewpoint
of the Record Protocol. Dotted arrows represent zero or more (encrypted)
application data fragments. Each key stands for an instance of LHSE.

clearly indicates its final fragment. 0-RTT data ends with an
end-of-early-data message; encrypted handshake messages
in both directions end with the finished message; 0.5 and
1-RTT data streams end with a key update or a close-notify
alert. This precaution ensures that any truncations at the
end of a stream will cause a connection failure, rather than
continuing with the next stream.

Performance/Security Trade-Offs. 0-RTT and 0.5-RTT
significantly decrease communications latency, but they
yield weaker application security. 0-RTT traffic has weaker
forward secrecy and is subject to replays: if multiple servers
may accept the connection and (as usual) do not share an
anti-replay cache, then they may all receive and process
(prefixes of) the same early traffic data. This motivates our
model with multiple decryptors, and also requires the server
application to defer some effects of early-data processing
till handshake completion. Also, since data is sent before
ciphersuite negotiation, the client may use relatively weak al-

gorithms (or broken implementations) that the server would
otherwise have a chance to refuse.

0.5-RTT incurs similar, lesser risks as the server sends
data before the handshake completes. The server is subject
to 0-RTT truncation attacks if it starts sending data before
receiving the client’s end of early data. Also, if the server
relies on a client signature, it should not send sensitive
data before handshake completion. In contrast with 0-RTT,
sending 0.5-RTT traffic is a local configuration issue for the
server; the client receives 0.5-RTT data after completing the
handshake and does not distinguish it from 1-RTT data.

TLS 1.2 is routinely deployed with ‘FalseStart’, which
is similar to 0.5-RTT but in the other direction, the client
may locally decide to start sending encrypted application
data as soon as it can compute the keys, before handshake
completion. This places additional trust in the client’s ci-
phersuite whitelist, inasmuch as sensitive data may be sent
before confirming their correct negotiation with the server.

A Minimal Record Game Next, we present a simplified,
more liberal model of the Record that seeks to abstract
away from the details of how the connection evolves.
This facilitates the statement of a standalone ‘record-layer’
theorem, but our approach similarly applies to our full
F? implementation integrated with miTLS, which carefully
keeps track of the sequence of keys, as outlined at the end
of this section.

We abstract the state of the connection by a context
bitstring; as the handshake progresses, we concatenate more
relevant handshake parameters to the context. For instance,
after ClientHello, the context consists of the client’s
nonce nC and its proposed ciphersuites and key exchange
values; after ServerHello, it additionally contains the
server nonce nS , algorithm choice, key exchange value, etc.

Instead of modeling duplex channels between clients and
servers, we consider separate sequences of streams in each
direction. Our game (Figure 5) models re-keying and context
extension for a sequence of streams (all in the same direc-
tion), covering 0-RTT, 0.5-RTT, and 1-RTT traffic, relying
on the multi-instance game SE = Multi(Lhse) (see §VII).

The game has oracles Init and InitD for generating multi-
stream encryptors and decryptors in their initial state, in-
dexed by n and m, respectively. We assume that their ar-
guments determine the record algorithm. Their state consist
of a current context, a current stream number j, and a local
map I from stream numbers to the value of the context when
they were installed. We use variables ctx, j, and I to refer
to the fields of E[m] and D[n], respectively.

Oracles Extend and ExtendD allow the local context to be
extended (concatenated) with new information at any time.

Oracles Install and InstallD install an LHSE instance (al-
locating it if it does not exist) for encryption and decryption,



Game Recordb(Lhseb(LHSE))
E ← ∅ D ← ∅
SE.Gen, SE.GenD, SE.Encrypt,SE.Decrypt

$← Multi(Lhseb)
return {Gen,Extend, Install,Encrypt,

GenD,ExtendD, InstallD,Decrypt}

Oracle Init(n)
if E[n] = ⊥
E[n]← {ctx← n; j ← 0;

I ← ∅}

Oracle InitD(m, ctx0)
if D[m] = ⊥
D[m]← {ctx← ctx0;

j ← 0; I ← ∅}

Oracle Extend(n, δ)
if E[n] exists
ctx← ctx+ δ

Oracle ExtendD(m, δ)
if D[m] exists
ctx← ctx+ δ

Oracle Install(n)
if E[n] exists with I[j] = ⊥
I[j]← (ctx, j)
SE.Gen(I[j])

Oracle InstallD(m)
if D[m] exists with I[j] = ⊥
I[j]← (ctx, j)
SE.GenD(I[j])

Oracle Encrypt(n, `, f)
if E[n] exists with I[j] 6= ⊥
v ← SE.Encrypt(I[j], `, f)
if (final f) j ← j + 1
return v

Oracle Decrypt(m, v)
if D[m] exists with I[j] 6= ⊥
f ← SE.Decrypt(I[j], d, v)
if f 6= ⊥ ∧ final f
j ← j + 1

return f

Figure 5. The TLS 1.3 Record Game

respectively. Recall that calls to SE.Gen are memoized, so
that an encryptor and a decryptor share the same stream if
and only if they agree on the stream sequence number and
context.

