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a b s t r a c t 

Evaluating children’s reading aloud proficiency is typically a task done by teachers on an individual ba- 

sis, where reading time and wrong words are marked manually. A computational tool that assists with 

recording reading tasks, automatically analyzing them and outputting performance related metrics could 

be a significant help to teachers. Working towards that goal, this work presents an approach to automat- 

ically predict the overall reading aloud ability of primary school children by employing automatic speech 

processing methods. Reading tasks were designed focused on sentences and pseudowords, so as to obtain 

complementary information from the two distinct assignments. A dataset was collected with recordings 

of 284 children aged 6–10 years reading in native European Portuguese. The most common disfluencies 

identified include intra-word pauses, phonetic extensions, false starts, repetitions, and mispronunciations. 

To automatically detect reading disfluencies, we first target extra events by employing task-specific lat- 

tices for decoding that allow syllable-based false starts as well as repetitions of words and sequences 

of words. Then, mispronunciations are detected based on the log likelihood ratio between the recognized 

and target words. The opinions of primary school teachers were gathered as ground truth of overall read- 

ing aloud performance, who provided 0–5 scores closely related to the expected performance at the end 

of each grade. To predict these scores, various features were extracted by automatic annotation and re- 

gression models were trained. Gaussian process regression proved to be the most successful approach. 

Feature selection from both sentence and pseudoword tasks give the closest predictions, with a correla- 

tion of 0.944 compared to the teachers’ grading. Compared to the use of manual annotation, where the 

best models obtained give a correlation of 0.949, there was a relative decrease of only 0.5% for using 

automatic annotations to extract features. The error rate of predicted scores relative to ground truth also 

proved to be smaller than the deviation of evaluators’ opinion per child. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

To evaluate the reading aloud ability of primary school children,

eachers or tutors usually need to make the effort of providing a

evel-appropriate reading task to the child, manually take notes for

ime and accuracy, and calculate a metric such as correct words

er minute . This 1-on-1 procedure can be very time-consuming, es-

ecially if additional performance metrics are desired. Also, man-
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al evaluations are not consistently equal and depend on evaluator

ias and experience. An automatic system that can perform these

teps accurately would be a great complement to the usual meth-

ds and an indispensable tool for teachers that may have classes

ith up to 30 children. It could also lead to more frequent assess-

ents of a child throughout the school year, and a higher-quality

ccompaniment of their education. Providing an overall perfor-

ance score, as opposed to specific metrics and subjective param-

ters, can give a clear overview of a child’s status and can also be

eneficial for an analysis of a child’s progress over time. 

Although this work targets the widespread evaluation of

eading of all school children aged 6–10 years, the automatic

ssessment of reading aloud may also be helpful to detect read-

ng disorders and find specific problems. Furthermore, the same
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technology and methods are inherently connected to other ap-

plications such as automatic reading tutors where, for example,

a child’s reading is tracked in real-time against the written text

and incorrect pronunciations are detected. Some projects aimed

to create an automatic reading tutor that follows and analyzes

a child’s reading, such as LISTEN ( Mostow et al., 1994 ), Tball

( Black et al., 2007 ), SPACE ( Duchateau et al., 2009 ) and FLORA

( Bolaños et al., 2011 ). Other similar applications fall in the area

of computer assisted language learning (CALL), where most efforts

are for foreign language learning ( Abdou et al., 2006; Cincarek

et al., 2009 ) and are targeted to adults or young adults, for whom

speech recognition and speech technologies are relatively mature. 

It should be emphasized that the current work is concerned

with oral reading fluency evaluation, and no effort is made to mea-

sure comprehension of what is being read. Nevertheless, there is

evidence that oral reading fluency is an indicator of overall reading

competence ( Fuchs et al., 2001 ). Oral reading fluency in children

is defined as the ability to read text quickly, accurately and with

proper expression ( Buescu et al., 2015; National Reading Panel,

20 0 0 ). 

To be able to automatically assess the reading aloud perfor-

mance of children, deviations to the intended correct reading in

the form of disfluencies or hesitations must be detected. These

are linguistic events which affect the smooth flow of speech,

such as repetitions, mispronunciations, cut-off words and cor-

rected false starts ( Candeias et al., 2013 ). There are several known

methods to detect disfluencies, such as based on hidden Markov

models (HMMs), maximum entropy models, conditional random

fields ( Liu et al., 2005 ) and classification and regression trees

( Medeiros et al., 2013 ), though most of these effort s f ocus on spon-

taneous speech. Applicability to read speech is not a given since

different speaking styles vary in the production of disfluencies

( Moniz et al., 2014 ). Disfluencies in reading have different nuances,

and some prior work has targeted the automatic detection of these

events in children’s reading, with the most relevant contributions

described below. Some of the studies mentioned in the following

paragraphs also aim to automatically provide an overall reading

ability score, closely predicting human evaluation. 

Black et al. (2007) aimed to automatically detect disfluencies

in isolated word reading tasks. They found that human evalua-

tors rated fluency as importantly as accuracy when judging reading

ability. The target of detection was mostly sounding-outs, where

a child first reads phoneme by phoneme (which can be whis-

pered) and then reads the complete word. They build HMMs and

a grammar structure specialized for disfluencies, capable of detect-

ing partial words and allowing silence or noise between phones.

The correct word is compulsorily considered to be pronounced

in the final state of the grammar. They achieve 14.9% miss rate

and 8.9% false alarm rate for the detection of hesitations, sound-

outs, and whispering. By comparison, in our data, no phoneme

by phoneme sounding-out was found. Instead, there are syllable

by syllable sounding-outs with possible silence between syllables,

which we will address. An extension ( Black et al., 2011 ) aimed

to automatically evaluate reading ability and provide a high-level

literacy score. Eleven human evaluators of different backgrounds

(linguistics, engineering, speech research) rated children’s perfor-

mance in individual word reading tasks with scores from 1 to 7.

Using automatically extracted features and a selection of features

based on pronunciation, fluency and speech rate, a Pearson corre-

lation of 0.946 was achieved to predict mean evaluator’s scores. 

Duchateau et al. (2007) also target the reading of isolated

words. Based on HMMs, they use a two-layer decoding mod-

ule, first with phoneme decoding using phoneme-level finite state

transducers to allow false starts with partial pronunciations, and

then a second lattice allows for repetitions or deletions of words.

For the detection of reading errors on word reading, a miss rate
f 44% and a false alarm rate of 13% were achieved. For a task of

seudoword reading, they achieve a 26% rate of both misses and

alse alarms. They evaluate a child’s reading ability by the num-

er of correctly read words divided by time spent (same as correct

ords per minute) and show agreement to human evaluation with

ohen’s Kappa ( Cohen, 1960 ) above 0.6 when considering 5 per-

ormance classes. In Yilmaz et al. (2014) , an extension to the work

one in Duchateau et al. (2007) is developed. The new evaluation

s on a mixture of word and sentence reading tasks, and the mod-

ls are still based on HMMs. The decoding scheme is more flexible

o allow the most common substitutions, deletions and insertions

f phones in the language, as described by a phone confusion ma-

rix. This confusion matrix was obtained by comparing the output

f the recognizer with the transcription on a larger corpus. The

nal result for the detection of all disfluencies (word repetitions,

tuttering, skipping and mispronunciations) was 44% miss rate at a

% false alarm rate. 

Li et al. (2007) aimed to track children’s reading of short sto-

ies for a reading tutor. As a language model, they employed a

ord level context-free grammar for sentences to allow some free-

om on decoding words. Each word also had a concurrent garbage

odel with the most common 1600 words, which aims to detect

ord level miscues, but was also able to detect some sub-word

evel miscues for short words. On a detection task of all reading

iscues (including breaths and pauses), they achieved a miss rate

3.07% at a false alarm rate of 15.15%. 

It should be mentioned that much of the prior research

ocuses on individual word reading tasks – exceptions being

i et al. (2007) and parts of Yilmaz et al. (2014) –, whereas the

resent work targets the reading of sentences and pseudowords.

s mentioned, some studies go further and attempt to provide an

verall reading ability index that should be well correlated with

he opinion of expert evaluators ( Black et al., 2011; Duchateau

t al., 2007 ), which is also the ultimate objective of our work.

hese studies always focus on individual word reading tasks, and

ainly use reading speed and number of correctly read words

o estimate the overall score. Using and analyzing sentences and

seudowords for overall performance scoring is our main contri-

ution and it is expected that, by working with sentences as well

s pseudowords, a better understanding of a child’s reading ability

an be achieved. We also employ new methods to automatically

etect disfluencies and explored feature selection and regression

odels to provide performance scores based on multiple sources

f information that can be the ones that teachers consider to eval-

ate children. 

