
Project Snowflake: Non-blocking Safe Manual Memory

Management in .NET

Matthew Parkinson Dimitrios Vytiniotis Kapil Vaswani
Manuel Costa Pantazis Deligiannis

Microsoft Research

Dylan McDermott
University of Cambridge

Aaron Blankstein Jonathan Balkind
Princeton University

July 26, 2017

Abstract

Garbage collection greatly improves programmer productivity and ensures memory safety. Manual
memory management on the other hand often delivers better performance but is typically unsafe and
can lead to system crashes or security vulnerabilities. We propose integrating safe manual memory
management with garbage collection in the .NET runtime to get the best of both worlds. In our design,
programmers can choose between allocating objects in the garbage collected heap or the manual heap.
All existing applications run unmodified, and without any performance degradation, using the garbage
collected heap. Our programming model for manual memory management is flexible: although objects
in the manual heap can have a single owning pointer, we allow deallocation at any program point and
concurrent sharing of these objects amongst all the threads in the program. Experimental results from our
.NET CoreCLR implementation on real-world applications show substantial performance gains especially
in multithreaded scenarios: up to 3x savings in peak working sets and 2x improvements in runtime.

1 Introduction

The importance of garbage collection (GC) in modern software cannot be overstated. GC greatly improves
programmer productivity because it frees programmers from the burden of thinking about object lifetimes
and freeing memory. Even more importantly, GC prevents temporal memory safety errors, i.e., uses of
memory after it has been freed, which often lead to security breaches.

Modern generational collectors, such as the .NET GC, deliver great throughput through a combination
of fast thread-local bump allocation and cheap collection of young objects [63, 18, 61]. At the same time
several studies show that GC can introduce performance overheads when compared with manual memory
management [41, 44, 69]. These overheads are amplified in big data analytics and real time stream processing
applications as recent work shows [57, 36, 56, 49], partly due to the need to trace through large heaps. This
trend is likely to continue as modern servers make use of ever larger memories – sizes of hundreds of gigabytes,
or even terabytes, are already common.

Manual memory management addresses this problem: it avoids tracing the object graph to free objects
and instead allows programmers to exploit their knowledge of object lifetimes to free objects at specific
program locations. This improves throughput and also achieves better memory usage due to prompt deal-
location. The downside is that manual memory management is typically unsafe and can lead to system
crashes or security vulnerabilities, because freeing memory may create dangling pointers, i.e., pointers to
memory that has been freed, and dereferences of dangling pointers lead to undefined behaviour. Requiring
all memory to be manually managed is also unappealing because it negates the productivity benefits of GC.

1

In this paper, we show how to get the best of both worlds: combining a GC-based system – in our
case the Microsoft open-source .NET runtime [3] – with a facility to manage memory manually, without
compromising safety or performance. In our design, programmers can choose between allocating objects in
the garbage collected heap or the manual heap. All existing applications run entirely unmodified using the
garbage collected heap, and enjoy no performance degradation. Our design places no overhead on garbage
collections or other operations like write barriers. Programmers who wish to optimize their applications
need to incrementally change their code to allocate some objects from the manual heap, and to explicitly
deallocate those objects. We allow allocation and deallocation of individual objects at arbitrary program
locations, and we guarantee that manually managed objects enjoy full type- and temporal- safety, including
in the presence of concurrent accesses. Programmers get dynamic managed-exceptions for use-after-free
scenarios, but no crashes or security vulnerabilities.

Our novel programming model for manual memory management builds on the notion of unique owners
of manual objects: locations in the stack or on the heap that hold the only reference to an object allocated
on the manual heap. Our notion of owners is unique, compared to similar concepts in C++, Rust [8], and
Cyclone [62]: we allow arbitrary client threads to (a) share stack references to owners (but not to the un-
derlying manual objects), (b) create arbitrary stack references to the actual underlying manual objects from
these owner references, and (c) freely abandon the owner reference (which will eventually cause deallocation
of the underlying manual objects) – while guaranteeing use-after-free exceptions. To allow safe concurrent
sharing of manual objects we introduce the notion of shields. Accessing a manual object requires getting
a reference from a shield, which creates state in thread local storage that prevents deallocation while the
object is being used. Shields can only be created from the unique owning reference, thus when the reference
is destroyed no more shields can be created and memory can be safely reclaimed once all previously active
shields have been disposed.

We implement this model using a novel combination of ideas drawn from hazard pointer literature [50]
and epochs for memory reclamation [13, 39, 34] to provide an efficient lock-free manual memory manage-
ment scheme, without having to scan large portions of the heap. We develop an epoch-based protocol for
determining when it is safe to deallocate an object on the manual heap. The protocol accounts for weak
memory model effects, but it is non-blocking. That is, it does not require stopping the world or the use
of expensive synchronization. We introduce a mechanism that guarantees liveness of the epoch protocol by
employing virtual memory protection.

We note that our manual memory management scheme and programming model is independent of the
integration of manual memory management with garbage collection and could be applicable in a purely
manually managed system too, although it would be more difficult to ensure end-to-end memory safety
without an additional strong type system.

Our system is implemented as a fork of the Microsoft open-source .NET implementation. We have
modified the .NET runtime (CoreCLR) and extended the standard libraries (CoreFX) with APIs that use
manual memory. For manual heap allocations we have integrated jemalloc [6], an industrial size-class-based
allocator. Experimental results show substantial performance gains with this design: up to 3x savings in
peak working set and 2x improvements in run time. In summary, our contributions are:

• A new flexible programming model for manual memory management where objects can be allocated
and deallocated at any program point, and can be concurrently and safely shared amongst multiple
threads.

• A set of rules at the C# frontend that ensure the safe use of the programming model.

• An efficient implementation of this programming model that does not require stop-the-world synchro-
nization to safely reclaim manual memory.

• A design for safe interoperability with the garbage collected heap that does not adversely impact the
write barriers. To keep the latency of Gen0 collections low, we use existing GC mechanisms to scan
only the fragments of the manual heap that contain pointers to Gen0 objects, exactly as if those manual
objects were in an older generation on the GC heap.

2

• An implementation and detailed evaluation on industrial use-cases from machine learning, data ana-
lytics, caching middleware, and a set of micro-benchmarks.

2 Background and motivation

Consider the code below, taken from System.Linq.Manual, a widely used .NET library for LINQ queries on
collections that implement the IEnumerable<T> interface.

IEnumerable<TR> GroupJoinIterator(IEnumerable<TO> outer, IEnumerable<TI> inner, Func<TO, TKey>
outerKey,

Func<TI, TKey> innerKey, Func<TO, IEnumerable<TI>, TRes> res) {
using (var e = outer.GetEnumerator()) {

if (e.MoveNext()) {
var lookup = Lookup.CreateForJoin(inner,innerKey);
do { TOuter item = e.Current;

yield return res(item,lookup[outerKey(item)]);
} while (e.MoveNext());

} } }

The code defines an iterator for the results of a join. We iterate through the outer IEnumerable<TO>, outer.
If the outer enumerable is non-empty then we create a Lookup<TKey,TI> structure, which is – in effect – a
dictionary that maps keys to groupings of elements from the inner enumerable inner that share the same
key. We then iterate and apply the res() function through every item of the outer enumerable. The code
uses the C# yield return construct and as a result will be compiled to a state machine that can return the
results of res() one by one in successive calls.

The intermediate data structure lookup can potentially grow as large as the size of the inner enumerable
and we have to hold-on to it throughout the iteration of the outer enumerable. It cannot be stack-allocated
because yield return compilation has to save the current state of the iteration and pick it up in the next
invocation of the iterator. This lookup is an object that is likely then to survive many Gen0 collections
(which could happen as a result of allocations inside e.MoveNext() or res()), and possibly end up in the
oldest generation before it can be collected.

It is pretty clear though that once the outer enumerable iteration completes, the interal arrays and data
structures of the lookup dictionary are entirely safe to deallocate. A generational GC may, however, hold
on to these objects until the next full heap collection (such as a Gen2 in the .NET garbage collector) which
might happen much later, leading to a blowup of the peak working set; confirmed by our evaluation in
Section 5.

Instead we would like to enable programmers to allocate ordinary .NET objects like lookup in their
manually managed heap, and let them deallocate precisely when they wish. Note that System.Linq is a
generic library that can manipulate not only collections of unboxed data (such as structs of primitive types)
but also of GC-allocated objects. To maintain this genericity and still be able to allocate internal dictionaries
like lookup on the manual heap we must allow manual heap objects (like the internal arrays associated with
lookup) to contain references to GC-allocated objects. Hence a key design goal is to maintain full GC
interoperability, allowing pointers to and from the two heaps. This full interoperability is also essential to
allow gradual pay-as-you-go migration of applications to use manual memory management for certain objects
while others remain in the GC discipline, as performance requirements mandate.

2.1 The challenge of safe manual memory

Deallocation of manually managed objects, while preserving memory safety, is a challenging problem. We
seek ways to ensure – statically or dynamically – that an object will not be accessed after it has been
deallocated. The challenge is that references to the deallocated object could be remaining on the heap or
the stack after deallocation. This might lead to access violations, memory corruption, accessing data that
belongs to newer objects allocated in the same virtual address range etc. Scanning the roots and the heap

3

upon any manual object deletion to discover and zero-out such remaining references can be expensive as
each individual scan might have similar cost to a Gen0 collection.

Let us demonstrate the challenge of safety with an example from a multi-threaded caching component
of the ASP.NET framework [1], a popular framework for web applications. The cache is defined simply as a
dictionary of CacheEntry objects (for brevity throughout the paper we are ommitting C# access modifiers
like public, private etc.):

class MemoryCache {
Dictionary<object, CacheEntry> _entries;
bool TryGetValue(object key, out object res);
void RemoveEntry(CacheEntry entry);
void Set(object key, object value,

MemoryCacheOptions options);
}

class CacheEntry {
// cache entry metadata
...
// actual entry
Object m_Value;

}

Each cache entry object contains metadata about this cache entry (such as when it was last accessed) plus
the actual payload value of this object m_Value. The cache exposes a method TryGetValue() that tries to
fetch the payload object associated with a key in the cache. Occassionally the elements of the cache are
checked for expiration and RemoveEntry() is called on those elements that have expired, which removes those
entries from the shared dictionary. Client code can use a cache object _cache as follows:

if (!_cache.TryGetValue(key, out value)) {
value = ... ; // allocate a new object
_cache.Set(key, value, _options); // put it in the cache

}
// perform a computation with value

The cache entry payload objects, accessed from the m_Value field above, are objects that survive into
the older generations and may be collected much later than their removal from the dictionary. They also
have a very clear lifetime that ends with a call to RemoveEntry(). They are, hence, excellent candidates
for allocation on the manual heap. But how to deallocate those objects safely, when multiple threads are
accessing the cache and one of them decides to remove an entry?

2.2 Key insight: owner references and shields

In the caching example, the lifetime of the cache payload objects and access to them is controlled by the
associated CacheEntry. The field m_Value acts as the only owner of those objects. These objects are only
temporarily accessed by stack references in client code (while remaining in the cache) but all of those stack
references have been first-obtained through the pointer m_Value. Consequently, if we are to zero-out m_Value

in RemoveEntry() no future references to the payload object can be obtained.
But when can we actually deallocate and reclaim the memory of the underlying payload? In this example,

client threads may have already obtained stack references to the object in question before RemoveEntry() has
been called, and they may still be working on those objects after the corresponding cache entries have expired
and have been removed from the dictionary. We cannot deallocate these objects while other code is accessing
them.

Our solution to this problem is inspired by hazard-pointers [50], a technique originating in the lock-free
data structure literature. We introduce a mechanism to publish in thread-local state (TLS) the intention of
a thread to access a manual object through one of these owner locations. This registration can be thought
of as creating a shield that protects the object against deallocation and grants permission to the thread that
issued the registration to directly access the manual object e.g. call methods on it or mutate its fields. At the
same time no thread (the same or another) is allowed to deallocate the object and reclaim its memory. Once
client code no longer needs to access this object, it can dispose the shield, that is remove the reference to this
object from its TLS. It is not safe to directly access the object that has been obtained from a shield, after
the shield has been disposed because, following this disposal of the shield, the actual deallocation is allowed
to proceed (if some thread has asked for it, and provided that this reference does not exist in any TLS in
the system). If the owner link has been zeroed-out in the meanwhile no new references can be obtained.

4

struct Owner<T> where T : class {
Shield<T> Defend();
void Move<S>(ref Owner<S> x)

where S:class, T;
void Abandon();

}

struct Shield<T> : IDisposable
where T:class {

static Shield<T> Create();
void Defend(ref Owner<T> u);
T Value;
void Dispose();

}

class ManualHeap {
void Create<T>(ref Owner<T> dst) where T:class, new();
void CreateArray<S>(ref Owner<S[]> dst, int len);

}

Figure 1: Core Snowflake API

This is the key mechanism that we use to ensure manual memory safety. Next, we formally present our
programming model and describe the rules that programmers must abide by to preserve memory safety.

3 Programming model

The Snowflake programming model is designed for .NET and we present it here in C# syntax. First, we
remind the readers of some .NET features we depend on.