Oracles Encrypt and Decrypt apply encryption and de-
cryption to the currently-installed stream. Some fragments
are final: they terminate the stream and signal the need to
install a new stream before continuing.

Definition 9 (Record): Let εRecord(A[qe, qd, qi]) be the
advantage of an adversary A that makes at most qe encryp-
tion queries and qd decryption queries for each of the qi
LHSE instances created using install queries in the game of
Figure 5.

Theorem 5 (Record reduces to Lhse):

εRecord(A[qe, qd, qi]) ≤ qi εLhse(B[qe, qd]).

Our game complies with the idealized interface for LHSE
and relies on its conditional idealization. If b = 0, then
the oracles operate purely on local state, and simply im-
plement a real sequence of encrypted streams, under the
control of the record state machine. If b = 1, then we
get perfect authentication of (a prefix of) the whole se-
quence of streams of fragments. (This property is verified
by typing our idealized record implementation.) The ctx
field of encryptors and decryptor represents their implicitly
authenticated shared context: unless there is an encryptor
with a matching context, the ideal encryption log is empty
hence decryption will fail. In particular, as soon as the

context includes ServerCert-Finished, and thus the
fresh TLS nonces nC and nS , we know that there is at most
one encryptor and one decryptor.

More precisely, consider encryptor and decryptor states
E[n] and D[m]. If E[n].I[j] = D[m].I[j] then also
E[n].I[j′] = D[m].I[j′] for any j′ < j. Thus, for instance,
when D[m] receives a final fragment, we know that E[n]
and D[m] agree on the whole sequence of communicated
fragment for the first j streams. By Theorem 5 these guaran-
tees also hold for the real record for any game adversary A,
except with probability εRecord(A).

Application to 0-RTT We briefly show how to control
our game to model 0-RTT and 0.5-RTT. For 0-RTT, the
client is the encryptor and the server is the decryptor. Both
use the encryptor index n as initial context, representing
the content of ClientHello, notably the fresh client
random nC . Conversely, the decryptor index m (including
the fresh server random nS) is not included in the initial
context of InitD. As both parties install their first stream
(j = 0) for 0-RTT, this reflects that the underlying TLS
key derivation (kc0 in Figure 4) depends only on client-side
information. Thus, although 0-RTT traffic is protected, it
may be decrypted by multiple server instances with different
indexes m.

Calls to ExtendD and Extend reflect handshake com-
munications in the other direction, as the ServerCert-
Finished stream is sent and received, causing ctx to be
extended with (at least) m. Afterwards, as the two parties
successively install streams for the TLS keys kch, kc1, kc2, . . . ,
successful decryption guarantees agreement on a context that
includes the pair n,m. Thus, in this usage of our Record
game at most one server will successfully decrypt the first
encrypted handshake fragment from the client, and from this
point all streams are one-to-one.

Application to 0.5-RTT The server is the encryptor, the
client the decryptor and, since they both have initial access
to the first message exchange, we may select as index n
that includes the client hello and server hello messages
and implicitly authenticate the pair nC , nS . Thus, there
is at most one honest client decryptor for 0.5-RTT and,
from the client’s viewpoint, successful decryption of the
first handshake fragment ensures agreement on this context.
Still (at least from the record’s viewpoint) the server is not
guaranteed there is a matching decryptor until it receives
ClientCert-Finished in the other direction and tran-
sitions to 1-RTT.

Verified Implementation for miTLS (Outline) Our TLS
Record implementation supports sequences of streams for
the full protocol described in Figure 4 and its TLS 1.2
counterpart.

Stream Sequences As described in the game above, it



maintains a current stream for each direction, and it receives
‘extend’ and ‘install’ commands from the handshake proto-
col as the connection gets established. Its indexes (ctx in
the game) consist of a summary of the handshake context
available at the time of key derivation (always including the
algorithms to use). In contrast with our game, which models
all communications in a single direction, our code supports
‘duplex’ communications. This is necessary, for instance, for
synchronizing key updates and connection closure between
clients and servers. Our code also maintains a small (type-
based) state machine that controls the availability of the
current streams for sending application data.

Re-keying and Corruption The state machine enforces a
limit on the maximum number of fragments that can be
sent with one key to prevent sequence number overflows and
account for the birthday bound weakness of AES-GCM. On
key updates we delete old keys and model the corruption of
individual streams using leak and coerce functions for keys.
This is in keeping with the static corruption modeling of
MITLS, e.g. to account for insecure handshake runs.