Automatically providing an overall reading aloud performance

core for children aged 6–10 years attending primary school is the

ain objective of this work. For that purpose, a European Por-

uguese (EP) database of sentence and pseudoword reading record-

ngs was collected and several types of disfluency events were

dentified. Methods based on task-specific lattices and phone pos-

erior probabilities were developed to annotate data automatically

nd detect the most common types of disfluencies. Specifically, re-

ults on detecting false starts, repetitions and mispronunciations

re analyzed. Several features that may be relevant for evaluat-

ng performance can be extracted by automatic methods and com-

ined into an overall score. We gathered the opinion of primary

chool teachers as ground truth for overall performance scores

nd applied regression models to the extracted features to closely

atch evaluator opinions. An analysis and selection of features is

erformed as some features prove to be more relevant than others.

This article is divided into three main sections that are also the

ey steps necessary for an automatic evaluation of reading aloud,

s mentioned above. First, the design and analysis of a database of

tterances read by children is described ( Section 2 ), as the type of

ata used and the disfluencies found are of the utmost importance
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or the rest of the study. Next, the automatic speech processing

o segment and annotate utterances while detecting several types

f disfluencies is described ( Section 3 ). Finally, the procedure to

btain an overall reading performance score is detailed ( Section 4 ):

btaining the ground truth from primary school teachers and using

anually and automatically extracted features as input for models

hat predict reading performance scores. 

. The database 

We found it necessary to create a large new speech corpus

f European Portuguese (EP) children’s speech with utterances

f reading tasks that are rich in the common disfluencies that

hildren exhibit while reading. There are some children’s speech

atabases for EP, such as Speecon with rich sentences (Speecon

onsortium, 2005 ); ChildCAST ( Lopes, 2012; Lopes et al., 2012 )

ith picture naming; the Contents for Next Generation (CNG) Cor-

us targeting interactive games ( Hämäläinen et al., 2013 ), and

antos (2014) and Santos et al. (2014) with child-adult interaction.

owever, these databases do not present the required samples of

isfluent read speech. As a first step to collect our data, we under-

ook a careful design of the presented reading tasks. 

.1. Design 

The Portuguese government has defined a set of Curricular

oals (CG) with qualitative and quantitative objectives per grade

or reading aloud ( Buescu et al., 2015 ). Some of these objectives

nclude target reading speed of words per minute on short texts,

ndividual words and pseudowords reading tasks. With the analysis

f curricular goals in mind, utterances consisting of read sentences

nd pseudowords were the goal of our data collection. We decided

ot to include reading of isolated words, as the required time for

 session could become too long and the child’s performance is

ikely to decrease with extended sessions. However, a pseudoword

eading task was included as it may provide a different and objec-

ive analysis of phonetic awareness and letter-to-sound rules inde-

endent of word familiarity and context. With sentences, plenty of

eading disfluencies can be collected from which the overall read-

ng performance of a child can be evaluated. Each child was pre-

ented with a reading task that asked them to read aloud twenty

entences and ten pseudowords. Forty reading tasks were estab-

ished (10 per grade) to balance repetition and diversity of the

ata. At a later stage of data collection, these were shortened to

 tasks per grade, to reinforce repetition. The vocabulary of the

et of sentences and pseudowords comprises a total of 2721 word

ypes. The distribution of the material for the different grades is

escribed below. 

.1.1. Sentences 

A large set of sentences was extracted from children’s tales and

chool books of the level of the target group (6–10 years old, 1st-

th grades). Selected sentences were mostly short, with a maxi-

um length of 30 words and a mean and standard deviation of

1.1 ± 5.8. Twenty sentences were included in each reading task

for a recording session with one child). The first concern for dis-

ributing sentences along the grades was to maintain a good rep-

esentation of all phones close to their frequency in EP, so that

coustic models of good quality could be built from the data. The

ther main concerns in building appropriate reading tasks were to

aintain the same average difficulty within a grade (with a rising

verage difficulty from 1st to 4th grades) and to have sentences of

arying difficulty within a task (resulting in overlapping distribu-

ions of difficulty for different grades). Furthermore, it is necessary

o elicit all types of reading disfluencies as training samples, so the
ifficulty cannot be too low, although a balance must exist so as

ot to make the tasks unduly hard. 

.1.2. Difficulty 

A parameter of difficulty was developed to classify sentences

ccording to phonological and phonotactic constraints. Although

t would be ideal to also relate a word’s difficulty to its age-of-

cquisition or familiarity, not all words of the proposed reading

asks were present in available lexical databases such as ESCOLEX

 Soares et al., 2014 ), and it was not possible to consider such fea-

ures. The proposed parameter of difficulty is based on the method

escribed in Mendonça et al., (2014) , where sentences are eval-

ated in terms of phonological complexity and variety. All words

ere split into syllables and a difficulty level was assigned to each

yllable, determined by rules based on: the length of the syllable;

he multiple pronunciation of some graphemes (e.g. (e.g. 〈 mãe 〉
m ɐ ̃j ̃] and 〈 bem 〉 [b ɐ ̃j ̃]); the ambiguous pronunciation of consonant

lusters (e.g. 〈 prever 〉 [p ɾɘˈve ɾ ] or 〈 florescer 〉 [flu ɾɘʃs ̍e ɾ ]) and vocalic

ncounters ( 〈 candeeiro 〉 [k ɐ ̃di ̍ɐ j ɾ u] or 〈 veem 〉 [v ̍e ɐ ̃j ̃]). Since each

yllable has a given minimum difficulty, the length of the sentence

lso contributes to difficulty. 

.1.3. Pseudowords 

Pseudowords (such as 〈 traba 〉 [t ɾˈab ɐ ], 〈 impemba 〉 [i ̃p ̍e ̃b ɐ ] or

 culenes 〉 [kul ̍ɛ n ɘʃ]) represent non-existing or nonsense words

hich can be used to evaluate morphological and phonemic

wareness. A novel method for the creation of pseudowords was

eveloped. Existing tools such as Wuggy ( Keuleers and Brys-

aert, 2010 ) take as input existing words and output pseudowords

hat differ in one or two syllables to the original words. This cre-

tes pronounceable words that are similar to existing words (such

s 〈 sapado 〉 from < sapato > ). The proposed method creates pseu-

owords without the starting point of valid words while maintain-

ng full pronounceability. It should create non-existing words and

he difficulty of reading them should be slightly higher than fa-

iliar words. The aim was to create pseudowords of two, three

nd four syllables. First, the most frequent syllables in each posi-

ion for words with those number of syllables were extracted from

 large lexicon of European Portuguese, CETEMPúblico ( Rocha and

antos, 20 0 0 ). Then, words of two or more syllables are created

andomly from a set of the most frequent syllables. Words that

ave syllabic combinations that do not respect pronounceability

ules are deleted, as are words that exist in the lexicon. The dif-

culty score for a pseudoword is calculated by the same method

escribed above for sentences. The distribution of the pseudowords

long the reading tasks is also similar to sentences, promoting a

ange of difficulty and rising average difficulty along the grades. 

.2. Collection 

The corpus of children reading aloud was collected at two pri-

ate and nine public schools in urban centers and peripheral areas

f Portugal’s central region with children attending primary school,

ged 6 to 10 years. A specific application was developed in which

he sentences are displayed in a large font size on a computer

creen simultaneously with the start of recording. This presenta-

ion allows no practice time that would influence performance. A

creenshot of the application can be seen in Fig. 1 as well as an

xample of the recording environment. The recordings were per-

ormed in school classrooms chosen for their low reverberation

nd noise acoustics. The children were asked to read aloud a set

f 20 sentences and 10 individual pseudowords. A lapel Lavalier

icrophone (Shure WL93) was used as the main recording device,

ccompanied by a standard table-top PC microphone as backup

Plantronics Audio 10). The background noise could not always be
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Fig. 1. Example of the recording environment (left) and software (right). 
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controlled completely, but was mostly low, with an average signal-

to-noise ratio of 30 dB, also because the main recording micro-

phone did a good job of filtering out background noise. 

2.3. Analysis 

The collected database consists of about 20 hours and 7418 ut-

terances of recorded speech from 284 children, 147 female and 137

male, distributed from the 1st to the 4th grade with 68, 88, 76

and 52 children, respectively. A set of 2288 utterances of pseu-

dowords and sentences from 104 children has been fully annotated

(5h30m), and these children (46 male and 58 female) are uni-

formly distributed among the four grade levels (26 per grade). This

set is analyzed below in terms of disfluencies and reading speed,

and was used as a training set for acoustic models and disfluency

detection. A partial annotation of the reading tasks of 75 children

was also performed, amounting to 750 utterances (1h31m), used

as a test set. 