3.1 Preliminaries

C#/.NET introduce constructs that give programmers some control over memory layout. In our program-
ming model we will use struct types, which – contrary to classes – can be allocated on the stack or directly
inside another struct or class. Struct assignment amounts to memory copying and struct arguments are
passed by value. In addition, C#/.NET allow to pass arguments (of struct or class types) by reference by
explicitly using the ref keyword. The address of the corresponding struct will then be passed instead of a
copy of the struct, and in the case of classes, the address where the object pointer lives instead of the object
pointer.

3.2 Snowflake API

Figure 1 gives the public Snowflake API. To avoid any confusion we emphasize here that – by itself – the
API does not guarantee safety. Safe use of the API relies on a set of language frontend checks, described in
more detail in Section 3.4.

Owners An Owner<T> encapsulates a (private, unmanaged) pointer to a manual object. The runtime
implementation of our API relies for safety on the unique owner condition: No two Owner<T> structs should
ever be allowed to refer to the same manual object. This condition is enforced by our C# language frontend
(see Section 3.4). Note that Owner<T> is defined as a struct as opposed to a class to avoid an extra GC
object allocation per manual object. For reasons explained in Section 3.4 we are only allowed to pass such
structs as arguments to functions by reference.

Struct Owner<T> exposes three methods. The first Defend(), returns a Shield<T> and prevents deallocation
of the manual object associated with this owner (by publishing this manual object pointer in thread-local
state.) The second Abandon(), zeroes out the pointer to the manual object, so that no new Shield<T> can
be obtained, and schedules the manual object for deallocation at some safe point in the future, when it is
no longer protected by any shield in any thread. The final method Move(ref Owner<S> x), corresponds to
transferring ownership from x to the receiver struct. The pointer inside the x struct is moved to the receiver
struct and the x struct is zeroed out. If the receiver struct was holding a manual object pointer prior to the
call to Move(ref x) then that manual object will be scheduled for deallocation at some later safe point, since
– by the unique owner condition – the receiver struct was the only owner of that object.

5

Object T

Shield<T>

Thread 1 Stack Shield<T>

Thread 2 Stack
Owner<T>

Figure 2: Owners and shields.

Thread 1

Thread 2

Thread 3

Create Defend

Defend

Defend

Dispose
result of Defend

Dispose
result of Defend

Abandon

DefendThread 4

Dispose result
of Defend

Reclamation

Figure 3: Example of lifetimes of owners and
shields. Defend refers to calling Owner.Defend() to
get a shield; Dispose refers to disposing that shield.

Shields A Shield<T> acts as a stack-only access token to the underlying object. It can be obtained from
the Defend() method of an Owner<T> and encapsulates a reference to thread-local state that records the
underlying manual object as one whose memory cannot be reclaimed. It exposes the following members:
Value, is a property that gives access to the underlying manual object; and Dispose() un-registers the manual
object that this shield protects from thread-local state, making it thus a candidate for deallocation.

The lifetime of a shield is not tied to a specific access of a specific owner. Shields are only references to
slots in thread-local state and can be created in uninitialized form, and be used to defend multiple objects.
For this reason Shield<T> exposes two more methods: Create() which simply creates a new uninitialized
shield that does not yet defend any object against deallocation; and Defend(ref Owner<T> u) which defends
a new owner, and un-defends the owner it previously defended, if any. This is done by overwriting the TLS
slot that corresponds to thsi shield with the new object pointer. This method is handy for avoiding frequent
creation and disposal of shields on every iteration of a loop that accesses some manual objects. We can
instead create a shield before the loop (allocate a TLS slot) and dispose it in the end (deallocate a TLS slot),
but continuously re-use it (overwrite the pointer in that slot) to defend each item in each iteration.

Allocating on the manual heap Our API exposes Create() and CreateArray() methods in Figure 1
for allocating objects and arrays. These methods allocate in the manual heap and transfer ownership of
the newlly allocated object to the destination owner. In our C# frontend we use syntactic sugar new

Owner<MyClass>(...) for allocating in the manual heap and calling a constructor. Here we just focus on the
low-level .NET APIs.

3.3 Putting it all together: lifetimes

Figure 2 demonstrates how the stack and the heap may look during an execution of code that uses our
programming model. An owner can live on the stack, the GC heap or manual heap and contains a link
to the underlying manual object. Multiple threads may have used this owner to obtain stack-local shields,
which internally refer to the manual object directly.

Figure 3 on the other hand describes owner and shield lifetimes in a left to right chronological order.
Thread 2 creates an owner object and subsequently creates a shield through Defend() that allows it to access
the underlying object up to the point of disposal of that shield. At the same time Thread 3 can also access
the same object by obtaining another shield. At some point later on, Abandon() is called from Thread 2,
and the object is scheduled for deallocation. Thread 1 has in the meanwhile also defended and obtained a
shield, so is keeping the object from being deallocated. Deallocation can proceed once no thread holds an
(undisposed) shield to the underlying object. Finally, Thread 4, cannot obtain a shield as it is issuing the
Defend() call after Thread 2 has abandoned the owner.

6

class Foo {
Owner<Object> mobj;

void meth() {
Owner<Object> mobj1;
mobj1 = mobj;
// violated unique owner condition
mobj.Abandon();
var sh = mobj1.Defend();
sh.Value.ToString(); // unsafe!

} }

var sh = mobj.Defend();
var sh1 = sh;
// referring to the same TLS slot!
... use sh.Value here ...
sh.Dispose();
// Object can go away now
... use sh1.Value here ... // unsafe!

Figure 4: Unsafe owner (left) and shield (right) examples

3.4 Language frontend and safety

As mentioned in the beginning of the section, extra checks are needed at the C# frontend level to ensure safe
use of the Snowflake .NET API. Although the emphasis of this paper is on the efficient lock-free runtime, in
this section we describe those checks for completeness:

Ensuring the unique owner condition If Owner<T> structs are allowed to be duplicated then we may
be holding on to references into deallocated manual objects, because we have violated the unique owner
condition. As an example, consider the unsafe code fragment in the left part of Figure 4. Similar dangers
exist anywhere Owner<T> could be subject to copying. Concretely our frontend implements the following
rules:

• No assignment or cloning of a heap location or stack variable of type Owner<T> is allowed.

• No passing or returning Owner<T> by value is allowed. If we were to pass Owner<T> by value then the
callee and caller would effectively be holding two copies of the struct, compromising safety.

• No instantiation of generic methods with Owner<T> types is allowed. Generic code can involve arbitrary
assignments where the type of the object we are assigning is a generic parameter, or function calls that
pass arguments of generic parameter types, and hence can lead to potential duplication of Owner<T>

structs if those generic parameters were to be instantiated to Owner<T>.

Effectively our frontend guarantees that Owner<T> is a non-copyable value type.

Ensuring shields are unique Similarly to Owner<T>, Shield<T> should be a non-copyable value type.
Consider the unsafe code fragment in the right part of Figure 4. By duplicating sh into sh1 we kept a
reference to the TLS slot that guarded our manual object past the point where that TLS slot stopped
guarding the object, resulting in an unsafe access. For this reason, our C# language frontend enforces the
same non-copyable value type conditions on Shield<T>, with a small improvement: a simple static analysis
does allow a method to return by value a fresh Shield<T>. A fresh Shield<T> is one that is created within
the scope of a method and is never stored or copied, but is allowed to be returned to the caller (and then
freshness propagates). This improvement is useful to allow the line: var sh = mobj.Defend(); above. That
line – superficially – looks like a copy, but is actually innocuous. If we were not to have this improvement,
our API would have to provide a Defend() method that accepted a ref Shield<T> argument.

Ensuring shields are stack-only Shields cannot be stored on the shared heap. The reason is that a
shield has a meaning only for the thread that created it – it holds a pointer to a TLS slot. By placing shields
on the shared heap, we generate possibilities for races on state that was supposed to be thread-local.

7

internal class CacheEntry : ICacheEntry {
...
Owner<object> m_Value;
}

class MemoryCache : IMemoryCache {
...
object Set(object key, ref Owner<object> value, MemoryCacheEntryOptions options) {...}
bool TryGetValueShield(object key, ref Shield<object> result) {...}
bool RemoveEntry(CacheEntry entry) {
...
entry.m_Value.Abandon();

} }

Figure 5: Memory cache API modification for Snowflake

Ensuring manual objects don’t escape past their shields lifetimes Consider the unsafe fragment
below:

var sh = owner.Defend();
Object mobj = sh.Value;
... use mobj here ... // safe
foo.f = mobj; // unsafe (heap escape)
sh.Dispose();
... use mobj here ... // unsafe (use after shield dispose)

Here, we’ve created a shield from owner, and we are allowed to access the underlying manual object mobj.
However, we must ensure that the object does not escape onto the heap because this can result in an access
after the local shield has been disposed of and the object has been deallocated. We must also ensure that
we do not access the object locally after the shield has been disposed.

Our frontend enforces those restrictions with a conservative dataflow analysis that has proven sufficient
for our examples. Whereas the escape past the lifetime of the shield is easier and more local to detect, the
heap escape analysis can become more involved as we need to descend through potentially deep hierarchies
of method calls. For this reason we also have experimented with an alternative implementation that enforces
this restriction uniformly by throwing exceptions in the write barriers if the object we are storing belongs in
the virtual address range of the manual heap. We have measured the impact to performance of this check
to be negligible because this path is extremely rare and does not involve another memory access.

3.5 Examples of Snowflake in action

We present here some examples of how Snowflake can be used to offload objects to the manual heap, safely.

Lists with manual spines The C# collection library defines a List<T> collection for lists of T elements.
Internally it uses an array T[] to store those elements, which gets appropriately resized when more space
is needed. This array can grow quite large and persist many collections, but is completely internal to the
List<T> object, and hence it is an ideal candidate for moving it to the manually managed heap. Here is the
original (left) and the modified (right) code:

class List<T>{ T[] _items; ...} class List<T>{ Owner<T[]> _items; ...}

Multiple methods of List<T> use _items and each requires modification. Here is the original Find method
(slightly simplified for space) that finds the first element that matches a predicate match or returns a default
value. To port this to our new definition for _items we have to obtain a shield on the owner struct.

8

T Find(Predicate<T> match) {
for (int i = 0; i < _size; i++) {

if (match(_items[i]))
return _items[i];

}
return default(T);

}

T Find(Predicate<T> match) {
using (Shield<T[]> s_items =

_items.Defend()){
for (int i = 0; i < _size; i++) {

if (match(s_items.Value[i]))
return s_items.Value[i];

} }
return default(T);

}

The using construct automatically inserts the Dispose() method on a IDisposable object (such as our
Shield<T>) in ordinary and exceptional return paths and we use it as convenient syntactic sugar. Inside the
using scope we can access s_items.Value, but it must not escape on the heap nor be used past the using

scope.
Note though, that since the new List<T> has a manual spine, when it is no longer needed programmers

have to explicitly deallocate it using the following method:

void Abandon() { _items.Abandon(); }

This is the only new method we added to the List<T> API. Finally note that List<T> itself can be
allocated on the GC heap or on the manual heap. We stress that having owner structs inside GC objects
is not problematic for memory safety. Whereas the GC object is shared by many threads, our API ensures
there is still a unique owner into the manual spine of the list, the one that is stored inside that GC object.
In addition to this distinguished pointer, plus possibly many shield-registered stack references to the manual
spine can also exist.

Moving ownership in lists with manual spines Occassionaly the internal manually allocated array of
a list must be resized to increase its capacity. Here is how we can do that:

var new_items = new Owner<T[]>;
ManualHeap.CreateArray(ref new_items, new_size);
using (var s_items = _items.Defend(),

s_new_items = new_items.Defend()) {
Array.Copy(s_items.Value, 0,

s_new_items.Value, 0, _size);
}
_items.Move(ref new_items);

We first allocate new_items, a new Owner<T[]> using our ManualHeap.CreateArray<T>() method. Once that
is done, we obtain shields to both the old and new items, and copy over the contents of the old items to the
new array. Finally, we transfer ownership of the new_items to _items, which schedules the original manual
object for deallocation.

Collections of owner objects List<T> is an example where the spine of a data structure can be moved
over to the manual heap, but ASP.Net caching actually does store long lived data. For this reason we may
port the m_Value field to be an owner of a manually allocated object. For convenience we will keep the
dictionary spine on the GC heap. We first need to change the CacheEntry and the interface to the memory
cache, as shown in Figure 5.

Method Set() now accepts a reference to a locally created owner value, and will Move() it in to the cache if
an entry is found with the same key or will create a fresh entry for it. Method TryGetValueShield() is passed
in a shield reference, and uses it to protect an object (if found) against deallocation. The client code can
then just access the object through that shield, if TryGetValueShield() returns true. Finally RemoveEntry()

abandons the owner, scheduling it for deallocation once it is no longer shielded. The client code can be as
follows:

using (var res_sh = Shield<object>.Create()) {
if (!_cache.TryGetValueShield(key, ref res_sh)) {

Owner<byte[]> tmp;
ManualHeap.CreateArray(ref tmp, size);

9

res_sh.Defend(ref tmp);
... // populate tmp, through res_sh
_cache.Set(key, ref tmp, _options);

}
... // use res_sh to complete the request

}

First we create a shield that will protect manual objects against deallocation throughout the request. We
create it uninitialized to start with, so it does not protect any object. Subsequently we try to make this new
shield defend the object that this key maps to in the cache, if such a cache entry exists. If we do not find it
in the cache, we create a new local owner and allocate something, and use the shield to protect it and finally
exchange it into the cache. In the rest of the code we can access the manual object (coming from the cache
or freshly allocated) through res_sh.