Fragment API Our code for the record is parameterized by
a type of abstract application-data plaintexts, indexed by a
unique stream identifier and an apparent fragment length.
Type abstraction guarantees that, if the stream identifier is
safe (a property that depends on the handshake and key
derivation process), the idealized TLS implementation never
actually accesses their actual length and contents, a strong
and simple confidentiality property.

Our API has a configuration to control 0-RTT and 0.5-
RTT as the connection is created. In particular, 0-RTT
plaintexts have their own type, (indexed by an identifier that
describe their 0-RTT context) which should help applications
treat it securely. Conversely, 0.5-RTT is modeled simply by
enabling earlier encryption of 1-RTT traffic.

Message API Our code also has a higher-level API with
messages as (potentially large) bytestrings instead of indi-
vidual fragments. As usual with TLS, message boundaries
are application specific, whereas applications tend to ignore
fragment boundaries. Nonetheless, our code preserves ap-
parent message boundaries, never caches or fragments small
messages, and supports message length-hiding by taking as
inputs both the apparent (maximal) size `max of the message
and its private (actual) size `m. It has a simple fragmentation
loop, apparently sending up to 214 bytes at each iteration,
starting with `max − `m bytes of padding follows by the
actual data. (This ensures that an application that waits
for the whole message never responds before receiving the
last fragment.) We do not model de-fragmentation on the
receiving end; our code delivers fragments as they arrive
in a buffer provided by the application for reassembling its
messages.

The correctness and security of this construction on top of

the fragment API is verified by typing, essentially abstract-
ing sequences of fragments into sequences of bytes for the
benefit of the application, and turning close-notify alert frag-
ments into end-of-files. (See also [22] for a cryptographic
treatment of fragmentation issues.)

IX. EXPERIMENTAL EVALUATION

We evaluate our reference implementation of the TLS
record layer both qualitatively (going over the verified goals
of the various modules and how they relate to the games
presented in the paper, and checking that our implementation
interoperates with other TLS libraries) and quantitatively
(measuring the verification and runtime performance).

Verification evaluation Table II summarizes the modular
structure of our code, and evaluates the verification costs and
the extracted OCaml and C implementations. Since proofs
and implementations are tightly interleaved in F? source
code, it is difficult to accurately measure a precise source
overhead. The reported annotation percentages figure in the
table are rough manual estimates, but they can be compared
to the size of extracted implementations.

Most of the verification burden comes from the security
proof of AEAD (totaling approximately 4,500 lines of
annotation out of a total of about 5,500 lines of F?) and the
functional correctness proof of the MAC implementations
(totaling over 4,000 lines of annotations and lemmas). For
the latter, we extended F? with a new big number library
to verify the low-level implementations of various mathe-
matical operations (such as point multiplication on elliptic
curves or multiplication over finite fields) using machine-
sized integers and buffers. We use it to prove the correctness
of the polynomial computations for Poly1305 and GHASH.

Current limitations Our record layer implementation is
part of miTLS in F?: a larger, partially verified codebase
that intends to provide a secure, efficient implementation for
both TLS 1.2 and TLS 1.3. We leave a complete verification
of the TLS 1.3 handshake and its integration with our code
as future work.

Our implementation also includes the first miTLS com-
ponent implemented in a lower level fragment of F? that
enables its extraction to C code. In contrast, the rest of
miTLS is still extracted to OCaml and, until it is similarly
adapted, relies on an unverified OCaml/C wrapper to call our
extracted C code. Currently, this runtime transition is done
at the level of the AEAD interface, enabling us to switch
to other generic cryptographic providers more easily (e.g.
to compare performance with OpenSSL). Hence, the TLS-
specific stateful encryption in StreamAE is verified on top
of an idealized AEAD interface that slightly differs from the
one exported by our idealized Crypto.AEAD construction.
For instance, the former represents fragments as sequences
of bytes, whereas the latter uses a lower level memory



Module Name Verification Goals LoC % annot ML LoC C LoC Time
StreamAE Game StAEb from §VI 318 40% 354 N/A 307s
AEADProvider Safety and AEAD security (high-level interface) 412 30% 497 N/A 349s
Crypto.AEAD Proof of Theorem 2 from §V 5,253 90% 2,738 2,373 1,474s
Crypto.Plain Plaintext module for AEAD 133 40% 95 85 8s
Crypto.AEAD.Encoding AEAD encode function from §V and injectivity proof 478 60% 280 149 708s
Crypto.Symmetric.PRF Game PrfCtrb from §IV 587 40% 522 767 74s
Crypto.Symmetric.Cipher Agile PRF functionality 193 30% 237 270 65s
Crypto.Symmetric.AES Safety and correctness w.r.t pure specification 1,254 30% 4,672 3,379 134s
Crypto.Symmetric.ChaCha20 965 80% 296 119 826s
Crypto.Symmetric.UF1CMA Game MMac1b from §III 617 60% 277 467 428s
Crypto.Symmetric.MAC Agile MAC functionality 488 50% 239 399 387s
Crypto.Symmetric.GF128 GF (128) polynomial evaluation and GHASH encoding 306 40% 335 138 85s
Crypto.Symmetric.Poly1305 GF (2130−5) polynomial evaluation and Poly1305 encoding 604 70% 231 110 245s
Hacl.Bignum Bignum library and supporting lemmas