2.3.1. Types and frequency of disfluencies 

The annotated speech exhibits a great variety of disfluencies

that represent the most common types of errors in reading aloud

by children. Based on Candeias et al. (2013) , the rules for the an-

notation and labelling procedure were defined and several types of

disfluency were identified as follows: 

• PRE – False starts that are followed by the attempted correc-

tion (pre-corrections), where multiple can occur. Example: for

prompt “grande espanto ” [ ɡɾ ̍ɐ ̃d ə i ʃp ̍ɐ ̃tu], utterance is “grande

espa espanto ” [ ɡɾ ̍ɐ ̃d ə ˈi ʃp ɐ i ʃˈp ɐ ̃tu]. 

• SUB – Substitution or severe mispronunciation of a word. Ex-

ample: for prompt “voava em largos círculos ” [vu ̍av ɐ ɐ ̃j ̃l ̍a ɾɡ u ʃ
s ̍i ɾ kulu ʃ], utterance is “voava em lares sicos ” [vu ̍av ɐ ɐ ̃j˜l ̍a ɾəʃ
s ̍iku ʃ]. 

• PHO – Small mispronunciation of a word, usually with a change

in one phone or a phone lengthening or extension (EXT, marked

with the symbol [:]). Example: for prompt “A Lena chegou a

casa, da escola ” [ ɐ l ̍en ɐ ʃəɡˈo ɐ k ̍az ɐ d ɐ i ʃk ̍ɔ .l ɐ ], utterance is “A

Lena chegou a casa, da escola ” [ ɐ l ̍en ɐ ʃə : ɡ ̍o ɐ k ̍az ɐ d ɐ ɛʃk ̍ɔ l ɐ ].
• REP – Repetition of a word (multiple repetitions may occur).

Example: for prompt “Ele já me deu ” [ ̍el ə ʒa m ə dew], utterance

is “Ele, ele já me deu ” [ ̍el ə ˈel ə ʒa m ə dew]. 

• INS – An inserted word that is not part of the original sentence.

Example: for prompt “mas também dizem ” [m ɐʃ t ɐ ̃b ̍ɐ ̃j ̃d ̍iz ɐ ̃j ̃], ut-

terance is “mas também me dizem ” [m ɐʃ t ɐ ̃b ̍ɐ ̃j˜m ə d ̍iz ɐ ̃j ̃]. 
• DEL – The word was not pronounced (deletion). Example: for

prompt “onde morava uma velha ” [ ̍o ̃d ə mu ɾˈav ɐ ̍ um ɐ v ̍ɛʎɐ ], ut-

terance is “onde morava velha ” [ ̍o ̃d ə mu ɾˈav ɐ v ̍ɛʎɐ ]. 
• CUT – The word is cut off, usually in the initial or final syllable,

but not corrected later. Example: for prompt “dá água ao papa-

gaio ” [da ̍ a ɡ w ɐ aw p ɐ p ɐɡˈaju], utterance is “dá água ao papaga ”

[da ˈa ɡ w ɐ aw p ɐ p ɐɡ ̍a ]. 
• PAU (…) – Intra-word pause, when a word is pronounced sylla-

ble by syllable with intervening silences. The symbol […] can

also appear in other disfluency events denoting a pause. Ex-

ample: for prompt “formosa e bonitinha ” [fu ɾ m ̍ɔ z ɐ i bunit ̍i ɲɐ ],
utterance is “formosa e boni…tinha ” [fu ɾ m ̍ɔ z ɐ i buni…t ̍i ɲɐ ]. 

Silence and non-speech events such as breathing, labial and

ackground noise were also annotated. Extensions and intra-word

auses may occur simultaneously with other disfluencies and are

arked with [:] and […] in the phonetic transcription. The num-

er of occurrences for each type of disfluency and their percentage

f total uttered words in the database are presented in Table 1 for

ach of the four grade levels. 

Some interesting phenomena can be observed, such as 1st-

raders being the ones that exhibit more intra-word pauses and

xtensions (due to slower reading), and 4th-graders having more

nsertions and deletions (due to faster reading). Furthermore, the

efined false start type (PRE) is the most common disfluency for

entences, whereas in pseudowords mispronunciations are more

ommon since there are fewer attempts to correct unknown words.

urprisingly, children did not use filled pauses when trying to read

loud as teen and adults do in spontaneous speech ( Veiga et al.,

012 ), using silent pauses instead when halting their reading. 

.3.2. Reading speed 

With annotated data, a simple analysis of the reading perfor-

ance of each individual child can be done. A common met-

ic is to evaluate reading speed considering only correctly read

ords, which is defined as Correct Words Per Minute (CWPM)

 Hasbrouck and Tindal, 2006 ). The average values of CWPM per

rade of 80 children of our corpus at the end of school year are

hown in Table 2 , side-by-side with the target curricular goals

 Buescu et al., 2015 ). A large inter-grade overlap of the distribu-

ions is observed, showing a variability in reading performance of

ifferent children, although the average does increase per grade.

ig. 2 displays this behavior with a boxplot of the distributions of

WPM, showing one clear outlier for the third grade. On data of

dult speakers reading ( Pellegrini et al., 2013 ), words per minute

verage 130.3 ± 17.8. Comparing these values to the observed child

erformance, there may still be expected improvement from 4th

rade children, although some perform as well as adults. For sen-

ence reading, the difference from average CWPM to curricular

oals increases in absolute terms along the grades, and these lower

WPM values may be explained by the difficulty of the reading
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Table 1 

Distribution of disfluency types in sentences for each of the four grades and in pseudowords (num- 

ber of events and % of total uttered words). 

Tags Sentences Pseudowords 

1st grade 2nd grade 3rd grade 4th grade Total Total 

PRE 295 (7.4%) 278 (5.7%) 281 (4.4%) 302 (4.1%) 1156 (5.1%) 318 (15.6%) 

SUB 182 (4.6%) 149 (3.1%) 215 (3.4%) 208 (2.8%) 754 (3.3%) 263 (12.9%) 

PHO 214 (5.4%) 169 (3.5%) 203 (3.2%) 143 (1.9%) 729 (3.2%) 476 (23.3%) 

REP 122 (3.1%) 89 (1.8%) 129 (2.0%) 161 (2.2%) 501 (2.2%) 4 (0.2%) 

INS 30 (0.8%) 42 (0.9%) 42 (0.7%) 65 (0.88%) 179 (0.8%) 20 (1.0%) 

DEL 5 (0.1%) 14 (0.3%) 16 (0.3%) 50 (0.68%) 85 (0.4%) 3 (0.2%) 

CUT 11 (0.3%) 15 (0.3%) 29 (0.5%) 27 (0.37%) 82 (0.4%) 2 (0.1%) 

EXT: 256 (6.5%) 145 (3.0%) 212 (3.3%) 73 (1.0%) 686 (3.0%) 431 (22.7%) 

PAU… 179 (4.5%) 126 (2.6%) 102 (1.6%) 65 (0.9%) 472 (2.1%) 251 (13.1%) 

Table 2 

Per grade mean and standard deviation of measured Correct Words per Minute 

(CWPM), Curricular Goals (CG) of CWPM and relative difference of CWPM to CG, 

for sentences and pseudowords reading tasks. 

Grade Words in sentences Pseudowords 

CWPM CG CWPM-CG CWPM CG CWPM-CG 

1st 59.7 ± 18.1 55 + 8.5% 18.8 ± 8.0 25 −24.8% 

2nd 85.2 ± 22.9 90 −5.3% 26.7 ± 8.4 35 −23.7% 

3rd 97.1 ± 23.5 110 −11.7% 26.1 ± 6.5 –

4th 110.4 ± 22.7 125 −16.7% 34.9 ± 9.6 –

Fig. 2. Median and quartiles boxplots of Correct Words per Minute (CWPM) for 

sentence reading tasks for each of the four grade levels. 
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Table 3 

Mean and standard deviation per grade of pseudoword reading reaction times (in 

seconds), number of uttered words with any kind of disfluency event (including 

extensions and intra-word pauses) and number of incorrect words. 

1st grade 2nd grade 3rd grade 4th grade 

Reaction Ttime (s) 1.65 ± 0.83 1.35 ± 0.43 1.14 ± 0.23 1.19 ± 0.35 

Number of disfluent words 

(out of 10) 

6.54 ± 2.89 3.23 ± 2.32 2.96 ± 1.87 2.70 ± 2.24 

Number of incorrect words 

(out of 10) 

4.29 ± 2.33 2.31 ± 2.06 2.19 ± 1.57 2.17 ± 1.92 

Fig. 3. Median and quartiles boxplots of average Reaction Times for the pseu- 

doword reading task for each of the four grades. 
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asks. It can be concluded that the suggested increase of difficulty

long the grades may be too steep to directly evaluate CG as in-

ended, and, for overall reading ability evaluation, this difficulty

eeds to be taken into account. For pseudowords, although there

re no CGs for the third and fourth grades, average CWPM values

re significantly lower than the CG, suggesting that the generated

seudowords (by joining common syllables and not based on ex-

sting words) are of high difficulty. 