A set of simple changes in an application can offload many objects that survive into older generations to
the manual heap and result in significant speedups and peak working set savings as we will see in Section 5.

4 Implementation

Next we describe the key parts of our implementation. We have extended CoreCLR with the shield runtime,
integrated a modified version of jemalloc to manage the physical memory for the manual objects, and added
interopability with the GC to allow the manual heap to be scanned for roots.

4.1 Shield runtime

Our approach to implementing Shield<T> combines ideas from both hazard pointers [50] and epoch-based
reclamation [39, 34, 13]. We provide a comparison in the related work, and just explain our implementation
here.

The core responsibility of the shield runtime is to safely enable access to (and deletion of) manually
managed objects, without requiring expensive synchronisation on accessing an object (a “read barrier”). To
achieve this we allow reclaiming manual objects to be delayed.

Each thread holds a thread-local array of slots, each of which protects a manual object (or 0x01 for an
unused slot). A Shield<T> struct then holds a pointer (IntPtr in C#) capturing the address of the thread-
local slot (slot field) that this shield is referring to. The TLS slot stores the address of the manual object.
The same address – for efficient access that avoids TLS indirections – is also cached as a field (value) of
type T inside Shield<T> and is what the Value property returns. Allocation of shields amounts to finding
an unused TLS array slot and creating a shield that holds a pointer to that yet uninitialized slot. A call
to v.Defend(ref x.o) is rewritten to v.value = SetShield(ref v.slot, ref x.o) where SetShield() simply
sets the TLS slot to contain the address of the manual object and returns it.

For abandoning a manual object, we effectively do

void Abandon(ref Owner<T> o) {
var x = InterlockedExchange(o, null);
if(x != null) AddToDeleteList(x);

}

where AddToDeleteList adds the object to a thread local list of objects that need to be reclaimed. The call to
InterlockedExchange is a compiler intrinsic that sets a location to the specified value as an atomic operation
and returns the old value.1

Occasionally, when the objects in the list consume too much space we trigger Empty() to reclaim memory:

void Empty() {
for (var i in DeleteList)

if(IsNotShielded(i)) free(i.ptr);
}

1We use the Microsoft VC++ intrinsics – in gcc this would be __sync_lock_test_and_set (o, null).

10

IsNotShielded() needs to check that every thread’s TLS shield array does not contain the object. However,
during that check some thread may be calling SetShield. Correctness is predicated on the correct interaction
between IsNotShielded and SetShield.

Näıve approach to synchronisation One way to solve the synchronization problem is to exploit the
“stop-the-world” GC synchonization for collecting the roots. GC suspends all threads (which also causes
all threads to flush their write buffers so that all memory writes are globally visible). At that point we can
iterate through every thread and call Empty() on the thread-local DeleteList.

To make Empty() efficient, we first iterate through all threads and build a Bloom filter [19] that contains
all shields of all threads. We use that Bloom filter to over-approximate the IsNotShielded check. This avoids
the need to repeatly check with the local shields of each thread.

However, there is a danger if we allow mutator threads to be suspended during a SetShield() call. In C
notation, SetShield() executes the following:

Object* SetShield(Object** slot, Object** fld) { *slot = *fld; return *slot; }

If a thread is suspended for GC right after reading *fld; but before publishing the object in the shield slot

and another thread has already issued an Abandon() on the same manual object we can get into trouble:
a call to Empty() from the GC thread will not see the object in the shield TLS array of the first thread
and may deallocate it. When threads resume execution, the first thread will publish the address of a (now
deallocated) object and continue as normal, leading to safety violation. For this reason we prevent a thread
that executes SetShield() from being suspended. This is supported in CoreCLR by executing SetShield()

in “cooperative mode”. This mode sets a flag that forces the runtime to back out of suspending the thread.
We have solved the problem by effectively forbidding calls to IsNotShielded() from occuring during

SetShield(). However, calling Empty() this way comes at the cost of suspending the runtime. We want
to maintain eager deallocation of manual objects, and avoid suspending the runtime too often, so we only
use this approach if a GC is going to occur. Next, we develop another mechanism that does not require
suspending any threads, and allows Empty() to be called called independently by any mutator.

Epochs for concurrent reclamation To enable more concurrency for manual object collection, we
use epochs to synchronise the threads’ view of shields, drawing from work on reference counted garbage
collectors [13]. Epochs allow thread-local collections without stopping any threads or requiring expensive
barriers in the Defend code.

We use a 64-bit integer for a global epoch. Each thread has a local epoch that tracks the global. Adding
an object to the DeleteList may trigger advancement of both this thread’s local and/or the global epoch. If
the running thread detects that it is lagging behind the global epoch, it just sets its local epoch to be equal
to the global epoch. If the running thread detects that all threads agree on their local epochs – and epoch
advancement is heuristically sensible – then it performs a CAS that sets the global epoch to be the agreed
upon epoch plus one. It is okay for the CAS to fail, as that means another thread has advanced the global
epoch.

This protocol guarantees that the global epoch is never more than one ahead of any local epoch. In
Figure 6 we illustrate the ordering of such epoch events (arrows denote causal happens-before relations).
L(n) signifies a thread writing to its local epoch the value n; and G(n) signifies the global epoch advancing
to n. To advance the global epoch from n to n + 1, every thread’s local epoch must be in epoch n.

When we add an object to the DeleteList we record which local epoch it was deleted in. Occasionally,
mutators will call Empty(), and create the Bloom filter of all threads’ shields, without stopping any thread.
Unfortunately not all writes to the shield TLS may have hit the main memory so there is a possibility that
an object will be residing in the DeleteList with its corresponding SetShield() write effects still in flight; we
cannot actually deallocate those objects. However, all the objects in the DeleteList whose recorded epoch
count is less than three epochs behind the local epoch, if they are not in the Bloom filter, are actually safe
to deallocate.

We illustrate why three epochs is enough in Figure 6. First we define 3 types of logical event: Abandon
events, A(o) denote the exchange of the owner with null and scheduling a pending deallocation; Defend

11

L(0) A(o1);A(o2) L(1) L(2) L(3) R(o1) fails

G(1) G(2) G(3) . . .

L(0) L(1) D(o1) L(2) D(o2) fails . . .

Figure 6: Happens-before ordering of global (G), local (L) epoch events, abandon (A), defend (D), and
reclaim (R) operations. Thread 1 in the top line, Thread 2 execution in the bottom line.

events, D(o) denote the combined effects of SetShield() – that is reading of the object and storing it in the
TLS shield array; and Reclaim events, R(o) denote successful object deallocation. Assume that in epoch 0,
Thead 1 abandons both o1 and o2 (A(o1);A(o2)). We have several possibilities for Thread 2:

• Assume a defend event D(o1) in epoch 1. The effects of this event (in particular the write to the TLS
slot) are guaranteed to be visible by epoch 3 in Thread 1, as the blue solid arrows indicate. This
ordering on x86 comes as part of the memory model; for ARM and Power barriers are required in the
global and local epoch updates.

• Assume Thread 2 attempts to defend an object o2 in a later epoch, epoch 2 (D(o2)). However, as the
red solid arrows indicate, the abandon event of o2 (A(o2)) must have become visible by now and hence
we will be defending null – no violation of safety.

• If Thread 2 defends one of o1 and o2 earlier (e.g. in L(0)) then trivially less than three epochs suffice
(not depicted in the diagram).

We conclude that in all cases we need not wait more than three epochs to safely delete an object if it is
not contained in some TLS shield array. Effectively, and taking into account that IsNotShielded() may also
be called with the runtime suspended, our IsNotShielded code becomes:

bool IsNotShielded (Node i) {
return (runtimeIsSuspended || (i.epoch + 3 <= local_epoch))
&& ... ;//check per thread shields

}

To efficiently represent the epoch an object was abandoned in, we use a cyclic ring buffer segmented into
four partitions: three for the most recent epochs and one for the spare capacity.

Finally notice that our reasoning relies on A(·) and D(·) events being atomic with respect to local epoch
advancement. This holds as each thread is responsible for advancing its own local epoch.

Protocol ejection for liveness A thread being responsible for advancing its own epoch can lead to
liveness problems. If a thread blocks, goes into unmanaged code or goes into a tight computation loop, it
can hold up the deallocation of objects. To solve this problem we introduce an additional mechanism to eject
threads from the epoch protocol. If Thread A has too many objects scheduled for deallocation, and Thread
B is holding up the global epoch, then Thread A will eject Thread B from the epoch consensus protocol and
ignore its local epoch; Thread B must rejoin when it next attempts to use SetShield().

Each thread has a lock that guards the ejection and rejoining process. When Thread A ejects Thread B,
it makes the TLS shield array of Thread B read-only using memory protection (VirtualProtect in Windows,
mprotect in Linux). It then marks Thread B’s epoch as a special value EJECTED which allows the global epoch
advancing check to ignore Thread B. As multiple threads may be simultaneously trying to eject Thread B,
the ejection lock guarantees that only one will succeed (TryAcquireEjectionLock()).

12

void Eject(Thread *other) {
if (other->TryAcquireEjectionLock()) {

VirtualProtect(other->Shields,
READONLY);

other->local_epoch = EJECTED;
other->ReleaseEjectionLock();

}}

void Thread::Rejoin() {
this->AcquireEjectionLock();
VirtualProtect(this->Shields,

READWRITE);
this->local_epoch = global_epoch;
this->ReleaseEjectionLock();

}

Note that we must rejoin the protocol if we are to use shields, hence we must wait to acquire the ejection
lock (AcquireEjectionLock()). We can then un-protect the TLS pages that hold the shield array, and set
our local epoch back to a valid value to rejoin the consensus protocol.

void AddToDeleteList(Object *o) {
Epoch curr = local_epoch;
if (curr == EJECTED) curr = global_epoch;
DeleteList->push(o, curr);
... // possibly call Empty()

}

To handle the ejection mechanism, we must
adapt Abandon() slightly. Recall that Abandon()

first exchanges null in the owner, and then calls
AddToDeleteList(), with the current local epoch.
However, due to ejection, the local epoch may be
EJECTED. So if the thread is ejected, we use the global
epoch. Note that for the argument in Figure 6 to
be correct, it actually suffices that the epoch used

to insert the object in the DeleteList be at least (g − 1) where g was the global epoch at the point of the
atomic exchange of null in the owner. If ejection happened between the exchange and AddToDeleteList then
the new global epoch that we will read is guaranteed to be at least g.

The TLS shield array of an ejected thread will be read-only, hence we guarantee that any call to
SetShield() from an ejected thread will receive an access violation (AV). We trap this AV, rejoin the
protocol with Rejoin(), and then replay the SetShield() code. By replaying the SetShield() code after
Rejoin() we make it atomic with respect to ejection, and thus local epoch advancement, as required earlier.
You can view memory protection as an asynchronous interrupt that is only triggered if the thread resumes
using shields.

4.2 GC interoperability and jemalloc

The core changes to the GC and jemalloc are: (1) provide a cheap test if an object is in the manual or the
GC heap; (2) extend the GC card table [45] to cover the manual heap; and (3) allow iteration of GC roots
from the manual heap.

We modify the OS virtual memory allocation calls both in the GC and jemalloc to use a threshold: 246.
The GC allocates in pages directly above this, and jemalloc directly below. This allows for a cheap test to
determine in which heap an object resides without any memory access. As CoreCLR has a generational GC,
we need a card table to track pointers from the manual heap into Gen0 and Gen1. By growing both heaps
away from a threshold, the used virtual address space is contiguous among the two heaps. Hence, we use a
single card table to cover both heaps and we do not modify the write barriers. When jemalloc requests pages
from the OS we notify the GC so that it can grow the card table. This requires delicate synchronization to
avoid deadlocks.

Finally, we have implemented a trie that covers the manual heap and contains a bit for each 64bit word
to represent if it is the start of an object that contains GC heap references. We iterate this trie when we
need to find roots in the manual heap during a garbage collection. This trie is used in conjunction with the
card table for Gen0 and Gen1 collections, and iterates all objects for a full Gen2 collection.

5 Evaluation

We performed experiments to validate the the impact of our mixed-mode memory management approach
to application runtime and peak working sets (PWS), as well as scalability on threads and heap sizes. To
measure the PWS of a process we directly query the OS. Specifically, we query the “Working Set Peak”

13

Config Mode %GC #Gen0 Mean Max #Gen1 Mean Max #Gen2 Mean Max

256-byte GC 26.5% 530 5.2 15.3 197 16.2 31.5 21 27.5 181.8
256-byte M+GC 18.1% 349 5.4 9.9 185 11.3 25.9 17 17.6 133.6
2048-byte GC 32.1% 1333 2.0 6.8 698 8.5 74.4 37 40.8 321.6
2048-byte M+GC 17.6% 370 5.4 14.8 201 10.9 26.1 20 21.6 143.3
4096-byte GC 34.5% 2481 1.4 7.4 1387 7.0 67.7 46 43.5 409.8
4096-byte M+GC 14.9% 397 5.3 15.0 199 11.4 27.2 27 17.1 132.8

Table 1: GC Collections and pauses in ASP.NET Caching benchmark (8 threads). Mean and Max times are
in milliseconds.