for the functional correctness of field operations
3,136 90% 1,310 529 425s

FStar.Buffer.* A verified model of mutable buffers (implemented natively) 1,340 100% N/A N/A 563s
Total 15,480 78% 12,083 8,795 1h 41m

Table II
MODULES IN OUR VERIFIED RECORD LAYER IMPLEMENTATION

model and represents fragments as mutable I/O buffers,
hence the transition requires copying fragments between
representations.

Interoperability Our record implementation supports both
TLS 1.3 and 1.2 and exposes them through a common API.
We have tested interoperability for our TLS 1.2 record layer
with all major TLS implementations. For TLS 1.3 draft-
14, we tested interoperability with multiple implementations,
including BoringSSL, NSS, BoGo, and Mint, at the IETF96
Hackathon. For draft-18, we tested interoperability with the
latest version of Mint at the time of writing. In all cases,
our clients were able to connect to interoperating servers
using an ECDHE or PSK_ECDHE key exchange, then to
exchange data with one of the following AEAD algorithms:
AES256-GCM, AES128-GCM, and ChaCha20-Poly1305.
Similarly, our servers were able to accept connections from
interoperating clients that support the above ciphersuites.

Performance We evaluate the performance of our record
layer implementation at two levels. First, we compare our
implementation of AEAD encryption extracted to C using
an experimental backend for F? to OpenSSL 1.1.0 compiled
with the no−asm option, disabling handwritten assembly
optimizations. Our test encrypts a random payload of 214

bytes with 12 bytes of constant associated data. We report
averages over 3,000 runs on an Intel Core E5-1620v3 CPU
(3.5GHz) on Windows 64-bit.

Crypto.AEAD OpenSSL
ChaCha20-Poly1305 13.67 cycles/byte 9.79 cycles/byte
AES256-GCM 584.80 cycles/byte 33.09 cycles/byte
AES128-GCM 477.93 cycles/byte 28.27 cycles/byte

Our implementation is 17 to 18 times slower than OpenSSL
for AES-GCM and about 30% slower for ChaCha20-
Poly1305. Note that the performance of custom assembly
implementations can be significantly better. OpenSSL with

assembly can perform ChaCha20-Poly1305 in about one
cycle per byte and can do AES128-GCM and AES256-GCM
in less than half a cycle per byte.

Next, we measure the throughput of our record layer inte-
grated into miTLS by downloading one gigabyte of random
data from a local TLS server. We compare two different
integration methods: first, we extract the verified record layer
in OCaml, and compile it alongside the OCaml-extracted
miTLS. Then, we build an F? interface to the C version
of our record implementation and call it from miTLS. We
compare these results with the default AEAD provider of
miTLS (based on OpenSSL 1.1.0 with all optimizations,
including hardware-accelerated AES), and curl (which uses
OpenSSL for the full TLS protocol).

OCaml C OpenSSL curl
ChaCha20-
Poly1305 167 KB/s 183 MB/s 354 MB/s 440 MB/s
AES256-GCM 68 KB/s 5.61 MB/s 398 MB/s 515 MB/s
AES128-GCM 89 KB/s 5.35 MB/s 406 MB/s 571 MB/s

We observe that miTLS is not a limiting factor in these
benchmarks as its performance using the OpenSSL imple-
mentation of AEAD encryption is comparable to that of
libcurl.

Unsurprisingly, the OCaml version of our verified im-
plementation performs very poorly. This is due to the
high overhead of both memory operations and arithmetic
computations in the OCaml backend of F? (which uses
garbage-collected lists for buffers, and arbitrary-precision
zarith integers). The C extracted version is over 30,000 times
faster, but remains two orders of magnitude slower than the
hardware-optimized assembly implementations in OpenSSL
for AES. For ChaCha20-Poly1305, we achieve 50% of the
assembly-optimized OpenSSL throughput.

Although our code is optimized for verification and mod-
ularity rather than performance, we do not believe that



we can close the performance gap only by improving F?

code for hardware-accelerated algorithms such as AES-
GCM—instead, we intend to selectively link our F? code
with assembly code proven to correctly implement a shared
functional specification. We leave this line of research for
future work.
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