The defined curricular goals can be a starting point to appraise

 child’s reading ability. However, they do not take into account

actors such as task difficulty or type of disfluencies; therefore,

ther ways to qualify reading performance should be considered. 

.3.3. Pseudoword performance and reaction time 

To further analyze children’s performance on the task of read-

ng individual pseudowords, data from 100 children is considered,

n which they read 10 individual pseudowords, one at a time per

ecording. This task differs substantially from sentence reading as

orphological and phonemic awareness are the factors that influ-

nce a good performance on reading unknown words. Several in-
eresting metrics can be extracted here, which may contribute to

verall reading performance. First, the reaction time of starting to

ead the word (the time between the start of presentation and the

nset of speech) reflects how fast the child achieves confidence

n reading the entire word or the first syllable, especially for first

raders. However, this metric does not reflect whether the word

s read correctly or not, and there are children with fast reaction

imes who do make several mistakes. Still, the average reaction

ime decreases along the grades, as observed in Table 3 and Fig. 3 ,

ith only a small increase from third to fourth grades. 

Also in Table 3 , the number of words that had any disfluency

vent is listed. For the first grade, the average of 6.5 disfluent

ords out of 10 is much higher than for other grades. Note that

his measure is not identical to number of incorrect words (also

resented in Table 3 ), since phone extensions or intra-word pauses

ay occur. 
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Fig. 4. Sentence FST for the three-word sentence ele sonhava muito [ ̍el ə su ɲˈav ɐ 
m ̍u ̃j ̃tu]. 
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3. Automatic annotation and detection of disfluencies 

The challenge of automatically processing utterances of read

child speech was approached as a two-step process. First, an align-

ment (or segmentation) that considers the original prompt and al-

lows extra content based on the original words is applied. With

the resulting segments, a classification stage determines if a word

was correctly pronounced or not. The annotated set of 2288 utter-

ances from 104 children amounting to 5h30m of audio was used

in this section as a training set. The test set corresponds to 1h31m

from 750 utterances of 75 children. 

3.1. Alignment 

False starts and repetitions represent most of the occurring ex-

tra segments in our annotated data: 91% of extra-events (false

starts, repetitions and insertions), as can be computed from

Table 1 . As such, for the automatic annotation, we decided to ap-

ply a first stage to align the data as best as possible to word-

relevant segments. One problem is not considering mispronunci-

ations, but it is still hoped that by forcing the original word to be

aligned to the mispronounced segment, correct time stamps may

be obtained. For this stage, the Kaldi system ( Povey et al., 2011 )

was used both to train acoustic models using only the manually

annotated train set and to perform the decoding. From previous

work ( Proença et al., 2015 ), it was found that using a small amount

of child speech data to train acoustic models was better than us-

ing models trained with a large amount of adult speech adapted

to child speech. We used standard triphone models with 12,0 0 0

Gaussians. 1 

The proposed method consists of the following steps: 

1. Voice activity detection is applied to the audio to deal with

intra-word pauses, and pauses longer than a given threshold are

removed. 

2. A specific word-level lattice for each given sentence or task is

built. 

3. Decoding is performed using the specific lattices, obtaining the

best label/segment sequence. 

4. A reconstruction of the alignment is done, taking into account

the silences previously removed. 

Intra-word pauses occur when words are pronounced syllable

by syllable with intervening silences, most often for first grade

children. It is hard for the decoder to align a word when silence

exists between syllables. Thus, we apply a voice activity detection

method to cut silent segments. Even if silence between words is

cut, which would help to clearly separate them, results improve

due to the amount of intra-word pause cases solved. We detect the

silence segments by analyzing the smoothed logarithmic energy of

the signal, and selecting low energy segments longer than 150 ms,

using a moving threshold that is a function on the high and low

energy levels in the signal. 

For the decoding stage, we build task-specific lattices to allow

some of the common patterns found in the data when considering

false starts and repetitions. Finite state transducers (FST) are used

and, compared to previous work ( Proença et al., 2015 ), there are

fewer possibilities for word sequence repetition, avoiding any back-

transitions that complicate the FST and increase decoding times,

which would be undesirable for a live application. As an example,

Fig. 4 describes the FST grammar for the three-word sentence ele

sonhava muito [ ̍el ə su ɲˈav ɐ m ̍u ̃j ̃tu] (“he dreamed a lot” ). There is

a basic group of FST nodes representing each word, allowing false
1 Acoustic models with neural network alternatives, trained with Kaldi, did not 

improve results for this task, probably due to the relatively small amount of training 

data. 

o  

I  

t  

e  
tarts and repetitions of the word. For example, the word “ele” is

epresented by the nodes 0, 1 and 2, and the transitions arriving at

odes 1 or 2. The same applies to the word “sonhava” with nodes

, 3 and 4, and for the word “muito” with nodes 6, 7 and 8. 

The word units with the suffix “PRE” represent syllable-based

alse starts (pre-corrections). Although many false starts are mis-

ronounced, they often correspond to interrupting the pronuncia-

ion attempt at syllable boundary. Therefore, these cases are con-

idered with multi-pronunciations for PRE up to (and excluding)

he last syllable, e.g., for a four-syllable word: the first syllable; the

rst followed by the second; or the first, second and third consec-

tively. Specifically, elePRE can only be [e]; sonhavaPRE can be [su]

r [su ɲˈa]; muitoPRE can only be [mu ̃j ̃]. 

In addition, we included the possibility of repeating the pre-

ious sequence of two or three words, at most. This kind of oc-

urrence, e.g., ele sonhava ele sonhava muito is very common in

he data, and often represents an attempt to correct a mistake by

estarting at a sentence or clause boundary. In the example FST,

aths that go through nodes 5, 9 and 10, represent these possibil-

ties. Furthermore, following the left-most arcs, one gets the orig-

nal sentence without any false starts or repetitions ( < eps > is an

psilon arc, consuming no input or output). 

Other than not accounting for mispronunciations, a limitation

f the described method is not allowing for deletions or insertions.

n fact, these are not very common in the data, as children prac-

ically always try to finish reading the sentence. For a more gen-

ral application, it may be preferable to allow deletions (skipped



J. Proença et al. / Speech Communication 94 (2017) 1–14 7 

0.1 0.2 0.5 1  2  5  10 
10

20

40

60

80

False Positive Rate (F Alarms) %

% )sessi
M( eta

R evitage
N eslaF

Fig. 5. Detection error tradeoff (DET) curve for the detection of false starts and 

repetition events on the training set. 
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2 Phoneme recognizer based on long temporal context, Brno University 

of Technology, FIT. http://speech.fit.vutbr.cz/software/phoneme-recognizer-based 

- long- temporal- context . 
ords), accounting for cases where a sentence is only partially pro-

ounced. 

After the segmentation and forced alignment, we need to clas-

ify each segment as correctly pronounced or not. 

.1.1. Results 

The WER using the text of the original prompts as hypothesis

nd the segmentation of the manual transcription as reference is

nly 9%. This means that repetitions, false starts, insertions and

eletions, occurring in the manual transcription, account for these

%. By using the described method that allows repetitions and false

tarts to be found, the best WER achieved in the training set was

.75%. To evaluate the system’s performance in detecting events

PRE or REP) in terms of misses (false negatives) and false alarms

false positives), we consider that: 

• Extra detected events are false alarms; 

• Any undetected event is a miss; 

• An event erroneously detected as an event of an adjacent word

(a substitution) is also a miss. 

These stipulations are similar to those used in NIST evaluations

 Fiscus et al., 2007 ), although to calculate the false alarm rate we

ivide the number of false alarms by the number of original words.

y using a wide search beam during decoding and varying the

ord insertion penalty and lattice rescoring weights, a Detection

rror Tradeoff (DET) curve can be obtained, as presented in Fig. 5 ,

or the training set. 

The best WER obtained (3.75%), corresponds to a very low false

larm rate of 0.89% and a 23.53% miss rate. Comparing to a previ-

us method ( Proença et al., 2015 ), where 30.62% miss rate is ob-

ained for the same false alarm rate, this represents a 23% rela-

ive improvement in miss rate for this operating point. Using the

ord insertion penalty and rescoring weight from the best WER,

he results on the test set are: 4.47% WER, 1.94% false alarm rate

nd 20.60% miss rate. The best possible WER would be 4.01%, by

hoosing an optimal word insertion penalty. Certain aspects of our

ystem can account for errors in specific event labeling: for small

ords with one syllable only repetitions are marked; and since

ome PRE tags of larger words are mispronunciations of the whole

ord, they can be decoded as the word followed by repetitions.

urthermore, there are insertions that are never accounted for, al-

ays leading to false alarms or segment mismatches, and lowering

verall accuracy. 
This stage outputs a time-stamped alignment of the data ac-

ording to word-relevant segments, which serves as input to the

ext classification stage. 