256-byte 2048-byte 4096-byte
0

10000

20000

30000

40000

50000

60000

70000

T
im

e
 t

o
 C

o
m

p
le

ti
o
n

 (
m

s
e
c
)

1 1 11 1 12 2 22 2 2

4

4

4

4
4

4

6

6

6

6 6
6

8

8

8

8 8
8

GC
Manual+GC

256-byte 2048-byte 4096-byte
0.0

0.5

1.0

1.5

2.0

2.5

3.0

P
e
a
k
 W

o
rk

in
g

 S
e
t

(G
B

)

1
1

1

1
1

1
2

2

2

2

2

2

4

4

4

4

4

4

6

6

6

6

6

6

8

8

8

8

8

8

GC
Manual+GC

Figure 7: Results for ASP.NET Caching.

Windows Performance Counter for the process that we are testing, which includes both GC heap memory,
manual heap memory, runtime metadata etc.

We have ported three industrial benchmarks from data analytics (System.Linq.Manual used to implement
TPCH queries), caching (ASP.NET Caching), and machine learning (probabilistic automata operations on
top of the Infer.NET framework [51]). We also present a small set of data structure-specific micro-benchmarks
on trees and graphs. The benchmarks were written originally in unmodified .NET but we ported some of
the allocations to the manual heap based on profiling. For some benchmarks this was as easy as writing a a
few lines of code (e.g. ASP.NET caching, System.Linq.Manual), for some others it was more tedious due to
the “by ref” style of owners and shields.

Our results generally demonstrate (i) better scalability of both runtime and PWS than the purely-GC
versions, (ii) savings in PWS, though (iii) throughput results can be mixed, depending on the benchmark.

Experimental Setup We performed all experiments on a 3.5GHz Intel Xeon CPU E5-1620 v3 (8 physical
cores) with 16GB RAM running Windows 10 Enterprise (64-bit). We used our own branch of CoreCLR,
CoreFX and jemalloc. We configured the CoreCLR in “Workstation GC” mode. Note that the CoreCLR
GC does not give programmers control over generation/heap size so we do not experiment with space-time
tradeoffs in garbage collection. However, CoreCLR additionally provides a “Server GC” mode, which allows
for independent thread-local collections. We have only run preliminary results against this configuration and
the relative trends are similar to our findings with Workstation GC, but the absolute numbers show that
Server GC trades higher PWS for lower times to completion. We refer to the supplementary material for
this data.

ASP.NET Caching In Section 3.5 we have presented a modification to a caching middleware component
from ASP.NET. We have created a benchmark where a number of threads perform 4 million requests on a
shared cache. Each request generates a key uniformly at random from a large key space and attempts to get
the associated value from the cache. If the entry does not exist then a new one is allocated. We show here
experiments with small (256 bytes), medium (2K), or large (4K) payloads and a sliding expiration of 1sec.

Figures 7 show the results. Thread configurations are labeled with a number on each bar. Both time to
completion and PWS savings compared to the purely GC version improve substantially, particularly with
bulkier allocations and multiple threads. Characteristically, time to completion halves with 8 threads and
4k cache payloads, whereas peak working sets improve up to approximately 25%.

14

0.5 0.0 0.5 1.0

Time to Completion

0.0

0.5

1.0

1.5

P
e
a
k
 W

o
rk

in
g

 S
e
t

Manual+GC

GC

Example

Figure 8: PWS and runtime for TPCH queries.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0

50000

100000

150000

200000

250000

300000

T
im

e
 t

o
 C

o
m

p
le

ti
o
n

 (
m

s
e
c
)

1 1

2 2

4

4

6 6

8
8GC

Manual+GC

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

P
e
a
k
 W

o
rk

in
g

 S
e
t

(G
B

)

1
1

2
2

4

4

6

6

8

8

GC
Manual+GC

Figure 9: PWS and runtime for the Infer.NET
benchmark.

The key reason for the massive throughput speedups for this benchmark is that by off-loading the cache
payloads to the manual heap, a lot of write barriers are eliminated entirely, and at the same time fewer GC
collections are triggered (Table 1). For the 2048 and 4096 payload sizes, there are approximately half the
Gen2 collections and 1

6 th of the Gen0 and Gen1 collections. There are still quite a few garbage collections
remaining with the manual memory modifications, basically because the cache stores GC-based CacheEntry

objects (which in turn store the actual manual payloads), and it is the allocation of those objects that triggers
collections. Note also that the cost of collections for Gen0 and Gen1 is higher with manual memory, Gen0
goes from 1.4ms to 5ms with manual memory. This is possibly because our modifications have taken the
bulky payload objects out of the ephemeral (Gen0 and Gen1) segments, and hence the ephemeral segments
are now full with (many more) small CacheEntry objects. Ephemeral collections simply have to collect more
objects and take more time. However, since in the purely GC version Gen0 collections collect fewer objects,
more pressure is put on Gen2 collections. We can see this as the purely GC code takes 43.5ms for a Gen2
collection, where as with manual heap it is just 17.1ms (for the 4096-byte configuration).

TPCH on System.Linq.Manual Here we introduced a drop-in replacement for System.Linq (namespace
System.Linq.Manual), which is a popular C# library for data processing in SQL-like syntax. It is designed
to allocate little, but some operators must materialize collections, namely group, join, and order-by variants,
as the example of a join iterator from Section 2 explained. We have moved these transient collections to
the manual heap, and introduced deallocations when they were no longer needed. For evaluation we used
22 industry-standard TPCH queries [10], ported them in LINQ C#, and run them using System.Linq and
System.Linq.Manual. We have scaled the TPCH dataset to a version where 300MB of tables pre-loaded
in memory, and another where 3GB of tables is pre-loaded in memory. We present here the results from
the small dataset (the results are similar for the large dataset in the supplementary material). To evaluate
scalability in multiple threads we run each query in 10 iterations using 1,2,4,6,8 independent threads sharing
the same pre-loaded dataset.

For reasons of space Figure 8 presents all 22x5 results as a scatter plot where the vertical (resp. horizontal)
axis shows relative improvement in the peak working sets (resp. runtime). The labeling indicates number
of threads. Positive numbers in both axes mean that we are faster and consume less memory. For example,
the number 4 labeled “Example” in the figure indicates that on one query with 4 threads, the purely GC
code used ∼80% more time, and ∼40% more memory. The majority of queries improve in PWS, some up to
1.5, meaning that the purely GC version uses 150% more memory that our modified version. For runtime
the results are mixed, though a significant number of queries achieves significantly better runtime. Profiling
showed that this is primarily due to the cost of TLS accesses during the creation and defending with shields.
GC statistics that can be found in the supplementary material reveal that we generally reduce the number
and pauses of collections. For some queries though Gen2 pauses become higher – this may have to do with
the more expensive scanning of the trie for GC roots, especially for background collections. We discuss this
issue further in Section 6.

15

Machine learning on Infer.NET We used a workload from a research project with known GC overheads
based on the Infer.NET framework. The task was to compute the product of two large probabilistic automata
for a small number of iterations. We converted various collections of automata states to use manual “spines”
but kept the actual automata states in the GC heap to avoid too intrusive re-engineering. To avoid TLS access
during iteration of these collections, a significant fragment of the product construction code was rewritten to
re-use pre-allocated shields that were passed down the stack as by-ref parameters. This was a more invasive
change, than those required in previous benchmarks. As with the TPCH queries, to understand scalability
with multiple threads we run the tasks with 1, 2, 4, 6 and 8 independent threads. Figure 9 suggests that our
modifications did not improve the runtime, in fact they did have a small negative effect (due to excessive use
of shields). However, due to the immediate deallocation of the various intermediate collections we were able
to almost half the peak working set in 1 thread, and get approximately 3x improvement when we scaled up
this benchmark to 8 threads.

0 2 4 6 8

Time to Completion

0

1

2

3

4

5

6

P
e
a
k
 W

o
rk

in
g

 S
e
t

Manual+GC

GC

Figure 10: PWS and runtime for micro-benchmarks.

CoreCLR micro-benchmarks Apart from the
benchmarks discussed above, we also evaluated our
mixed-mode memory management approach on 6
data structure-specific micro-benchmarks adapted
from the performance testuite of CoreCLR: BinTree,
BinTreeLive, BinTreeGrow, RedBlackTree, Directed-
Graph and DirectedGraphReplace. Each of these was
configured to run with 3 different input sizes (small,
medium and large) and 1, 2, 4, 6 and 8 independent
threads. Each benchmark involves typical operations
with allocations on an underlying container. Details
of each benchmark can be found in the supplemen-
tary material. Figure 10 plots all our data points in
all configurations, and shows massive gains both in runtime and memory that were obtained by porting
selectively parts of these data structures to use the manual heap.

We collapse to the border the datapoints that are outside our bounding boxes.

6 Discussion

6.1 Frontend

We have built a C# language front-end that guarantees the safe use of our API, enforces the correct use
of owners and shields, and performs an escape analysis to ensure that manual objects do not escape their
shields. It additionally makes programming easier, for example adds implicit Dispose() calls for stack-based
shields, implicit Defend() calls as coercions from owners to shields etc. However the focus of this paper is
the runtime and hence we defer any source language modifications for presentation in future work.

6.2 Performance considerations

Cost of shield allocation and setting Shield allocation and setting is a thread-local operation (hence
no interlocked barriers are needed); still frequent TLS access can have an adverse affect on performance,
hence shield reuse and elimination of redundant shield setting can have beneficial effects. In future work we
would like to explore tighter JIT integration for shield allocation, as well as analysis for thread-local objects
for which cheaper synchronization can be used.

Allocator characteristics Although jemalloc is a fast and scalable allocator with thread-local caches, it is
difficult to match the throughput of the bump-allocator of the .NET generational GC. The situation reverses
once surviving objects start to get stored in long-lived and growing collections. In some experiments that

16

allocate a lot but survive some objects, we have found that it is beneficial to use the GC as nursery and only
when we need to store an object clone it over to the manual heap. Despite the throughput disadvantage, using
a size-class based allocator has the advantage of low fragmentation which means we can avoid compaction
(fragmentation and compaction in older generations is a known issue in generational GCs.)

6.3 GC integration

In allocation-intensive workloads in both heaps and lots of pointers from the manual to the GC heap collec-
tions will be frequent and have to scan through portions of the manual heap. For ephemeral collections this
amounts to a simultaneous iteration over the set cards for the manual heap and the trie, which becomes a hot
code path. Furthermore, CoreCLR GC employs concurrent background marking but our implementation at
the moment only scans roots synchronously from the manual heap; addressing this is a matter of engineering
but explains some of the larger Gen2 pauses in some benchmarks. Finally, when bulky objects are off-loaded
to the manual heap, the ephemeral segment budget will fill up with more and smaller objects, potentially
increasing the pauses for Gen0 collections. This is often not a problem as the number of Gen0 collections is
dramatically reduced but it reveals an opportunitiy to tune the various parameters of the GC to take the
manual heap into account.

Another interesting phenomenon happens when we resize a manual array with GC references to ephemeral
objects – if that array was GC then the newly allocated array would be allocated in Gen0 hence no card
setting would be required. However in our case, we have references from the manual heap to ephemeral
objects and hence card setting is required. Although we have observed this to happen, we have not seen any
major performance problems, as the card range is much smaller than the array itself.

6.4 Migrating away from the GC heap

How does a programmer know which objects should be allocated on the manual heap? Our methodology is
to use a heap profiling tool (e.g. we have modified PerfView, a publicly available tool from Microsoft), to
determine if the GC has a significant cost, then identify objects of reasonable size that have survived and
have been collected in the older generations, get the stack traces associated with such objects and look for
sensible candidates amongst those with clearly defined lifetimes.

6.5 Programming model

By-ref style of owners and shields Owners and shields cannot be duplicated on the stack or returned
from arbitrary functions, and hence can only be passed “by-ref”, complicating the porting of an application.
For some applications this is not a problem (e.g. System.Linq.Manual) but for others it may require redesign
of APIs and implementation.

Sharing references on the heap A well known limitation of owner-style objects (and unique references
in general) is that sharing of multiple references to the same manual object from the (GC or manual) heap is
not allowed, thus making them unsuitable for data structures with a lot of pointer sharing. Snowflake allows
shareable pointers to be built around owners. For instance, we have introduced a class called Manual<T>

(as opposed to a struct), that encapsulates an Owner<T> and supports similar methods but can be stored on
the heap and passed to or returned by other functions like every other GC object. In exchange for greater
programming flexibility, object Manual<T> incurs extra space cost per manual object, so calls for a careful
profile-driven use. Finally, we have also built shareable reference counted objects, RefCount<T>, but we are
considering API extensions in this space as important future work.

Shields on the heap Shields may accidentally escape on the (shared) heap, resulting in complaints in
our C# frontend, predominantly due to the subtle C# implicit boxing feature or closure capture. For other
examples, we may actually prefer to temporarily store a shield on the heap, as long as we can guarantee
that only the very same thread that created that shield will access it and the underlying object (otherwise

17

the reference to the TLS state is bogus). How to enable this without sacrificing performance is an open
challenging problem.