.2. Mispronunciation detection 

In order to detect mispronunciations we trained a neural net-

ork for phoneme recognition, using the Brno University of Tech-

ology neural network system, 2 which is based on long temporal

ontext. The manually annotated training set was used for training

he neural network, achieving about 70% phoneme recognition ac-

uracy on the test set. With this neural network we obtained the

osterior probabilities of the phoneme model states for all sen-

ences of the database, the so-called posteriorgrams. These posteri-

rgrams could be used as input for the FST decoder of Section 3.1 .

owever, doing so did not improve the results compared to us-

ng Gaussian mixture models. For mispronunciation detection, the

rained neural network provided better results due to better poste-

ior probabilities. These results were also better compared to using

eural network models trained with Kaldi. 

Using the posteriorgrams, we can use a word spotting system

o try to detect correctly pronounced words. The word spotting

ystem is based on the log likelihood ratio (LLR) between the

potting model (the sequence of phonemes of the spotting word)

nd a filler model that consists of a loop of all phoneme models

 Veiga et al., 2014 ). The token-passing paradigm is used to com-

ute the likelihoods and track the starting time of the tokens at

he output of the word spotting model. A match is detected if a

eak value of the LLR is above a given threshold. 

We apply the word spotting system to each word hypothesis

iven by the previous alignment, and find the peak LLR in the

lose vicinity of the given alignment. Several intervals to define

his close vicinity were tested. If the peak LLR of a word is below

 certain threshold, it is classified as mispronounced. The trade-off

f false alarm rate versus miss rate on mispronunciation detection

an be represented with a Detection Error Tradeoff (DET) curve by

arying the decision threshold, as described below. 

.2.1. Results 

During manual annotation, two classes of mispronunciations of

ifferent severity were considered: PHO – variations of only one

honeme; and SUB – severe mispronunciation or substitution of

he word. For the mispronunciation decision task, we present re-

ults using two ground truths: SUB or PHO segments as a mispro-

ounced class (SUB + PHO) versus correctly pronounced words; and

nly SUB versus correct words (since PHO is usually too difficult

o detect). We consider both the manual and the automatic seg-

entation to define segments for mispronunciation classification.

n the case of automatic segmentation, we allow some misalign-

ents with the ground truth. However, segments must overlap in

rder to be considered as matches to a particular ground truth seg-

ent. 

The discriminant to decide mispronunciation is the maximum

LR of word spotting in a segment and we considered several

ntervals around the final time of an aligned segment to search

or the maximum LLR. Given that there are some misaligned seg-

ents, this proved to be a better approach than calculating LLR

sing the time stamps of the segmentation. An optimization re-

ealed that the best interval for using manually annotated seg-

ents was −100 ms to + 50 ms and for the automatic segments

250 ms to + 50 ms. We also experimented with several LLR score

ormalizations: dividing by the number of phones of the searched

http://speech.fit.vutbr.cz/software/phoneme-recognizer-based-long-temporal-context
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Fig. 6. Detection error tradeoff (DET) curves for mispronunciation classification of 

SUB + PHO class on the test set. 

Fig. 7. Detection error tradeoff (DET) curve for mispronunciation classification of 

SUB class on the test set. 
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word; dividing by the number of frames occupied by the best

spot; and dividing by the LLR area of the spot as described in

Veiga et al. (2014) . All of these normalized scores benefited from

adding an extra value: the original LLR score scaled with a small

constant factor (the optimal factor varying per normalization ap-

proach). By doing this, the results are very similar, with normal-

ization by the number of phones having a slight advantage. This is

the one used in the results presented below. 

Fig. 6 presents the DET curve for the SUB + PHO vs. correct

words classification, using manual or automatic segmentation.

Fig. 7 presents the results for the SUB vs. correct words classifica-

tion. For a false alarm rate of 5%, miss rates of 40.99% and 44.94%

are obtained for the SUB + PHO class, and 28.88% and 32.62% for

the SUB class, for manual and automatic alignments, respectively.

We target a low false alarm rate that still provides miss rates un-

der 50%. The goal was to be lenient with the child reader, allowing

some non-detections instead of generating frequent false alarms. 

As expected, miss rates for using the automatic alignment are

slightly worse, although still very close to manual alignment, as re-

flected in the closeness of the DET curves. Nevertheless, we believe

that these results could be improved by using a fusion of different

scores or different normalizations. 
After applying the proposed methods, we obtain both an auto-

atic detection of the number of disfluencies per utterance and

n automatic annotation with the suggestion of phone sequence

or mispronounced segments. Most metrics that could be obtained

anually can also be extracted from the automatic output, such as

orrect words per minute. 

. Overall reading performance score 

Although measuring correct words per minute can already be

ne way to evaluate a child’s reading, there may be other factors or

pecific problems that characterize the child’s performance. Com-

uting a score based on features from sentence reading tasks and

seudoword reading tasks can hopefully give an improved overall

ssessment of reading performance. We have gathered the opin-

on of primary school teachers as ground truth for overall perfor-

ance and built regression models based on several features ex-

racted from child utterances, while comparing the use of manual

nd automatic annotations. 

.1. Ground truth 

In order to obtain a professional assessment for reading ability

n children, we asked primary school teachers, through a targeted

rowdsourcing effort, to listen to utterances of reading tasks of

hildren and provide a score for overall performance. These opin-

ons will be used as a ground truth with which our computed

cores should be well correlated. A total of 150 children from the

ollected dataset were evaluated, 43 from the first grade, 40 from

he second grade, 35 from the third grade and 32 from the fourth

rade. 

We aimed that each evaluator should not spend more than 30

inutes on the requested task and it was necessary to balance this

ime limit with how many raters a child could be evaluated by. In

ur corpus each child reads 20 sentences and 10 pseudowords. Ini-

ial tests for the rater effort showed that listening to only 5 sen-

ences and 5 pseudowords is enough to provide an overall perfor-

ance score, with the score rarely changing if more utterances are

istened to. This assumption allowed us to realistically aim for each

hild to be evaluated by at least 5 teachers. In the end, an average

f 10 teachers evaluated each child. 

We have 10 groups with a variable number of evaluators (7

inimum, 13 maximum, 10 average), for a total of 100 evaluators.

he number varies as our collection process was affected by some

llocated evaluators not finishing evaluations (not counted here).

ach group evaluates the same set of 15 children (for a total of

50 children) and each set is different for each group (but well bal-

nced for grade levels). Therefore, although results may be shown

or all evaluators, the calculations must be done separately for each

roup. 

.1.1. Evaluating evaluators 

For each evaluator, we can compute Pearson’s correlation of the

5 scores given to the 15 scores of another evaluator who gave

cores for the same children, repeating for all evaluators of the

ame group. This measure reflects pairwise agreement between

valuators. For a group of 10 evaluators, there would be 9 values

er evaluator. The mean of these 9 values for each evaluator de-

cribes their overall agreement with the group, shown in Fig. 8 . 

There is one clear outlier with an average correlation of 0.413;

his evaluator should be removed. It can be argued that the next

 with low correlations also stand out, and the evaluators below

.65 correlation should probably be removed for computing the

round truth. A problem is that some of them belong to the same

roup and by removing the worst of them, the others’ average can
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Fig. 8. Mean pairwise correlations by evaluator, sorted from lowest to highest. 

Table 4 

Final overall mean and standard deviation values of pairwise correla- 

tion and correlation to the mean of other evaluators for 100 evaluators. 

Correlation Mean ± S.D. Maximum Minimum 

Pairwise 0.796 ± 0.060 0.885 0.657 

To the mean of others 0.874 ± 0.069 0.967 0.679 
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Fig. 9. Mean of raw evaluator scores vs. mean of z-normalized scores. Mean dif- 

ferences are 0.062 ± 0.057, with a maximum of 0.329 (a score of 0.273 becoming 

−0.057). 

Table 5 

Enumeration of features. These are extracted separately for sentence tasks and 

pseudoword tasks, leading to 52 features. Those with an asterisk are not computed 

for the automatic methods. 

Feat # Abbreviation Description 

1 WPM Words per minute (original prompt) 

2 CWPM Correct Words Per Minute 

3 SyllsPM Syllables per Minute (original prompt) 

4 CSPM Correct Syllables per Minute 

5 CharsPM Characters per Minute (original prompt) 

6 CCPM Correct Characters per Minute 

7 SILrate Rate of Silence (Total Silence / Total time) 

8 SILini Average Initial Silence time before first word 

9 SILiniRate Initial Silence time / Total Time 

10 SUBrate Rate of SUB (number of SUB events / number of Words) 

11 PHOrate Rate of PHO (number of PHO events / number of Words) 

12 PRErate Rate of PRE (number of PRE events / number of Words) 

13 REPrate Rate of REP (number of REP events / number of Words) 

14 PAUrate Rate of PAU (number of PAU events / number of Words) 

15 DELrate ∗ Rate of DEL (number of DEL events / number of Words) 

16 EXTrate Rate of EXT (number of EXT events / number of Words) 

17 INSrate ∗ Rate of INS (number of INS events / number of Words) 

18 MispR Rate of SUB + PHO (Mispronunciations) 

19 ExtraR Rate of PRE + REP (Extra segment disfluencies) 

20 SlowR Rate of PAU + EXT (Slow reading disfluencies) 

21 FastR ∗ Rate of DEL + INS (Fast reading disfluencies) 

22 DisfR Rate of Disfluencies (sum of all events / number of Words) 

23 nSylls Total number of syllables (original prompts) 

24 nChars Total number of characters (original prompts) 

25 Diff1 Difficulty 1 – Pronunciation rules without counting length 

26 Diff2 Difficulty 2 – Original difficulty index (rules and length) 
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mprove and be higher than the threshold. Additionally, the pair-

ise correlations of all other evaluators must also be computed

gain. By removing the worst evaluators iteratively until none be-

ow 0.650 are kept, only 5 are eliminated. 

As an alternative to pairwise correlation, the correlation of an

valuator’s 15 scores with the 15 mean scores averaged from the

ther evaluators of the same group may be used. It gives higher

alues than the pairwise correlation but conclusions are similar.

he final values for the two metrics are shown in Table 4 . 

.1.2. Normalizing scores 

As an alternative to using a mean score for a child from the raw

alues given by teachers, applying a z-normalization (z-norm) per

valuator, as in (1) , can remove certain biases. These effects for an

valuator can be: i) constantly giving lower scores than the average

nes; ii) constantly giving higher scores than the average ones; iii)

onstantly giving scores near the minimum and maximum; or iv)

onstantly giving middling scores. 

 

′ = 

x − μ

σ
(1) 

The z-norm for each evaluator changes their scores ( x ) by sub-

racting the mean of their 15 scores ( μ) and dividing by the stan-

ard deviation of the 15 scores ( σ ). This gives values with zero

ean and unitary standard deviation. Since these values do not fall

n the intended scale of 0–5, they need to be reconstructed. We do

his by multiplying by the overall standard deviation of all scores

1500) and adding the overall mean. This method can provide val-

es slightly lower than 0 or higher than 5 (an alternative would be

o scale the minimum to 0 and the maximum to 5). 

A pairwise correlation analysis would provide similar results to

sing non-normalized scores, since the changes are linear and cor-

elation is linear. The same evaluators are removed. Fig. 9 com-

ares the final scores obtained using z-norm to the ones from a

imple mean of raw scores. The standard deviation of a child’s

cores (the 7 or more scores given by teachers) also lowers from

n average 0.719 to 0.549 with normalization. 
.2. Features 

In an attempt to explain which characteristics teachers take into

ccount when deciding on an overall performance score, we will

nalyze how well certain features fit to the ground truth score and

ry to get the best possible fit with a combination of these fea-

ures. Two separate analyses are done, using two sets of features:

ne set extracted from manual annotations and the other from the

utomatic annotation described in the previous section. Although

eatures from manual annotation may give the purest conclusions

n what is indeed significant for reading performance, the auto-

atically obtained features are the ones that will prove if we can

ssess performance without human intervention. 

The full set of considered features is described in Table 5 . The

ame features are extracted from sentence reading tasks and pseu-
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doword reading tasks separately, doubling the number of features

shown. Features can be split into four groups: reading speed 1–

6, silence related features 7–9, rate of disfluencies 10–22, and

task-specific information 23–26. Since there are a couple disflu-

ency types that were not targeted in the automatic methods (dele-

tions and insertions), features that depend on these disfluencies

are only computed and analyzed for the manual annotation. From

this point onwards, since features 1–26 repeat for sentences and

pseudowords, we will address sentence features by prefixing an ‘s’

and pseudoword ones with a ‘p’ (e.g., s1, s2, p1, p2). 

An additional feature – Grade – that describes the school grade

level each child is enrolled in (1 to 4) will also be analyzed. How-

ever, since a final application may not want to require knowledge

of a child’s grade level, we should build models that do not use

this feature. Evaluators did not have grade information, although it

is foreseeable that it will have some correlation to given scores, as

average performance increases per grade (as previously observed

for reading speed). 

Some of the considered features are clearly very similar to each

other, and some interesting conclusions may be drawn from an-

alyzing their pairwise linear correlations. Given that this analysis

results in a 53 by 53 symmetric matrix, these are the main obser-

vations for manually obtained features: 

• Features s1-6 (reading speed) are highly correlated between

each other ( > 0.95). 

• From p1-6, p5 is the most correlated with s1-6 (always ≈ 0.8),

which is also the highest correlation between sentence and

pseudoword features. 

• Rate of silence in sentences (s7) is inversely correlated to read-

ing speed s1-6 ( ≈ −0.69). 

• Rate of disfluencies is significantly correlated with non-

disfluency-related reading speed: s1 and s22 with −0.71; p1

and p22 with −0.61. 

• As expected, Grade is significantly correlated with task infor-

mation s23-26 (0.80 < ρ < 0.84) and with reading speed: s1-6

(0.67 < ρ < 0.72); p1-6 (0.45 < ρ < 0.52). 

Since some of these features provide similar information, it is

foreseeable that between highly correlated features such as s1-6,

one of them will be sufficient to predict reading performance. The

next step in feature analysis will be to determine how each of

them individually is able to predict ground truth scores. 

4.3. Individual feature performance 

The simplest way of fitting a feature to ground truth scores is

by applying a linear transformation as in (2) , trained by a linear

regression (LR) model that minimizes the sum of squared errors

(least squares). 

ˆ y = a T X + b (2)

In Eq. (2) , ˆ y is the predicted output, X is the feature matrix

(each column is a feature vector), a is the coefficient (weight) of

the input feature and b is the intercept (bias) term. Two metrics

that evaluate the fit of a model to the ground truth will be consid-

ered: Pearson’s correlation coefficient ( ρ or Corr) and root mean

squared error (RMSE) as described by Eqs. (3) and (4) . In both

equations, ˆ y i is the predicted output for a child, y i is the refer-

ence score (ground truth given by the mean of normalized scores

of teachers), μ ˆ y and μy are the mean scores for predicted outputs

and ground truth and n is the number of children/scores analyzed

( n = 150 in our case). 

ρ = 

∑ n 
i =1 

(
ˆ y i − μ ˆ y 

)
( y i − μy ) √ ∑ n 

i =1 

(
ˆ y i − μ ˆ y 

)2 
√ ∑ n 

i =1 ( y i − μy ) 
2 

(3)
MSE = 

√ ∑ n 
i =1 

(
ˆ y i − y i 

)2 

n 

(4)

To train and test regression models, we will consider a leave-

ne-out cross-validation with 150 folds, where 149 subjects are

sed to train a model and 1 is left out for testing, until every sub-

ect is used in testing. Corr and RMSE are calculated with 150 re-

ulting test values, gathered from the different folds. Although it is

umbersome to train 150 models, it is the best way to avoid de-

endence on different randomizations of folds that would lead to

ifferent average results. 

Table 6 indicates the performance of each feature if used indi-

idually to train a linear model. Random performance leads to a

orrelation coefficient of 0 and RMSE of 1.90. None of the strong

orrelation values are negative since any negatively correlated fea-

ures are transformed with the linear model with a negative coef-

cient a . 

The best overall feature for both manual and automatic meth-

ds is s6: correct characters per minute in sentences. A correlation

f 0.94 for the manual feature indicates that this metric by itself

an be a very good predictor of overall reading performance, prov-

ng that evaluators focus mostly on reading speed. Features based

nly on the number of disfluencies over the number of words

such as s22 – DisfR), although presenting a correlation around

.7 for sentences, do not perform as well as reading speed, which

hows that reading speed is of higher importance. Reading speed

etrics that do not depend on detecting disfluencies (s1, s3 and

5), although performing very well, are slightly worse than their

ounterparts that depend on disfluencies. For pseudowords, the

pposite occurs, with the non-disfluency-dependent reading speed

eatures having significantly better performance. This may be due

o some very poor performances in the pseudoword task, where

he time it took to read them conveys more information than the

umber of correct readings (values of 0 correct words per minute

an be found). Fig. 10 shows the relation between ground truth

cores and the best features for sentences and pseudoword tasks,

or the manual case, where there is evidence of a linear fit, espe-

ially for s6. 