Finalization and owners When owner objects get abandoned our runtime abandons recursively their
children owner fields. To do this efficiently we extend the method table with an explicit run-length encoding
of the offsets that the owner fields exist in an object and use that to efficiently scan and abandon. An avenue
for future work is to modify the layout of objects to group together owner fields to improve this scanning,
similarly to what CoreCLR is using for GC pointers. .NET also allows for finalizers, which are functions that
can be called from a separate thread when objects are no longer live. There is design space to be explored
around finalizers for manual objects, e.g. should they be executed by the mutator or scheduled on the GC
finalization thread.

Asynchronous tasks In the async and await [2] popular C# programming model a thread may produce
a value and yield to the scheduler by enqueuing its continuation for later execution. This continuation may
be eventuall executed on a different thread. This decoupling of tasks from threads makes the use of the
thread-local shields challenging and it is an open problem of how to allow a task that resumes on a different
thread to safely use a shield.

7 Related Work

Several previous studies compared garbage collection with manual memory management [41, 44, 69]. Like
us, they concluded that manual memory management can achieve substantial gains in both memory usage
and run time, particularly when the heap size is not allowed to grow arbitrarily.

Memory management for managed languages Several systems have proposed optimizing garbage
collection for specific tasks – for instance for big data systems [35, 49], taking advantage of idle mutator
time [30], specializing to real-time and embedded systems with very low latency constraints [14]. Other work
suggests arena-based allocation for moving bulky data out of the GC heap. Scala off-heap [9] provides a
mechanism to offload all allocations in a given scope onto the unmanaged heap but no full temporal and
thread safety. Stancu et al. [60] introduce a static analysis that can infer a hierarchy of regions and annotate
allocation sites so that at runtime a stack-like discipline of regions can be enforced. The analysis ensures
that pointers only exist from newer regions to older regions or the GC heap but not vice verca. Broom [36]
introduces region-based allocation contexts, but relies on type system for safety. Other work attempts to
offload data allocations to the manual heap through program transformations [57]. Recent work proposes
hints for safe arena allocations [56], through more expensive write barriers and potential migration of objects
when programmer hints are wrong. Our proposal is complementary to these other techniques, and should be
seen as yet another tool available to programmers that guarantees memory safety in single-and multithreaded
scenarios. For instance, allocating the intermediate dictionaries from our System.Linq example in an arena
would be cumbersome and less efficient as those allocations are intertwined with other allocations of objects
that need to survive, so copying out of the arenas would be required.

Kedia et al. [46] propose a version of .NET with only manually managed memory. Their programming
model just exposes a “free object” method, and a dangling pointer exception for accessing reclaimed memory.
The runtime reclaims physical pages associated to an object at some point after they are “freed”, and relocates
other collocated objects. When an object is accessed an access violation can be triggered due to the object
been deallocated or relocated: the runtime determines which and either surfaces the exception, or patches
the memory and execution to allow the program to continue. The approach gets surprisingly good results
(comparable to the results we report here). The approach has not been integrated with the garbage collector
and thus does not provide the pay-for-play cost of our solution. The exceptions for accessing deallocated
objects are unpredictable, and dependent on the runtime decisions for when to reclaim memory: some
schedule can work by allowing access to a freed but not reclaimed object, while other schedules may not.

18

Finally, their solution requires the JIT/Compiler to be modified to enable stack walking on every read and
write to memory, whereas we do not require any JIT level changes.

Although .NET does not support it, manual or automatic object pre-tenuring [38, 24, 27] would be
another way to directly push long lived objects onto a less frequently scanned generation. It is certainly the
case that a lot of the performance gains of Snowflake are related to not having to compact and promote
between generations, and that is where pre-tenuring would also have a similar effect. However, the significant
reduction in the number of Gen2 collections would not be given by pre-tenuring. Using Table 1 for the 4096-
byte case we can measure total GC pause times of Gen0 = 3473.4, Gen1 = 9709, Gen2 = 2001, whereas
Manual+GC are Gen0 = 2104.0, Gen1 = 2268, and Gen2 = 459. Pre-tenuring could potentially match the
Gen 0/1 cost reduction but would not produce savings from not having to scan the older generation.

Safe memory reclaimation Our shields are based on the hazard pointers [50] mechanism developed for
memory reclamation in lock-free data structures. Hazard pointers require the access to the data structure,
in our case defend, to use a heavy write barrier (mfence on x86). We found this was prohibitively expensive
for a general-purpose solution. By combining the hazard pointer concept with epochs we can remove the
need for this barrier.

Epoch-based reclamation (EBR) has been used for lock-free data structures [39, 34, 40], and has been
very elegantly captured in the Rust Crossbeam library [7]. To access a shared data structure you “pin” the
global epoch which prevents it advancing (too much), and when you finish accessing the data structure you
release the pin. As epochs advance the older deallocated objects can be reclaimed. We could not directly use
epochs without hazards, as EBR requires there to be points where you are not accessing the protected data
structure. When EBR is protecting a particularly highly-optimised data structure, this is perfectly sensible.
We allow pervasive use of manually allocated objects and thus enforcing points where the manual heap is
not being accessed is simply impractical. One could view shields as pinning a single object, rather than a
global pin as in Crossbeam.

Our use of epochs is actually closer to those used in reference counted garbage collectors such as Recy-
cler [13]. Recycler delays decrements, such that they are guaranteed to be applied after any “concurrent”
increments, thus if the reference count reachs zero, then the object can be reclaimed. We are similarly using
epochs to ensure that the writes to shields will be propagated to all threads, before any attempt to return it
to the underlying memory manager. It is fairly straighforward to extend our mechanism to handle reference
counted ownership rather than unique ownership using delayed decrements. Recycler uses stack scanning to
deal with stack references into the heap.

Alistarh et al. [12] take the stack scanning approach further and use this instead of hazard pointers for
a safe memory reclaimation. They use signals to stop each thread and scan its stack. These stack scans are
checked before any object can be deallocated. We think our approach may scale better with more threads
as we do not have to stop the threads to scan the stacks, but the sequential throughput would be lower for
us as we have to perform the shield TLS assignment for what we are accessing.

There are several other schemes that use hazard pointers with another mechanism to remove the require-
ment for a memory barrier. Balmau et al. [16] extend hazard pointers in a very similar way to our use of
epochs. Rather than epoches they track that every thread has performed a context switch, and use this to
ensure that the hazard pointers are sufficiently up to date. If the scheduling leads to poor performance, they
drop back to a slow path that uses standard hazard pointers with a barrier. Our mechanism for ejection
means we do not to have a slow path even when the scheduler starves particular threads, we believe our
ejection mechanism could be added to their scheme. Dice et al. [33] also develop a version of hazard pointers
without a memory barrier. When the hazards need scanning, virtual memory protection is used to ensure
the hazards are read only, which forces the correct ordering of the checking and the write. A mutator threads
that attempts to assign a hazard will take an access violation (AV) and then block until the scan has finished.
This means any reclamation is going to incurr two rounds of inter-processor interrupt (IPIs), and mutators
are likely to experience an AV. We only use the write protection in very infrequent cases of threads miss
behaving, and rarely have to deal with the AVs.

Morrison and Affek [53] use time as a proxy for an epoch scheme: effectively they wait so many cycles, and

19

have observed empirically observed that the memory updates will have propogated by this point. This leads
to a simple design, no thread can stop time advancing, hence they do not require an Ejection mechanism like
we have. However, to achieve this they make assumptions on the hardware that are currently not guaranteed
by the vendors about timing.

There are other approachs to reclaimation that use data-structure specific fixup [23] or roll-back [29,
28] code to handle cases where deallocation occurs during an operation. This would not be practical for
our setting as we are using manual memory management pervasively and do not have nice data structure
boundaries that these schemes exploit.

Techniques for unsafe languages Several systems use page-protection mechanism to add temporal
safety to existing unsafe languages: [48, 4, 5, 31] these approaches are either probabilistic or suffer from
performance problems. Some systems propose weaker guarantees for safe manual memory management.
Cling [11] and [32] allow reuse of objects having same type and alignment. DieHard(er) [17, 58] and
Archipelago [48] randomize allocations to make the application less vulnerable to memory attacks. Several
systems detect accesses to freed objects [55, 47, 68], but do not provide full type safety.

Type systems for manual memory management The Cyclone language [62, 42] is a safe dialect of
C with conservative garbage collector [20] and several forms of safe manual memory management, including
stack and region-based allocation [64, 37]. Capability types [66] can be used to verify the safety of region-
based memory management. Unlike Cyclone, we do not use regions as a basis for safe manual memory
management. Furthermore we allow eager deallocation at arbitrary program locations. Several languages
have proposed using unique pointers to variables or objects [43, 52, 54] based on linear typing [65, 15]. Our
owners are a form of unique pointers, but we allow stack sharing of the references using shields. This is similar
to the concept of borrowing references to temporarily use them in specific lexical scopes [67, 22, 25, 62].
Rust [8] incorporates several aspects of the Cyclone design, including integration of manually managed
memory with reference counting, unique pointers, and lexically-scoped borrowing. Finally, languages with
ownership types [26, 25, 21] and alias types [59] can express complex restrictions on the object graphs that a
program can create. Though owners cannot express cycles, we do allow sharing through the GC, and permit
cross-heap pointers in both directions.

8 Conclusion

We have presented a design that integrates safe manual memory management with garbage collection in
the .NET runtime, based on owners and shields. Our programming model allows for stack-based sharing of
owners potentially amongst multiple threads, as well as arbitrary deallocations while guaranteing safety. We
show that this design allows programmers to mix-and-match GC and manually-allocated objects to achieve
significant performance gains.

References

[1] Asp.net/caching: Libraries for in-memory caching and distributed caching. https://github.com/
aspnet/Caching.

[2] Asynchronous programming with async and await. https://msdn.microsoft.com/en-us/
library/mt674882.aspx.

[3] Coreclr. www.github.com/dotnet/CoreCLR.

[4] Electric fence malloc debugger. http://elinux.org/Electric_Fence.

[5] How to use pageheap utility to detect memory errors. https://support.microsoft.com/en-us/
kb/264471.

20

[6] Jemalloc. http://jemalloc.net.

[7] Rust crossbeam library. http://aturon.github.io/crossbeam-doc/crossbeam/mem/
epoch/index.html.

[8] Rust programming language. https://www.rust-lang.org.

[9] Scala-offheap: Type-safe off-heap memory for scala. https://github.com/densh/
scala-offheap.

[10] Tpch. http://www.tpch.org/tpch.

[11] P. Akritidis. Cling: A memory allocator to mitigate dangling pointers. In USENIX Security Symposium,
pages 177–192, 2010.

[12] D. Alistarh, W. M. Leiserson, A. Matveev, and N. Shavit. Threadscan: Automatic and scalable memory
reclamation. In SPAA, 2015.

[13] D. F. Bacon, C. R. Attanasio, H. B. Lee, V. T. Rajan, and S. Smith. Java without the coffee breaks:
A nonintrusive multiprocessor garbage collector. PLDI, 2001.

[14] D. F. Bacon, P. Cheng, and V. Rajan. The metronome: A simpler approach to garbage collection in real-
time systems. In In Workshop on Java Technologies for Real-Time and Embedded Systems (JTRES),
OTM Workshops, 2003.

[15] H. G. Baker. Use-once variables and linear objects–storage management, reflection, and multi-threading.
SIGPLAN Notices, 30(1):45–52, January 1995.

[16] O. Balmau, R. Guerraoui, M. Herlihy, and I. Zablotchi. Fast and robust memory reclamation for
concurrent data structures. In SPAA, 2016.

[17] E. D. Berger and B. G. Zorn. Diehard: probabilistic memory safety for unsafe languages. In Acm
sigplan notices, volume 41, pages 158–168. ACM, 2006.

[18] S. M. Blackburn and K. S. McKinley. Immix: a mark-region garbage collector with space efficiency, fast
collection, and mutator performance. In PLDI, 208.

[19] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors. Commun. ACM, 13(7), 1970.

[20] H.-J. Boehm and M. Weiser. Garbage collection in an uncooperative environment. Software – Practice
and Experience, 18(9):807–820, 1988.

[21] C. Boyapati, A. Salcianu, W. Beebee, and M. Rinard. Ownership types for safe region-based memory
management in real-time Java. In PLDI, 2003.

[22] J. Boyland. Alias burying: Unique variables without destructive reads. Software – Practice and Expe-
rience, 31(6):533–553, 2001.

[23] T. A. Brown. Reclaiming memory for lock-free data structures: There has to be a better way. In PODC,
2015.

[24] P. Cheng, R. Harper, and P. Lee. Generational stack collection and profile-driven pretenuring. In
Proceedings of the ACM SIGPLAN 1998 Conference on Programming Language Design and Implemen-
tation, PLDI ’98, pages 162–173, New York, NY, USA, 1998. ACM.

[25] D. Clarke and T. Wrigstad. External uniqueness is unique enough. In ECOOP, pages 176–200, July
2003.

21

[26] D. G. Clarke, J. M. Potter, and J. Noble. Ownership types for flexible alias protection. In OOPSLA,
October 1998.