It must be emphasized that the results obtained with features 1,

 and 5 can be dependent on the conditions of our data. In our col-

ected dataset, it is typical that reading tasks are completed even

f a lot of mistakes are made. It is very rare that a sentence is not

nished and pseudoword lists are always completely attempted,

hich leads to these reading speed metrics, which only take into

ccount the original prompt without considering if there are dis-

uencies, to have a certain significance for reading speed. If this

ere not the case, features 2, 4 and 6 would be clearly preferable,

ince unfinished attempts or nonsense attempts would severely in-

uence them. In a live application, these types of attempts should

e expected. Additionally, there may be other cases where reading

peed or correct words/characters per minute are not enough to

haracterize reading performance. For example, a very fast reader

ho often repeats words or gives a lot of false alarms but ends up

ronouncing words correctly could have the same CWPM value as

 reader with normal speed who reads without disfluencies. Even

or incomplete attempts, CWPM could be of normal value, since it

oesn’t take into account the deleted words. For these cases, the

eatures based on the relative number of disfluencies (e.g., s22 and

22) could be of help. 

For the automatic features, the same conclusions apply, al-

hough s6 performs slightly worse than its manual equivalent.

nexpectedly, the performances of disfluency-dependent reading

peed features (s2, s4 and s6) also fall closer to non-disfluency

nes (s1, s3 and s5) probably due to certain disfluency detection
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Table 6 

Performance of linear regression models predicting ground truth scores using individual features (average of 

leave-one-out cross-validation). 

Sentences Pseudowords 

Feat. Abbr. Manual Auto Manual Auto 

Corr RMSE Corr RMSE Feat. Corr RMSE Corr RMSE 

s1 WPM 0.919 0.459 0.917 0.463 p1 0.744 0.776 0.744 0.776 

s2 CWPM 0.928 0.434 0.923 0.447 p2 0.674 0.858 0.670 0.863 

s3 SyllsPM 0.927 0.435 0.926 0.439 p3 0.764 0.750 0.760 0.755 

s4 CSPM 0.938 0.402 0.930 0.429 p4 0.684 0.848 0.684 0.848 

s5 CharsPM 0.931 0.424 0.930 0.428 p5 0.805 0.689 0.803 0.693 

s6 CCPM 0.940 0.397 0.931 0.425 p6 0.703 0.827 0.691 0.840 

s7 SILrate 0.647 0.885 0.736 0.787 p7 0.324 1.099 0.397 1.067 

s8 SILini 0.347 1.091 0.480 1.019 p8 -0.157 1.176 -0.130 1.176 

s9 SILiniRate 0.283 1.115 0.231 1.132 p9 -0.073 1.173 0.005 1.169 

s10 SUBrate 0.376 1.105 0.615 0.916 p10 0.397 1.066 0.494 1.011 

s11 PHOrate 0.394 1.073 N/A N/A p11 0.031 1.167 N/A N/A 

s12 PRErate 0.547 0.973 0.577 0.951 p12 0.131 1.156 0.217 1.135 

s13 REPrate 0.190 1.142 0.378 1.076 p13 -0.008 1.170 0.010 1.170 

s14 PAUrate 0.457 1.036 0.328 1.098 p14 0.124 1.156 -0.172 1.192 

s15 DELrate -0.037 1.172 N/A N/A p15 0.109 1.164 N/A N/A 

s16 EXTrate 0.350 1.092 0.381 1.073 p16 0.174 1.145 0.189 1.135 

s17 INSrate 0.234 1.130 N/A N/A p17 -0.051 1.173 N/A N/A 

s18 MispR 0.525 0.991 0.615 0.916 p18 0.389 1.070 0.494 1.011 

s19 ExtraR 0.498 1.008 0.555 0.968 p19 0.139 1.154 0.236 1.130 

s20 SlowR 0.540 0.978 0.328 1.098 p20 0.247 1.127 -0.172 1.192 

s21 FastR 0.171 1.146 N/A N/A p21 0.092 1.160 N/A N/A 

s22 DisfR 0.663 0.872 0.683 0.850 p22 0.490 1.013 0530 0985 

s23 nSylls 0.456 1.034 0.456 1.034 p23 0.147 1.151 0.519 0.993 

s24 nChars 0.483 1.018 0.483 1.018 p24 0.361 1.084 0.147 1.151 

s25 Diff1 0.493 1.011 0.493 1.011 p25 0.464 1.029 0.361 1.084 

s26 Diff2 0.491 1.012 0.4909 1.0123 p26 0.462 1.031 0.464 1.029 

Fig. 10. Ground truth scores vs. the best sentence feature (s6, left) and the best pseudoword feature (p5, right) for manually obtained features, including their linear 

regression lines. 
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rrors, which may lead to the conclusion that it is not necessary to

etect disfluencies. Again, if our data presented nonsense attempts,

he results should be different. 

Using the Grade feature for a linear regression model gives a

ositive weight, 0.647 Correlation and 0.886 RMSE, showing that

cores increase per grade on average. 

Although the best feature – CCPM in sentences – already ag-

regates a lot of information (total reading time, length of tasks,

ength of words, correctly pronounced words), we aim to improve

odels of overall score by using information from additional fea-

ures in the same model. 

.4. Multi-feature models 

To use multiple features in a regression model, we explore lin-

ar regression (LR) and Gaussian process regression (GPR) over sev-

ral feature selection methods. One of the main problems to be
ackled is overfitting, since a linear regression considering all the

efined features will be strictly optimized for the training sets,

ith no regards for generalization. The selection of the most rele-

ant features can be a way to minimize overfitting as well as other

egression methods such as GPR. 

GPR builds kernel-based probabilistic models to infer con-

inuous values and is especially useful to avoid overfitting

 Rasmussen and Williams, 2006 ). Since it is probabilistic, confi-

ence intervals on a provided score can also be calculated. We

rained GPR models with a squared exponential kernel as the co-

ariance function. 

Stepwise regression can iteratively decide which features to in-

lude or remove for a regression model ( Draper and Smith, 1998 ).

e explored two stepwise approaches that start with no fea-

ures included: only adding features (add, forward or sequential)

nd bidirectional where features can be added and later removed

add + remove). The criterion to add a feature at each step is select-
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Fig. 11. Per child reference scores (Ground truth) and predicted scores by the best 

performing Gaussian Process Regression (GPR) model using automatic features, in- 

cluding a 95% confidence interval of the GPR model. 
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ing the one that minimizes the sum of squared errors (SSE) when

a linear regression is applied. However, a feature is only added if

the decrease in SSE is statistically significant with a p -value of an

F -statistic test lower than 0.05. Similarly, a feature can be removed

at a certain step if its contribution to lowering SSE at this stage is

not statistically significant. Either LR or GPR can be applied to the

selected features. 

Least absolute shrinkage and selection operator (LASSO) is a

regularization technique that we apply here for a regularized least-

squares regression ( Tibshirani, 1996 ). LASSO minimizes SSE but

adds constraints to the sum of absolute values of coefficients of

features, usually producing many weight coefficients equal to zero,

usually for highly-correlated features. It produces a solution for a

linear transformation but can also be a feature selection procedure

(by selecting the features with weights different from zero), after

which LR or GPR can be applied. 

We also explore principal component analysis (PCA) to

transform features into a set of linearly independent ones

( Jolliffe, 2002 ). By applying this transformation to the entire set of

features, it is hoped that the newly created features, especially the

ones that explain most of the variance of the data, can be useful

for regression. We apply PCA to the entire set of features, and se-

lect the ones that explain 95% of the variance to train LR and GPR.

Additionally, we apply bidirectional stepwise regression to the en-

tire set of new features. 

Using the stepwise algorithm for different cross-validation folds

may result in different selections of features, with some being se-

lected in several or all folds. With this knowledge, we analyzed

the results of pre-selecting the most common features given by

the stepwise folds and then running LR or GPR using only those

features. Although this feature selection depends on all the cross-

validation folds using stepwise selection, the actual models trained

(with a new leave one out cross-validation) do not depend on the

left-out test values. These selections can be different for manual

and automatic features. However, for manual features, the step-

wise algorithm using leave-one-out folds selected the same four

features 100% of the time, unlike with automatic features, where

variations did occur. So, for the manual case, the following selected

features are from a stepwise algorithm that allows the addition of

features with an increased p -value for the F -test (0.15), now with

variations occurring. The selections made are of features that were

chosen in stepwise manner for at least a certain percentage of the

folds: 80% (Sel80%), 40% (Sel40%) and 5% (Sel5%). 

Table 7 summarizes the results of all the multi-features mod-

els explored when considering manual or automatic features. The

first two values are of the best individual feature (s6 – CCPM) and

the selection of the best feature of sentences (s6) and the best of

pseudowords (p5 – CPM). 

The most notable observation is that GPR proved to be superior

to LR at every stage, demonstrating its generalization capabilities.

Successful feature selections only improved results slightly com-

pared to using GPR over all features, which is already very robust

to noise. The improvement of using multiple features instead of

only s6 (CCPM) stands out more clearly in RMSE, going from 0.397

to 0.366 with manual features and from 0.425 to 0.384 with auto-

matic features. Although using manual features provided the best

overall results, the best automatic features model only presents a

relative 0.5% lower correlation and 5% higher RMSE than the best

manual model. 

No features were removed during bidirectional stepwise regres-

sion. For LASSO, although it shows good performance, it never pro-

vided the best results. Applying PCA to the entire feature matrix

provided worse results, although it shows better performance than

stepwise selection over raw features in the automatic methods. 

Analyzing the features commonly chosen by stepwise regres-

sion in the manual case, the 40% selection provided slightly bet-
er results, with the selected features being: CCPM (s6) and FastR

s21 – rate of deletions + insertions) from sentences; p1 (CWPM),

2 (WPM) and p25 (Diff1 – difficulty based on pronunciation rules

nly) from pseudowords. This shows that reading speed of both

entences and pseudowords was relevant, as well as the difficulty

f pseudowords based on dubious and infrequent pronunciation

ules. The combined rate of deletions and insertions was also cho-

en, with a negative weight, meaning that although these disflu-

ncies are more common in higher grades, they are often given by

ast speakers and this term might appear as a regulatory term to

ower their scores that would otherwise be high. For the automat-

cally obtained features selected from stepwise regression, reading

peed of pseudowords was not chosen very often, although p22

DisfR – rate of all disfluencies) does appear in the > 40% selec-

ion. Nevertheless, the best model was obtained from the features

ppearing in more than 5% of the folds, which includes: reading

peeds of both sentences and pseudowords (s3-6, p1 and p4), p19

ExtraR – rate of false-starts + repetitions), p22 (DisfR – rate of all

isfluencies) and p25 (Diff1 – difficulty based on pronunciation

ules only). There are three common features with the manual

nalysis (s6, p1 and p25) with the rates of disfluencies being the

dditions that stand out. Since our automatic method does not de-

ect deletions and insertions, feature s21 (ExtraR) could not be se-

ected for the automatic analysis. 

Fig. 11 shows the predicted scores of the best model for au-

omatic features – GPR Sel5% – with their corresponding Ground

ruth scores, as well as a 95% confidence interval given by the

robabilistic GPR model. It can be seen that the GPR model fits

ost of the reference scores inside its 95% confidence interval, ex-

luding some outliers. 

Fig. 12 displays the reference ground truth scores with the pre-

ictions of the best model for automatic features (same as above),

ncluding the standard deviation (std) of the scores given by teach-

rs for each child (the mean of those values results in the reference

core for that child). This deviation, with an average of 0.549, re-

ects the evaluator uncertainty associated with scoring each child.

he RMSE of the predicted scores by the model (0.384) is lower

han evaluator std, and most predictions fall inside the deviation

nterval (again, with some outliers). 

Overall, since metrics based on both sentence reading and pseu-

owords reading tasks were used by the best performing models,

t may be concluded that teachers gave their overall impression
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Table 7 

Performance of multi-feature models on manual and automatic features (with test values after leave-one-out 

cross-validation). 

Manual features Automatic features 

Model Corr RMSE Model Corr RMSE 

LR (s6) 0.940 0.397 LR (s6) 0.931 0.425 

LR (s6,p5) 0.943 0.386 LR (s6,p5) 0.933 0.419 

GPR (s6,p5) 0.948 0.371 GPR (s6,p5) 0.938 0.403 

LR all 0.926 0.442 LR all 0.931 0.426 

GPR all 0.947 0.375 GPR all 0.943 0.388 

Stepwise add + LR 0.947 0.373 Stepwise add + LR 0.919 0.458 

Stepwise add + remove + LR 0.947 0.373 Stepwise add + remove + LR 0.919 0.458 

Stepwise add + GPR 0.949 0.367 Stepwise add + GPR 0.932 0.422 

LASSO 0.944 0.387 LASSO 0.932 0.423 

LASSO + LR 0.942 0.392 LASSO + LR 0.932 0.421 

LASSO + GPR 0.942 0.392 LASSO + GPR 0.939 0.400 

PCA 95% + LR 0.917 0.465 PCA 95% + LR 0.916 0.467 

PCA 95% + GPR 0.931 0.423 PCA 95% + GPR 0.927 0.436 

PCA all + Stepwise + LR 0.909 0.488 PCA all + Stepwise + LR 0.938 0.404 

PCA all + Stepwise + GPR 0.939 0.401 PCA all + Stepwise + GPR 0.936 0.408 

LR Sel80% (s6,21;p1,25) 0.947 0.373 LR Sel80% (s3,6) 0.937 0.407 

LR Sel40% (s6,21;p1,2,25) 0.947 0.373 LR Sel40% (s3,6,21;p22,25) 0.940 0.398 

LR Sel5% (s1,6,18,21;p1,2,5,6,25) 0.946 0.377 LR Sel5% (s3,4,5,6,21;p1,4,19,22,25) 0.937 0.405 

GPR Sel80% (s6,21;p1,25) 0.949 0.367 GPR Sel80% (s3,6) 0.940 0.397 

GPR Sel40% (s6,21;p1,2,25) 0.949 0.366 GPR Sel40% (s3,6;p22,25) 0.940 0.398 

GPR Sel5% (s1,6,18,21;p1,2,5,6,25) 0.947 0.373 GPR Sel5% (s3,4,5,6;p1,4,19,22,25) 0.944 0.384 

Fig. 12. Per child predicted scores by the best-performing Gaussian process regres- 

sion (GPR) model using automatic features and reference scores (Ground truth) in- 

cluding the standard deviation (std) interval of the opinion of teachers for each 

child. 
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that are outside the 95% confidence interval of the best GPR model. 
ased on both tasks. Although reading speed features were the

ost important factors for reading ability assessment, detecting

isfluencies proves to be of relevance as well, even for rates of spe-

ific types of disfluencies, which are different features than when

hey are considered to compute correct words/syllables/characters

er minute. The difficulty of the tasks given is also an important

actor to take into account when predicting reading performance

nd is possibly a normalizing factor. It is reflected in the selection

f the difficulty of the pseudowords for both manual and automatic

eature models and, indirectly, in the increase in performance ob-

ained when using correct characters per minute instead of correct

ords per minute, since the length of words may be a measure of

ifficulty. 
. Conclusion 

Aiming to automatically assess the overall reading aloud ability

f primary school children, we analyzed reading tasks using sen-

ences and pseudowords as a way to elicit complementary infor-

ation about their performance. A dataset was carefully designed

nd collected and several types of reading disfluencies were iden-

ified. The average performance of children was shown to increase

ith grade level on both sentence and pseudoword tasks, although

here is a high variation within a grade level. Some of the most

ommon disfluencies were targeted for automatic detection: false

tarts, repetitions, and mispronunciations. Using task-specific lat-

ices and syllable-based false starts, we managed to detect 80%

f disfluency events that result in extra segments, with a false

larm rate lower than 1%. Detecting mispronunciations proved to

e much more challenging and, by using a log likelihood measure

rom the output of a neural network built towards phoneme recog-

ition, we achieved a 5% false alarm rate and 33% miss rate for

evere mispronunciations and 45% miss rate when slight mispro-

unciations are included. 

To get ground truth for overall reading aloud score, the opinions

f primary school teachers were gathered and their mean opinion

aken as reference. Regression models were trained to automati-

ally predict these scores and, although it is undeniable that cor-

ect words per minute read in sentences is already a very good

easure for what teachers believe the reading level of a child to

e, certain features were found to be effective in getting automatic

coring closer to the ground truth. Specifically, features relating to

he performance in pseudoword tasks and the difficulty of these

asks were helpful when using either manually or automatically

btained features. Even if all disfluencies were not correctly iden-

ified with the automatic methods, the performance of models us-

ng features from the automatic annotation to predict overall read-

ng score fell close to the performance based on manual annota-

ion. Gaussian process regression (GPR) models were also shown

o perform better than simple linear regression, as they are robust

o noise and outliers. 

The predicted scores of overall reading performance fell mostly

nside the standard deviation of human evaluation, although some

utliers are found. Similarly, there are some ground truth scores
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Further work needs to investigate which factors that were not con-

sidered by the analyzed features lead to these outlier scores. 

The developed methods can ideally be applied to a stand-alone

application used by teachers and students, where reading tasks are

assigned, performed and automatically analyzed, keeping records

of a child’s performance for multiple tasks over time. 
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