[27] D. Clifford, H. Payer, M. Stanton, and B. L. Titzer. Memento mori: Dynamic allocation-site-based
optimizations. In Proceedings of the 2015 International Symposium on Memory Management, ISMM
’15, pages 105–117, New York, NY, USA, 2015. ACM.

[28] N. Cohen and E. Petrank. Automatic memory reclamation for lock-free data structures. In OOPSLA,
2015.

[29] N. Cohen and E. Petrank. Efficient memory management for lock-free data structures with optimistic
access. In SPAA, 2015.

[30] U. Degenbaev, J. Eisinger, M. Ernst, R. McIlroy, and H. Payer. Idle time garbage collection scheduling.
In PLDI, 2016.

[31] D. Dhurjati and V. Adve. Efficiently detecting all dangling pointer uses in production servers. In DSN,
June 2006.

[32] D. Dhurjati, S. Kowshik, V. Adve, and C. Lattner. Memory safety without runtime checks or garbage
collection. ACM SIGPLAN Notices, 38(7):69–80, 2003.

[33] D. Dice, M. Herlihy, and A. Kogan. Fast non-intrusive memory reclamation for highly-concurrent data
structures. In ISMM.

[34] K. Fraser. Practical lock-freedom. PhD Thesis UCAM-CL-TR-579, Computer Laboratory, University
of Cambridge, February 2004.

[35] L. Gidra, G. Thomas, J. Sopena, M. Shapiro, and N. Nguyen. NumaGiC: a garbage collector for big
data on big NUMA machines. In ASPLOS, 2015.

[36] I. Gog, J. Giceva, M. Schwarzkopf, K. Vaswani, D. Vytiniotis, G. Ramalingam, M. Costa, D. G. Murray,
S. Hand, and M. Isard. Broom: Sweeping out garbage collection from big data systems. In HotOS,
2015.

[37] D. Grossman, G. Morrisett, and T. Jim. Region-based memory management in Cyclone. In PLDI, 2002.

[38] T. L. Harris. Dynamic adaptive pre-tenuring. In Proceedings of the 2Nd International Symposium on
Memory Management, ISMM ’00, pages 127–136, New York, NY, USA, 2000. ACM.

[39] T. L. Harris. A pragmatic implementation of non-blocking linked-lists. In DISC, 2001.

[40] T. E. Hart, P. E. McKenney, A. D. Brown, and J. Walpole. Performance of memory reclamation for
lockless synchronization. Journal of Parallel and Distributed Computing, 67:1270–1285, May 2007.

[41] M. Hertz and E. D. Berger. Quantifyng the performance of garbage collection vs. explicit memory
management. In OOPSLA, 2005.

[42] M. Hicks, G. Morrisett, D. Grossman, and T. Jim. Experience with safe manual memory-management
in Cyclone. In ISMM, 2004.

[43] J. Hogg. Islands: Aliasing protection in object-oriented languages. In OOPSLA, 1991.

[44] R. Hundt. Loop recognition in C++/Java/Go/Scala. In Proceedings of Scala Days 2011, 2011.

[45] R. Jones, A. Hosking, and E. Moss. The Garbage Collection Handbook: The Art of Automatic Memory
Management. Chapman & Hall/CRC, 1st edition, 2011.

22

[46] P. Kedia, M. Costa, M. Parkinson, K. Vaswani, and D. Vytiniotis. Simple, fast and safe manual memory
management. In PLDI, 2017.

[47] B. Lee, C. Song, Y. Jang, and T. Wang. Preventing use-after-free with dangling pointer nullification.
In NDSS, 2015.

[48] V. B. Lvin, G. Novark, E. D. Berger, and B. G. Zorn. Archipelago: trading address space for reliability
and security. In ASPLOS, 2008.

[49] M. Maas, K. Asanović, T. Harris, and J. Kubiatowicz. Taurus: A holistic language runtime system for
coordinating distributed managed-language applications. In ASPLOS, 2016.

[50] M. M. Michael. Hazard pointers: Safe memory reclamation for lock-free objects. IEEE Transactions
on Parallel and Distributed Systems, 15(6):491–504, June 2004.

[51] T. Minka, J. Winn, J. Guiver, S. Webster, Y. Zaykov, B. Yangel, A. Spengler, and J. Bronskill. In-
fer.NET 2.6, 2014. Microsoft Research Cambridge. http://research.microsoft.com/infernet.

[52] N. Minsky. Towards alias-free pointers. In ECOOP, pages 189–209, July 1996.

[53] A. Morrison and Y. Afek. Temporally bounding tso for fence-free asymmetric synchronization. In
ASPLOS, 2015.

[54] K. Naden, R. Bocchino, J. Aldrich, and K. Bierhoff. A type system for borrowing permissions. In
POPL, 2012.

[55] S. Nagarakatte, J. Zhao, M. M. K. Martin, and S. Zdancewic. CETS compiler-enforced temporal safety
for c. In ISMM, 2010.

[56] K. Nguyen, L. Fang, G. Xu, B. Demsky, S. Lu, S. Alamian, and O. Mutlu. Yak: A high performance
big-data-friendly garbage collector. In OSDI, 2016.

[57] K. Nguyen, K. Wang, Y. Bu, L. Fang, J. Hu, and G. Xu. Facade: A compiler and runtime for (almost)
object-bounded big data applications. In ASPLOS, 2015.

[58] G. Novark and E. D. Berger. Dieharder: securing the heap. In Proceedings of the 17th ACM conference
on Computer and communications security, pages 573–584. ACM, 2010.

[59] F. Smith, D. Walker, and G. Morrisett. Alias types. In European Symposium on Programming (ESOP),
2000.

[60] C. Stancu, C. Wimmer, S. Brunthaler, P. Larsen, and M. Franz. Safe and efficient hybrid memory
management for java. In ISMM, 2015.

[61] D. Stefanovic, K. S. McKinley, and J. E. B. Moss. Age-based garbage collection. In OOPSLA, 1999.

[62] N. Swamy, M. Hicks, G. Morrisett, D. Grossman, and T. Jim. Safe manual memory-management in
Cyclone. Science of Computer Programming, 62(2):122–14, October 2006.

[63] G. Tene, B. Iyengar, and M. Wolk. C4: The continuously conucrrent compacting collector. In ISMM,
2011.

[64] M. Tofte and J.-P. Talpin. Region-based memory management. Information and Computation,
132(2):109–176, February 1997.

[65] P. Wadler. Linear types can change the world! In IFIP TC 2 Working Conference, 1990.

[66] D. Walker, K. Crary, and G. Morrisett. Typed memory management in a calculus of capabilities. ACM
Transactions on Programming Languages and Systems, 24(4):701–771, 2000.

23

[67] D. Walker and K. Watkins. On regions and linear types. In ICFP, 2001.

[68] Y. Younan. FreeSentry: protecting against user-after-free vulnerabilities due to dangling pointers. In
NDSS, 2015.

[69] B. G. Zorn. The measured cost of conservative garbage collection. Software – Practice and Experience,
23(7):733–756, 1993.

24

A Appendix

We performed experiments to validate the usefulness of our mixed-mode memory management approach.
Due to space constraints, we could not fit all experiments and plots in the main paper, and thus we present
them here as supplementary material.

Experimental Setup We performed the majority of the experiments on a 3.5GHz Intel Xeon CPU E5-
1620 v3 (8 physical cores) with 16GB RAM running Windows 10 Enterprise (64-bit). For the TPCH/LINQ
experiments using the big data set, we used a similar machine with 32GB of memory. We used our own
branch of CoreCLR, CoreFX and jemalloc.

Workstation versus Server GC For the experiments in the main paper, we configured CoreCLR in
“Workstation GC” mode, as this is the configuration that our implementation is currently stable on. As
discussed in the main paper, CoreCLR additionally provides a “Server GC” mode, which allows for inde-
pendent thread-local collection of each thread’s ephemeral heap. We have only run preliminary experiments
against this configuration and the relative trends are similar to our findings with Workstation GC, but the
absolute numbers show that Server GC trades higher peak working sets for lower times to completion (as
seen in the experiments below that support both Workstation and Server GC).

A.1 ASP.NET Caching

The ASP.NET Caching benchmark spawns a number of threads that perform 4 million requests on a shared
cache. Each request randomly generates a key to an entry in the cache, and attempts to get its value. If the
entry does not exist, then a new entry is allocated. The size of the entry payload is randomly generated using
a distribution (in the results presented here drawn from a triangular distribution, but we have experimented
with uniform sizes and constant sizes with similar results). The cache is also configured with a sliding
expiration of 1 second (we experimented with various expiration values, and found similar results). The
mean size of each entry is 256, 2048, 4096 bytes. The cache is shared among 1, 2, 4, 6 and 8 threads in our
experiments.

Figure 11 shows the results for time to completion, and Figure 12 shows the peak working sets. Both
plots show results for both Workstation and Server GC. Thread configurations are denoted by a number on
top of each bar.

A.2 TPCH on System.Linq.Manual

For evaluating System.Linq.Manual we used the 22 industry-standard TPCH queries,2 ported them in LINQ
C#, and simply run them using System.Linq (for the GC experiments) and System.Linq.Manual (for the
Manual+GC experiments). We have scaled the TPCH dataset to a version where 300MB of tables is pre-
loaded in memory (small dataset), and another one where 3GB of tables is pre-loaded in memory (large
dataset). To understand the scalability with multiple threads we run each query in 10 iterations using
1,2,4,6,8 independent threads, i.e. we did not parallelize the query, simply had a number of worker threads
executing the same query once the data is loaded (which happens just once for all threads). We only run
this experiment using Workstation GC, since the integration with Server GC is not yet stable enough to run
this benchmark.

For spacing reasons, in the main paper we only presented a scatter plot with the results from the
small dataset. Here, we present detailed time-to-completion and peak working set results (see bar plots
in Figures 14-25) for each individual TPCH query using both the small and large dataset.3 Figure 13
presents the 21x5 (5 is the number of thread configurations) results from the large dataset as a scatter
plot where the vertical (respectively horizontal) axis shows relative improvement in the peak working sets

2http://www.tpch.org/tpch
3Note that query 16 is missing from the large dataset due to an unknown bug discovered during submission.

25

256-byte 2048-byte 4096-byte
0

10000

20000

30000

40000

50000

60000

70000
T
im

e
 t

o
 C

o
m

p
le

ti
o
n

 (
m

s
e
c
)

1 1 11 1 11 1 11 1 1
2 2 22 2 22 2 22 2 2

4

4

4

4

4

4

4
4

4

4
4 4

6

6

6

6
6

6

6

6

6

6
6

6

8

8

8

8
8

8

8

8

8

8
8

8

GC (Workstation)
Manual+GC (Workstation)
GC (Server)
Manual+GC (Server)

Figure 11: Comparison of time to completion in ASP.NET Caching using both Workstation and Server GC.

(respectively runtime). The labeling indicates number of threads. Positive numbers in both axes mean that
we are faster and consume less memory.

To calculate the relative improvement, for all queries in the TPCH benchmark, and all thread configura-
tions, if the GC peak working set is less than our peak working set then we plot (1.0−Manual PWS/GC PWS)
else we plot (1.0 − GC PWS/Manual PWS). We plot the relative time to completion using an analogous
computation.

Finally, Table 2 presents the full GC collections and pauses from running the 22 TPCH queries using 1
thread and the small dataset.

A.3 Machine learning on Infer.NET

We evaluated Snowflake on a workload from a research project with known GC overheads based on the
Infer.NET framework. The task was to compute the product of two large probabilistic automata for a small
number of iterations.

Table 3 presents the GC collections and pauses from running this benchmark using 1 thread.

A.4 Micro-benchmarks

Besides the industrial benchmarks discussed above, we also evaluated our mixed-mode memory management
approach on 6 data structure-specific micro-benchmarks from the CoreCLR GC performance testing suite:
DirectedGraph, DirectedGraphReplace, BinTree, BinTreeLive, BinTreeGrow and RedBlackTree. We also
evaluated our approach on HavlakPool, an algorithm for finding loops in an input control-flow graph (CFG)

26

256-byte 2048-byte 4096-byte
0.0

2.0

4.0

6.0

8.0

10.0

12.0
P

e
a
k
 W

o
rk

in
g

 S
e
t

(G
B

)

1 1 1
1 1 1

1 1 1
1 1 1

2
2

2

2
2

2
2

2
2

2
2

2

4

4

4

4

4

4
4

4

4

4

4

4

6

6

6

6

6

66

6

6

6

6

6

8

8

8

8

8

8
8

8

8

8

8

8

GC (Workstation)
Manual+GC (Workstation)
GC (Server)
Manual+GC (Server)

Figure 12: Comparison of peak working set in ASP.NET Caching using both Workstation and Server GC.

not coming from the CoreCLR performance suite. Each of these micro-benchmarks was configured to run
with 3 different input sizes (small, medium and large) and 1, 2, 4, 6 and 8 independent threads.

The BinTree benchmark constructs a binary tree (50000 nodes in the large configuration, 25000 in medium
and 10000 in the small), then removes a fixed number (20000 in large, 10000 in medium, 5000 in small) of
randomly selected nodes (using a uniform distribution) from the tree, and then finally inserts a fixed number
(10000 in large, 5000 in medium, 2500 in small) of newly allocated nodes with randomly selected keys (again
using a uniform distribution). This process repeats for 100 iterations. Each node contains a reference to
its left and right child and an array of bytes. In our port, we moved all the nodes, the children references
and the payloads in the manual heap. The BinTreeLive is a variation of the BinTree benchmark: each time
a node is visited, its array is resized (the first time its visited it grows from 10 elements to 1000, then the
second time it goes back to 10 elements, then back to 1000 elements, repeat). The BinTreeGrow is similar
to BinTreeLive, but each time a node is visited, the internal array grows by 100 elements (to not run out of
space, we only run 10 iterations of BinTreeGrow).

RedBlackTree constructs a red-black tree (10000 nodes in the large configuration, 5000 in medium and
1000 in the small), and then in each of 1000 iterations it adds and deletes a number of nodes. Each node
has an internal array of integers. In this benchmark, we left the actual nodes in the GC heap, but placed
the arrays in the manual heap. DirectedGraph constructs a directed graph (100000 nodes in the large
configuration, 50000 in medium and 10000 in the small), and then in each iteration it randomly replaces
a number of nodes (selected with a uniform distribution). Every graph node contains an array of adjacent
nodes, which we ported to the manual heap. The DirectedGraphReplace is a modification of DirectedGraph;
instead of deleting a node from the graph, we replace it with a newly allocated node.

27

2 1 0 1 2

Time to Completion

1.0

0.5

0.0

0.5

1.0

1.5

2.0

P
e
a
k
 W

o
rk

in
g

 S
e
t

Manual+GC

GC

Figure 13: Comparison of peak working set and time to completion on the TPCH large dataset using
System.Linq.Manual.

For the BinTree, BinTreeLive, BinTreeGrow and RedBlackTree benchmarks, we show results using both
Workstation and Server GC. However, for the DirectedGraph, DirectedGraphReplace and HavlakPool bench-
marks, we only show results using Workstation GC, since the integration with Server GC is not yet stable
enough to run these benchmarks. We present the following figures:

DirectedGraph Figure 26 compares the time to completion in msec (log scale) on the left hand side, and
the peak working set in GB (log scale) on the right hand side.

DirectedGraphReplace Figure 27 compares the time to completion in msec (log scale) on the left hand
side, and the peak working set in GB (log scale) on the right hand side.

BinTree Figure 28 compares the time to completion in msec (log scale). Figure 29 compares the peak
working set in GB.

BinTreeLive Figure 30 compares the time to completion in msec. Figure 31 compares the peak working
set in GB. Both figures are in log scale.

BinTreeGrow Figure 32 compares the time to completion in msec (log scale). Figure 33 compares the
peak working set in GB.

RedBlackTree Figure 34 compares the time to completion in msec. Figure 35 compares the peak working
set in GB. Both figures are in log scale.

28

query0 query1 query2 query3 query4 query5 query6 query7
0

10000

20000

30000

40000

50000

60000

70000
T
im

e
 t

o
 C

o
m

p
le

ti
o
n

 (
m

s
e
c
)

1

1
1

1
1 1 1

1

1

1
1 1

1 1
1

1

2

2

2

2

2
2

2

2

2

2
2 2

2 2

2

2

4

4

4

4

4

4

4

4

4

4

4
4

4

4

4
4

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

GC
Manual+GC

Figure 14: Comparison of time to completion on the TPCH small dataset (queries 0 to 7) using
System.Linq.Manual.

query0 query1 query2 query3 query4 query5 query6 query7
0.0

0.5

1.0

1.5

2.0

2.5

P
e
a
k
 W

o
rk

in
g

 S
e
t

(G
B

)

1

1

1

1
1

1

1 1

1
1

1
1

1

1

1 1

2

2

2

2

2

2

2
2

2

2

2
2

2

2

2
2

4

4

4

4

4

4

4
4

4

4

4

4

4

4

4

4

6

6

6

6

6

6

6
6

6

6

6

6

6

6

6

6

8

8

8

8

8

8

8 8

8

8

8

8

8

8

8

8

GC
Manual+GC

Figure 15: Comparison of peak working set on the TPCH small dataset (queries 0 to 7) using
System.Linq.Manual.

HavlakPool Figure 36 compares the end-to-end time (in msec), which includes the construction of the input
CFG and the time taken to run the Havlak loop finding algorithm on the specified CFG. Figure 37
compares only the time (in msec) taken to complete the Havlak loop finding algorithm. Figure 38
compares the peak working set in GB.

Table 4 presents the full GC collections and pauses data from running the HavlakPool benchmark using 1
thread and the small, medium and large configurations. HavlakPool is an interesting example and deserves
some attention. It has a bi-modal behaviour: in the first allocation-intensive phase of the algorithm a
huge control flow graph is constructed. This is an allocation-heavy phase with the vast majority of objects
surviving to the oldest generations. After that phase, the request phase is trying to identify loops in the
control flow graph by using a pool of objects (and a pool of owner objects in our case) to improve throughput
– not all allocations are eliminated though. We see in Figure 38 that PWS are not substantially different,
we in fact have a slightly higher PWS. In terms of runtime, we are also slightly slower than the purely
GC-based version; however the breakdown to the total time (sum of two phases, Figure 36), versus just the
loop finding time (Figure 37) reveals that our loop finding is much faster once the CFG has been initialized in
memory. The reason that the first phase (CFG construction) is so slow is a combination of (a) lower jemalloc
throughput, (b) inefficiencies in scanning the cards corresponding to the manual heap, (c) lack of support for
asynchronous background collection from the manual heap roots. In fact Table 4 shows substantially higher
collection pauses, although the number of collections is lower. We have discussed this phenomenon in the
main paper and suggested directions for improvement.

29

query8 query9 query10 query11 query12 query13 query14
0

10000

20000

30000

40000

50000

60000
T
im

e
 t

o
 C

o
m

p
le

ti
o
n

 (
m

s
e
c
)

1
1

1

1
1

1

11

1
1

1
1

1

1
2

2

2

2

2

2

2

2

2

2

2
2

2
2

4

4

4

4

4
4

4

4

4

4

4

4

4
4

6

6

6

6

6
6

6

6

6

6

6

6

6

6

8

8

8

8

8
8

8

8

8

8

8

8

8

8

GC
Manual+GC

Figure 16: Comparison of time to completion on the TPCH small dataset (queries 8 to 14) using
System.Linq.Manual.

query8 query9 query10 query11 query12 query13 query14
0.0

0.5

1.0

1.5

2.0

2.5

3.0

P
e
a
k
 W

o
rk

in
g

 S
e
t

(G
B

)

1 1

1

1
1

1 1
1 1

1
1

1 1 1

2 2

2

2

2
2 2

2 2

2

2
2 2 2

4 4

4

4

4

4
4

4 4

4

4

4
4 4

6

6

6

6

6

6
6

6
6

6

6

6

6 6

8
8

8

8

8

8
8

8
8

8

8

8
8 8

GC
Manual+GC

Figure 17: Comparison of peak working set on the TPCH small dataset (queries 8 to 14) using
System.Linq.Manual.

query15 query16 query17 query18 query19 query20 query21
0

10000

20000

30000

40000

50000

60000

70000

80000

90000

T
im

e
 t

o
 C

o
m

p
le

ti
o
n

 (
m

s
e
c
)

1
1 1

1
1

1

11
1 1 1

1 1

12

2 2

2

2

2

22
2 2

2
2

2

24

4 4

4

4

4

44

4 4
4

4

4

46

6
6

6

6

6

66

6 6

6

6

6

68

8
8

8

8

8

88

8 8

8

8

8

8

GC
Manual+GC

Figure 18: Comparison of time to completion on the TPCH small dataset (queries 15 to 21) using
System.Linq.Manual.

query15 query16 query17 query18 query19 query20 query21
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

P
e
a
k
 W

o
rk

in
g

 S
e
t

(G
B

)

1

1
1

1
1

1

11
1

1

1 1
1

12

2

2

2
2

2

22
2

2

2 2

2

24

4

4

4
4

4

44

4

4

4
4

4

46

6

6

6
6

6

66

6

6

6
6

6

68

8

8

8

8

8

88

8

8

8
8

8

8

GC
Manual+GC

Figure 19: Comparison of peak working set on the TPCH small dataset (queries 15 to 21) using
System.Linq.Manual.

30

query0 query1 query2 query3 query4 query5 query6 query7
0

100000

200000

300000

400000

500000

600000

700000

800000

900000

T
im

e
 t

o
 C

o
m

p
le

ti
o
n

 (
m

s
e
c
)

1

1
1

1
1 1

1

1

1

1
1 1

1 1
1

1

2

2

2

2

2
2

2

2

2

2
2 2

2 2

2

2

4

4

4

4

4

4

4

4

4

4

4
4

4

4

4
4

6

6

6

6

6

6

6

6

6

6

6
6

6

6

6
6

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8 8

GC
Manual+GC

Figure 20: Comparison of time to completion on the TPCH large dataset (queries 0 to 7) using
System.Linq.Manual.

query0 query1 query2 query3 query4 query5 query6 query7
0.0

5.0

10.0

15.0

20.0

25.0

30.0

P
e
a
k
 W

o
rk

in
g

 S
e
t

(G
B

)

1

1

1
1

1

1

1
1

1
1

1
1

1

1
1 1

2

2

2

2

2

2

2
2

2
2

2 2 2

2

2
2

4

4

4

4

4

4

4

4

4

4

4
4

4

4

4

4

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

GC
Manual+GC

Figure 21: Comparison of peak working set on the TPCH large dataset (queries 0 to 7) using
System.Linq.Manual.

query8 query9 query10 query11 query12 query13 query14
0

200000

400000

600000

800000

1000000

T
im

e
 t

o
 C

o
m

p
le

ti
o
n

 (
m

s
e
c
)

1
1

1
1

1
1

11

1
1

1 1
1

1
2

2

2

2
2

2
2

2

2
2

2
2

2
2

4

4

4

4
4 4

4

4

4

4

4
4

4 4

6

6

6

6

6
6

6

6

6

6

6

6
6

6

8

8

8

8

8

8

8

8

8

8

8

8
8

8

GC
Manual+GC

Figure 22: Comparison of time to completion on the TPCH large dataset (queries 8 to 14) using
System.Linq.Manual.

31

query8 query9 query10 query11 query12 query13 query14
0.0

5.0

10.0

15.0

20.0

25.0

30.0

P
e
a
k
 W

o
rk

in
g

 S
e
t

(G
B

)

1 1

1

1

1
1 1

1 1
1

1 1 1 1

2
2

2

2

2
2 2

2 2

2

2
2

2 2

4

4

4

4

4

4 4

4 4

4

4

4
4 4

6

6

6

6

6

6 6

6 6

6

6

6

6 6

8

8

8

8

8

8 8

8 8

8

8

8

8 8

GC
Manual+GC

Figure 23: Comparison of peak working set on the TPCH large dataset (queries 8 to 14) using
System.Linq.Manual.

query15 query17 query18 query19 query20 query21
103

104

105

106

107

T
im

e
 t

o
 C

o
m

p
le

ti
o
n

 (
m

s
e
c
 i
n

 l
o
g

)

1

1

1

1 1

11

1
1

1 1

12

2

2

2 2

22

2

2

2 2

24

4

4

4 4

44

4

4

4 4

46

6

6

6
6

6
6

6

6

6 6

68

8

8

8
8

8
8

8

8

8 8

8

GC
Manual+GC

Figure 24: Comparison of time to completion (log scale) on the TPCH large dataset (queries 15 to 21) using
System.Linq.Manual.

query15 query17 query18 query19 query20 query21
1.0

10.0

100.0

P
e
a
k
 W

o
rk

in
g

 S
e
t

(G
B

 i
n

 l
o
g

)

1

1

1
1

1

11

1

1 1

1

12

2

2
2

2

22

2

2
2

2

24

4

4
4

4

44

4

4
4

4

46

6

6

6

6

66

6

6
6

6

68

8

8

8

8

8
8

8

8
8

8

8

GC
Manual+GC

Figure 25: Comparison of peak working set (log scale) on the TPCH large dataset (queries 15 to 21) using
System.Linq.Manual.

32

Table 2: Collections and GC pauses in the 22 TPCH queries using System.Linq.Manual (1 thread).

Gen0 Gen1 Gen2

Pause Time Pause Time Pause Time

Query Heap %GC Count Mean Max Count Mean Max Count Mean Max

0 GC 13.4% 225 1.2 8.2 72 3.3 7.7 15 1.0 2.2
0 Man+GC 4.9% 224 1.2 4.5 71 3.3 7.0 7 0.4 0.8
1 GC 15.3% 233 1.3 4.0 82 3.8 10.5 8 0.6 1.7
1 Man+GC 13.2% 233 1.3 3.8 73 3.4 7.5 8 0.7 2.3
2 GC 34.6% 411 1.5 15.1 165 9.8 25.3 16 1.3 3.8
2 Man+GC 11.0% 252 1.5 6.3 89 4.3 24.3 8 0.8 3.5
3 GC 15.5% 213 1.5 6.8 81 4.6 19.4 10 0.9 1.8
3 Man+GC 14.1% 212 1.5 6.8 77 3.6 8.5 10 1.4 4.5
4 GC 33.1% 542 1.1 22.6 165 9.8 25.6 16 1.1 3.0
4 Man+GC 9.8% 367 1.3 6.7 103 3.8 29.2 8 0.7 2.9
5 GC 5.5% 199 1.3 4.8 70 3.3 7.0 7 0.5 0.8
5 Man+GC 5.5% 199 1.3 3.8 70 3.3 7.0 7 0.5 0.7
6 GC 20.8% 687 0.7 19.7 160 5.7 38.3 15 0.8 2.0
6 Man+GC 9.0% 561 1.0 7.6 124 3.2 25.1 8 0.7 2.4
7 GC 21.7% 778 0.7 7.4 292 6.3 34.6 17 0.9 1.5
7 Man+GC 6.8% 732 1.2 7.6 83 4.7 37.2 8 1.0 4.1
8 GC 22.3% 664 1.2 19.4 173 6.9 39.6 15 0.7 1.1
8 Man+GC 12.1% 585 2.1 7.8 84 5.4 34.0 8 1.6 9.5
9 GC 36.0% 363 1.7 6.6 159 11.3 37.8 16 1.3 3.5
9 Man+GC 11.8% 218 1.7 8.7 83 5.2 30.9 8 1.0 4.2
10 GC 12.3% 235 1.2 4.3 72 3.3 7.3 7 0.5 0.8
10 Man+GC 11.8% 240 1.2 4.0 71 3.4 6.6 7 0.5 0.9
11 GC 31.6% 500 1.1 3.7 153 9.5 25.2 15 1.0 1.9
11 Man+GC 11.0% 345 1.1 6.5 100 3.8 26.3 8 0.7 1.9
12 GC 20.0% 217 2.2 16.6 86 6.6 46.5 8 0.9 4.4
12 Man+GC 11.5% 207 1.6 10.7 79 4.4 19.2 8 1.0 4.1
13 GC 7.3% 360 0.9 4.6 86 3.3 6.9 8 0.6 1.3
13 Man+GC 5.9% 370 1.0 4.8 74 3.4 8.7 7 0.5 0.8
14 GC 4.4% 207 1.3 3.7 69 3.6 10.0 8 0.6 1.3
14 Man+GC 3.7% 201 1.3 4.4 72 3.3 9.7 7 0.5 0.8
15 GC 14.3% 227 1.3 3.4 82 3.2 6.4 8 0.6 1.7
15 Man+GC 12.1% 233 1.2 6.3 74 3.3 8.8 7 0.7 1.6
16 GC 28.2% 541 1.1 8.4 188 7.5 28.9 19 1.4 8.3
16 Man+GC 8.5% 412 1.3 7.9 76 4.0 26.7 8 0.8 2.2
17 GC 41.5% 518 1.5 16.6 261 11.3 26.7 20 1.2 3.2
17 Man+GC 10.0% 247 1.8 8.5 89 5.1 21.9 8 1.3 6.3
18 GC 11.3% 367 0.9 4.1 86 3.1 6.6 8 0.5 1.3
18 Man+GC 9.0% 376 0.9 4.9 74 3.3 8.7 7 0.5 0.8
19 GC 14.5% 350 2.5 8.8 131 6.9 31.9 9 0.9 4.1
19 Man+GC 7.9% 381 1.5 5.4 87 3.8 8.7 8 0.6 1.7
20 GC 43.1% 895 1.4 51.2 398 10.2 51.1 37 2.4 11.2
20 Man+GC 15.1% 716 2.2 10.9 100 9.1 40.7 10 1.3 5.4
21 GC 12.1% 207 1.3 3.6 73 3.5 7.9 7 0.5 0.7
21 Man+GC 11.8% 204 1.3 4.3 73 3.4 9.0 7 0.4 0.7

33

Table 3: Collections and GC pauses in the Infer.NET machine learning benchmark (1 thread).

Gen0 Gen1 Gen2

Pause Time Pause Time Pause Time

Heap %GC Count Mean Max Count Mean Max Count Mean Max

GC 41.2% 655 5.4 9.7 375 20.5 44.5 174 12.2 107.5
Manual+GC 13.0% 229 8.4 15.3 139 19.5 51.2 73 22.1 61.9

Table 4: Collections and GC pauses in the HavlakPool benchmark (1 thread).

Gen0 Gen1 Gen2

Pause Time Pause Time Pause Time

Config Heap %GC # Mean Max # Mean Max # Mean Max

small GC 51.9% 27 10.6 25.8 24 15.4 33.8 6 3.4 7.1
small Man+GC 12.3% 5 18.7 27.5 4 24.9 34.6 2 50.2 69.5

medium GC 57.5% 53 9.7 39.2 49 16.9 54.3 7 3.7 6.1
medium Man+GC 17.4% 10 24.2 33.9 8 29.8 38.2 3 79.3 138.6

large GC 59.0% 77 9.5 33.0 76 15.9 35.3 8 4.6 6.8
large Man+GC 24.2% 15 37.1 122.6 12 35.3 45.6 3 82.9 149.4

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

small medium large
103

104

105

106

T
im

e
 t

o
 C

o
m

p
le

ti
o
n

 (
m

s
e
c
 i
n

 l
o
g

)

1

1

1

1

1

1

2

2

2

2

2

2

4

4

4

4

4

4

6

6

6

6

6

6

8

8

8

8

8

8

GC
Manual+GC

small medium large
0.0

0.1

1.0

P
e
a
k
 W

o
rk

in
g

 S
e
t

(G
B

 i
n

 l
o
g

)

1

1

1

1

1

1

2

2

2

2

2

2

4

4

4

4

4

4

6

6

6

6

6

6

8

8

8

8

8

8GC
Manual+GC

Figure 26: Comparison of time to completion (left hand side) and peak working set (right hand side) in the
DirectedGraph micro-benchmark using Workstation GC. All results are in log scale.

34

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

small medium large
103

104

105

106

T
im

e
 t

o
 C

o
m

p
le

ti
o
n

 (
m

s
e
c
 i
n

 l
o
g

)

1

1
1

1
1

12

2

2

2
2

2

4

4

4

4

4
4

6

6

6

6

6
6

8

8

8

8

8
8

GC
Manual+GC

small medium large
0.0

0.1

1.0

10.0

P
e
a
k
 W

o
rk

in
g

 S
e
t

(G
B

 i
n

 l
o
g

)

1

1
1

1

1

1
2

2

2

2

2

2

4

4

4

4

4

4

6

6
6

6

6

68

8
8

8

8

8

GC
Manual+GC

Figure 27: Comparison of time to completion (left hand side) and peak working set (right hand side) in the
DirectedGraphReplace micro-benchmark using Workstation GC. All results are in log scale.

small medium large
103

104

105

106

T
im

e
 t

o
 C

o
m

p
le

ti
o
n

 (
m

s
e
c
 i
n

 l
o
g

)

1

1

1

1

1

1

1
1

1

1

1

1

2

2

2

2

2

2

2
2

2

2

2

24

4

4

4

4

4

4
4

4

4

4

4
6

6

6

6

6

6

6

6

6

6

6

6
8

8

8

8

8

8

8

8

8
8

8

8

GC (Workstation)
Manual+GC (Workstation)
GC (Server)
Manual+GC (Server)

Figure 28: Comparison of time to completion (log scale) in the BinTree micro-benchmark using both Work-
station and Server GC.

small medium large
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

P
e
a
k
 W

o
rk

in
g

 S
e
t

(G
B

)

1 1 11 1 1

1

1

1

1 1 12 2
2

2 2 2

2

2

2

2 2 24
4

4

4 4
4

4

4

4

4 4
46

6

6

6
6

6

6

6

6

6
6

6

8

8

8

8
8

8

8

8

8

8
8

8

GC (Workstation)
Manual+GC (Workstation)
GC (Server)
Manual+GC (Server)

Figure 29: Comparison of peak working set in the BinTree micro-benchmark using both Workstation and
Server GC.

35

small medium large
103

104

105

106
T
im

e
 t

o
 C

o
m

p
le

ti
o
n

 (
m

s
e
c
 i
n

 l
o
g

)

1
1

1

1
1

1

1 1
1

1
1

1

2

2

2

2
2

2

2 2
2

2
2

2

4

4

4

4
4

4

4
4

4

4
4

4
6

6

6

6

6

6

6
6

6

6

6

68

8

8

8

8

8

8

8

8

8

8

8

GC (Workstation)
Manual+GC (Workstation)
GC (Server)
Manual+GC (Server)

Figure 30: Comparison of time to completion (log scale) in the BinTreeLive micro-benchmark using both
Workstation and Server GC.

small medium large
0.0

0.1

1.0

10.0

P
e
a
k
 W

o
rk

in
g

 S
e
t

(G
B

 i
n

 l
o
g

)

1 1 1

1 1 1

1 1
1

1 1 1
2 2 2

2 2 2

2
2

2

2 2 2
4

4

4

4 4
4

4

4

4

4 4
4

6
6

6

6 6
6

6

6

6

6 6
68

8

8

8
8

8

8

8

8

8
8

8

GC (Workstation)
Manual+GC (Workstation)
GC (Server)
Manual+GC (Server)

Figure 31: Comparison of peak working set (log scale) in the BinTreeLive micro-benchmark using both
Workstation and Server GC.

small medium large
103

104

105

106

T
im

e
 t

o
 C

o
m

p
le

ti
o
n

 (
m

s
e
c
 i
n

 l
o
g

)

1

1

1

1

1

1

1

1

1

1
1

1

2

2

2

2

2

2

2

2

2

2

2

2

4

4

4

4

4

4

4

4

4

4

4

4

6

6

6

6

6

6

6

6

6

6

6

6

8

8

8

8

8

8

8

8

8

8

8

8

GC (Workstation)
Manual+GC (Workstation)
GC (Server)
Manual+GC (Server)

Figure 32: Comparison of time to completion (log scale) in the BinTreeGrow micro-benchmark using both
Workstation and Server GC.

36

small medium large
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
e
a
k
 W

o
rk

in
g

 S
e
t

(G
B

)

1 1
1

1 1 1

1 1 1

1 1 12 2

2

2 2
2

2 2
2

2 2
2

4

4

4

4
4

4

4 4

4

4
4

4

6

6

6

6
6

6

6
6

6

6
6

6

8

8

8

8
8

8

8
8

8

8
8

8

GC (Workstation)
Manual+GC (Workstation)
GC (Server)
Manual+GC (Server)

Figure 33: Comparison of peak working set in the BinTreeGrow micro-benchmark using both Workstation
and Server GC.

small medium large
103

104

105

T
im

e
 t

o
 C

o
m

p
le

ti
o
n

 (
m

s
e
c
 i
n

 l
o
g

)

1

1

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

2

2

4

4

4

4

4

4

4

4

4

4

4

4

6

6

6

6

6

6

6

6

6

6

6

6

8

8

8

8

8

8

8

8

8

8

8

8

GC (Workstation)
Manual+GC (Workstation)
GC (Server)
Manual+GC (Server)

Figure 34: Comparison of time to completion (log scale) in the RedBlackTree micro-benchmark using both
Workstation and Server GC.

small medium large
0.0

0.1

1.0

10.0

100.0

P
e
a
k
 W

o
rk

in
g

 S
e
t

(G
B

 i
n

 l
o
g

)

1

1

1

1

1

1

1

1
1

1

1

1

2

2

2

2

2

2

2

2

2

2

2

2

4

4

4

4

4

4

4

4

4

4

4

4

6

6

6

6

6

6

6

6

6

6

6

6

8

8

8

8

8

8

8

8

8

8

8

8

GC (Workstation)
Manual+GC (Workstation)
GC (Server)
Manual+GC (Server)

Figure 35: Comparison of peak working set in the RedBlackTree micro-benchmark using both Workstation
and Server GC.

37

small medium large
0

10000

20000

30000

40000

50000

T
im

e
 t

o
 C

o
m

p
le

ti
o
n

 (
m

s
e
c
)

1
1

1

1
1

1

2

2

2

2

2

2

4

4

4

4

4

4

6

6

6

6

6

6

8

8

8

8

8

8GC
Manual+GC

Figure 36: Comparison of end-to-end time (includes CFG construction and the Havlak loop finding algo-
rithm) in the HavlakPool micro-benchmark using Workstation GC.

38

small medium large
0

5000

10000

15000

20000

H
a
v
la

k
 A

lg
o
ri

th
m

 T
im

e

1
1

1

1
1

12

2

2

2
2

2
4

4

4

4
4

4

6

6

6

6

6

6

8

8

8

8

8

8

GC
Manual+GC

Figure 37: Comparison of time to complete the Havlak loop finding algorithm in the HavlakPool micro-
benchmark using Workstation GC.

39

small medium large
0.0

2.0

4.0

6.0

8.0

10.0

12.0

P
e
a
k
 W

o
rk

in
g

 S
e
t

(G
B

)

1
1

1

1

1

1

2

2

2

2

2

2

4

4

4

4

4

4

6

6

6

6

6

6

8

8

8

8

8

8
GC
Manual+GC

Figure 38: Comparison of peak working set in the Havlkak loop finding algorithm using Workstation GC.

40

